Atmosferik Basınçlı Plazma ve Alevle Dağlama Yüzey Aktivasyon İşlemlerinin Karşılaştırılması, Astarsız Boyanabilirliğinin İncelenmesi
Yıl 2023,
, 137 - 152, 04.04.2023
Kadir Ayas
,
Adem Karaca
,
İsmail Hakan Çetinkaya
,
Kadir Çavdar
Öz
Polipropilen, sahip olduğu üstün mekanik özelliklerden dolayı otomotiv sektöründe sıklıkla kullanılmaktadır. Otomobillerde kullanılması için boyama, kaplama vb. işlemler yapılan polipropilenin yüzey enerjisinin düşüklüğü nedeniyle aktivasyon işlemleri görmektedir ve yüzeye boya öncesi astarlama uygulaması yapılmaktadır. Bu çalışmada atmosferik basınçlı plazma (ABP) ve alevle dağlama yüzey aktivasyonu işlemleri gören polipropilenin ıslatılabilirliği, yüzey enerjisi ve boya mukavemetindeki değişimler incelenmiş, elde edilen sonuçlar karşılaştırılmıştır. Yapışma ve ıslatılabilirlik arasındaki ilişki araştırılmıştır. ABP ile polipropilen yüzeyi arasındaki etkileşimi anlayabilmek için iki farklı işlem hızı (30 mm/s ve 100mm/s) ile deneyler yapılmıştır. Deneysel sonuçlar, ABP işleminin polipropilenin ıslanabilirliğini ve yapışma özelliklerini önemli ölçüde artırabileceğini ve ABP işlemin diğer aktivasyon yöntemlerine kıyasla çevreci bir alternatif olabileceğini göstermektedir.
Destekleyen Kurum
TÜBİTAK BİDEB
Teşekkür
Bu çalışma, TÜBİTAK BİDEB (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu Bilim İnsanı Destekleme Daire Başkanlığı) tarafından 119C206 proje numarası ile TÜBİTAK 2244 Sanayi Doktora Programı kapsamında desteklenmiştir.
Kaynakça
- Alexander, C. S., Branch, M. C., Strobel, M., Ulsh, M., Sullivan, N., & Vian, T. (2008). Application of ribbon burners to the flame treatment of polypropylene films. Progress in Energy and Combustion Science, 34(6), 696–713. Doi: https://doi.org/10.1016/J.PECS.2008.04.004
- Carrino, L., Moroni, G., & Polini, W. (2002). Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. Journal of Materials Processing Technology, 121(2–3), 373–382. Doi: https://doi.org/10.1016/S0924-0136(01)01221-3
- Durmuş, A., Ülkü, S., Güden, M., & Faruk Otnar, Ö. (2005). Kauçuk/Metal Yapışma Mukavemetinin Belirlenmesi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 10. Ebnesajjad, S. (2014). Material Surface Preparation Techniques. Surface Treatment of Materials for Adhesive Bonding, 95–138. Doi: https://doi.org/10.1016/B978-0-323-26435-8.00006-X
- Encinas, N., Abenojar, J., & Martínez, M. A. (2012). Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications. International Journal of Adhesion and Adhesives, 33, 1–6. Doi: https://doi.org/10.1016/j.ijadhadh.2011.10.002
- Esen, S.G. (2016). Otomobil tampon boya hatlarında plazma yüzey aktivasyonu ile yüzey enerjisinin kontrolü ve uygulanabilirliğinin araştırılması (Yüksek Lisans tezi, T.C. Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya). Erişim adresi: https://hdl.handle.net/20.500.12619/79738
- Hwang, Y. J., An, J. S., McCord, M. G., Park, S. W., & Kang, B. C. (2003). The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma. Fibers and Polymers, 4(4), 145–150. Doi: https://doi.org/10.1007/BF02908270
- Kehrer, M., Rottensteiner, A., Hartl, W., Duchoslav, J., Thomas, S., & Stifter, D. (2020). Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces. Surface and Coatings Technology, 403 (September), 126389. https://doi.org/10.1016/j.surfcoat.2020.126389
- Kwon, O. J., Tang, S., Myung, S. W., Lu, N., & Choi, H. S. (2005). Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surface and Coatings Technology, 192(1), 1–10. Doi: https://doi.org/10.1016/j.surfcoat.2004.09.018
