Araştırma Makalesi
BibTex RIS Kaynak Göster

DEVELOPMENT AND VERİFİCATİON OF A MULTİBLOCK STRUCTURED GRİD SOLVER FOR 3D EULER/NAVİER-STOKES EQUATİONS

Yıl 2023, , 386 - 395, 10.07.2023
https://doi.org/10.46399/muhendismakina.1252286

Öz

A multiblock structured grid solver for 3D Euler/Navier-Stokes equations is developed in this study. The solver employs the finite difference method together with the lower-upper factored scheme to provide fast solutions, while the use of multiblock structured grids allows the algorithm to be applied to complex geometries.
The developed solver is then tested on a "body-only" axisymmetric model with a single-engine fighter aft-end which was previously investigated experimentally. The numerical results of the pressure distributions on the model's body obtained by the solver are compared to the experimental results. The numerical and experimental results were found to be in good agreement, indicating that the solver can sufficiently solve the flow equations, and represent the physical properties of the flow.

Kaynakça

  • Beam, R. M., Warming, R. F. (1976). An Implicit Finite-difference Algorithm for Hyperbolic Systems in Conservation-law Form. Journal of Computational Physics, 22(1), 87–110. https://doi.org/https://doi.org/10.1016/0021-9991(76)90110-8
  • Beam, R. M., Warming, R. F. (1978). An Implicit Factored Scheme for the Compressible Navier-Stokes Equations. AIAA Journal, 16(4), 393–402. https://doi.org/10.2514/3.60901
  • Berrier, B. L. (1994). Single-Engine Tail Interference Model. In A Selection of Experimental Test Cases for the Validation of CFD Codes (Vol. 2, Issue 303, pp. 452–475). NTRS-NASA.
  • Blazek, J. (2005). Introduction. In Computational Fluid Dynamics: Principles and Applications (pp. 1–4). Elsevier. https://doi.org/10.1016/B978-008044506-9/50003-5
  • Briley, W. R