- Leroux, F., Campagne, C., Perwuelz, A., & Gengembre, L. (2008). Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure. Journal of Colloid and Interface Science, 328(2), 412–420. Doi: https://doi.org/10.1016/j.jcis.2008.09.062
- Machado, J. J. M., Gamarra, P. M. R., Marques, E. A. S., & da Silva, L. F. M. (2018). Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industry. Composite Structures, 185, 373–380. Doi: https://doi.org/10.1016/J.COMPSTRUCT.2017.11.045
- Mandolfino, C., Lertora, E., & Gambaro, C. (2014). Effect of cold plasma treatment on surface roughness and bonding strength of polymeric substrates. Key Engineering Materials, 611–612 (December), 1484–1493. Doi: https://doi.org/10.4028/www.scientific.net/KEM.611-612.1484
- McCord, M. G., Hwang, Y. J., Hauser, P. J., Qiu, Y., Cuomo, J. J., Hankins, O. E., … Canup, L. K. (2002). Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasmas. Textile Research Journal, 72(6), 491–498. Doi: https://doi.org/10.1177/004051750207200605
- Mühlhan, C., Weidner, S., Friedrich, J., & Nowack, H. (1999). Improvement of bonding properties of polypropylene by low-pressure plasma treatment. Surface and Coatings Technology, 116–119, 783–787. Doi: https://doi.org/10.1016/S0257-8972(99)00203-0
- Pandiyaraj, K. N., Ramkumar, M. C., Kumar, A. A., Vasu, D., Padmanabhan, P. V. A., Tabaei, P. S. E., … Jaganathan, S. K. (2019). Development of phosphor containing functional coatings via cold atmospheric pressure plasma jet - Study of various operating parameters. Applied Surface Science, 488 (April), 343–350. Doi: https://doi.org/10.1016/j.apsusc.2019.05.089
- Penkov, O. V, Khadem, M., Lim, W. S., & Kim, D. E. (2015). A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research, 12 (2), 225–235. Doi: https://doi.org/10.1007/s11998-014-9638-z
- Sato, T., Ise, S., Horiuchi, S., Akiyama, H., & Miyamae, T. (2019). Influences of low-temperature ambient pressure N2 plasma and flame treatments on polypropylene surfaces. International Journal of Adhesion and Adhesives, 93, 102322. Doi: https://doi.org/10.1016/J.IJADHADH.2019.01.016
- Shabanpour, M., Mohammadhosseini, B., Khani, M. R., Khanjani, J., Shokri, B., & Ghassami, A. (2021). Flame versus air atmospheric gliding arc plasma treatment of polypropylene-based automotive bumpers: Physicochemical characterization and investigation of coating properties. Polymer Engineering & Science, 61(5), 1581–1593. Doi: https://doi.org/10.1002/pen.25682
- Shaw, D., West, A., Bredin, J., & Wagenaars, E. (2016). Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet. Plasma Sources Science and Technology, 25 (6). Doi: https://doi.org/10.1088/0963-0252/25/6/065018
- Upadhyay, D. J., Cui, N. Y., Anderson, C. A., & Brown, N. M. D. (2004). Surface oxygenation of polypropylene using an air dielectric barrier discharge: The effect of different electrode-platen combinations. Applied Surface Science, 229 (1–4), 352–364. Doi: https://doi.org/10.1016/j.apsusc.2004.02.012
- Wang, K., Wang, W., Yang, D., Huo, Y., & Wang, D. (2010). Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma. Applied Surface Science, 256 (22), 6859–6864. Doi: https://doi.org/10.1016/j.apsusc.2010.04.101
- Williams, D. F., Abel, M. L., Grant, E., Hrachova, J., & Watts, J. F. (2015). Flame Treatment of Polypropylene: A Study by Electron and Ion Spectroscopies. International Journal of Adhesion and Adhesives, 63, 26–33. Doi: https://doi.org/10.1016/J.IJADHADH.2015.07.009
- Yaman, N., Özdogan, E., Kocum, I. C., Ayhan, H., Öktem, T., & Seventekin, N. (2009). Improvement surface properties of polypropylene and polyester fabrics by glow discharge plasma system under atmospheric condition. Tekstil ve Konfeksiyon, 19 (1), 45–51.
- Zhang, P., Zhang, S., Kong, F., Zhang, C., Dong, P., Yan, P., … Shao, T. (2020). Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum. Surface and Coatings Technology, 387 (February). Doi: https://doi.org/10.1016/j.surfcoat.2020.125511
Comparison of Atmospheric Pressure Plasma and Flame Etching Surface Activation Processes, Investigation of Primerless Paintability
Yıl 2023,
, 137 - 152, 04.04.2023
Kadir Ayas
,
Adem Karaca
,
İsmail Hakan Çetinkaya
,
Kadir Çavdar
Öz
Polypropylene is frequently used in the automotive industry due to its mechanical properties. Polypropylene, which is painted, coated, etc., before it is used in automobiles, undergoes activation processes due to its low surface energy and primer is applied to the surface before painting. In this study, the changes in the wettability, surface energy and paint strength of polypropylene, which underwent atmospheric pressure plasma (ABP) and flame activation surface activation processes, were examined and the results were compared. The relationship between adhesion and wettability was investigated. In order to understand the interaction between ABP and the polypropylene surface, experiments were carried out with two different processing speeds (30 mm/s ve 100mm/s). Experimental results show that the ABP treatment can significantly increase the wettability and adhesion properties of polypropylene and the ABP treatment can be an environmentally friendly alternative to other activation methods
Kaynakça
- Alexander, C. S., Branch, M. C., Strobel, M., Ulsh, M., Sullivan, N., & Vian, T. (2008). Application of ribbon burners to the flame treatment of polypropylene films. Progress in Energy and Combustion Science, 34(6), 696–713. Doi: https://doi.org/10.1016/J.PECS.2008.04.004
- Carrino, L., Moroni, G., & Polini, W. (2002). Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. Journal of Materials Processing Technology, 121(2–3), 373–382. Doi: https://doi.org/10.1016/S0924-0136(01)01221-3
- Durmuş, A., Ülkü, S., Güden, M., & Faruk Otnar, Ö. (2005). Kauçuk/Metal Yapışma Mukavemetinin Belirlenmesi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 10. Ebnesajjad, S. (2014). Material Surface Preparation Techniques. Surface Treatment of Materials for Adhesive Bonding, 95–138. Doi: https://doi.org/10.1016/B978-0-323-26435-8.00006-X
- Encinas, N., Abenojar, J., & Martínez, M. A. (2012). Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications. International Journal of Adhesion and Adhesives, 33, 1–6. Doi: https://doi.org/10.1016/j.ijadhadh.2011.10.002
- Esen, S.G. (2016). Otomobil tampon boya hatlarında plazma yüzey aktivasyonu ile yüzey enerjisinin kontrolü ve uygulanabilirliğinin araştırılması (Yüksek Lisans tezi, T.C. Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya). Erişim adresi: https://hdl.handle.net/20.500.12619/79738
- Hwang, Y. J., An, J. S., McCord, M. G., Park, S. W., & Kang, B. C. (2003). The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma. Fibers and Polymers, 4(4), 145–150. Doi: https://doi.org/10.1007/BF02908270
- Kehrer, M., Rottensteiner, A., Hartl, W., Duchoslav, J., Thomas, S., & Stifter, D. (2020). Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces. Surface and Coatings Technology, 403 (September), 126389. https://doi.org/10.1016/j.surfcoat.2020.126389
- Kwon, O. J., Tang, S., Myung, S. W., Lu, N., & Choi, H. S. (2005). Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surface and Coatings Technology, 192(1), 1–10. Doi: https://doi.org/10.1016/j.surfcoat.2004.09.018
- Leroux, F., Campagne, C., Perwuelz, A., & Gengembre, L. (2008). Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure. Journal of Colloid and Interface Science, 328(2), 412–420. Doi: https://doi.org/10.1016/j.jcis.2008.09.062
- Machado, J. J. M., Gamarra, P. M. R., Marques, E. A. S., & da Silva, L. F. M. (2018). Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industry. Composite Structures, 185, 373–380. Doi: https://doi.org/10.1016/J.COMPSTRUCT.2017.11.045
- Mandolfino, C., Lertora, E., & Gambaro, C. (2014). Effect of cold plasma treatment on surface roughness and bonding strength of polymeric substrates. Key Engineering Materials, 611–612 (December), 1484–1493. Doi: https://doi.org/10.4028/www.scientific.net/KEM.611-612.1484
- McCord, M. G., Hwang, Y. J., Hauser, P. J., Qiu, Y., Cuomo, J. J., Hankins, O. E., … Canup, L. K. (2002). Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasmas. Textile Research Journal, 72(6), 491–498. Doi: https://doi.org/10.1177/004051750207200605
- Mühlhan, C., Weidner, S., Friedrich, J., & Nowack, H. (1999). Improvement of bonding properties of polypropylene by low-pressure plasma treatment. Surface and Coatings Technology, 116–119, 783–787. Doi: https://doi.org/10.1016/S0257-8972(99)00203-0
- Pandiyaraj, K. N., Ramkumar, M. C., Kumar, A. A., Vasu, D., Padmanabhan, P. V. A., Tabaei, P. S. E., … Jaganathan, S. K. (2019). Development of phosphor containing functional coatings via cold atmospheric pressure plasma jet - Study of various operating parameters. Applied Surface Science, 488 (April), 343–350. Doi: https://doi.org/10.1016/j.apsusc.2019.05.089
- Penkov, O. V, Khadem, M., Lim, W. S., & Kim, D. E. (2015). A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research, 12 (2), 225–235. Doi: https://doi.org/10.1007/s11998-014-9638-z
- Sato, T., Ise, S., Horiuchi, S., Akiyama, H., & Miyamae, T. (2019). Influences of low-temperature ambient pressure N2 plasma and flame treatments on polypropylene surfaces. International Journal of Adhesion and Adhesives, 93, 102322. Doi: https://doi.org/10.1016/J.IJADHADH.2019.01.016
- Shabanpour, M., Mohammadhosseini, B., Khani, M. R., Khanjani, J., Shokri, B., & Ghassami, A. (2021). Flame versus air atmospheric gliding arc plasma treatment of polypropylene-based automotive bumpers: Physicochemical characterization and investigation of coating properties. Polymer Engineering & Science, 61(5), 1581–1593. Doi: https://doi.org/10.1002/pen.25682
- Shaw, D., West, A., Bredin, J., & Wagenaars, E. (2016). Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet. Plasma Sources Science and Technology, 25 (6). Doi: https://doi.org/10.1088/0963-0252/25/6/065018
- Upadhyay, D. J., Cui, N. Y., Anderson, C. A., & Brown, N. M. D. (2004). Surface oxygenation of polypropylene using an air dielectric barrier discharge: The effect of different electrode-platen combinations. Applied Surface Science, 229 (1–4), 352–364. Doi: https://doi.org/10.1016/j.apsusc.2004.02.012
- Wang, K., Wang, W., Yang, D., Huo, Y., & Wang, D. (2010). Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma. Applied Surface Science, 256 (22), 6859–6864. Doi: https://doi.org/10.1016/j.apsusc.2010.04.101
- Williams, D. F., Abel, M. L., Grant, E., Hrachova, J., & Watts, J. F. (2015). Flame Treatment of Polypropylene: A Study by Electron and Ion Spectroscopies. International Journal of Adhesion and Adhesives, 63, 26–33. Doi: https://doi.org/10.1016/J.IJADHADH.2015.07.009
- Yaman, N., Özdogan, E., Kocum, I. C., Ayhan, H., Öktem, T., & Seventekin, N. (2009). Improvement surface properties of polypropylene and polyester fabrics by glow discharge plasma system under atmospheric condition. Tekstil ve Konfeksiyon, 19 (1), 45–51.
- Zhang, P., Zhang, S., Kong, F., Zhang, C., Dong, P., Yan, P., … Shao, T. (2020). Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum. Surface and Coatings Technology, 387 (February). Doi: https://doi.org/10.1016/j.surfcoat.2020.125511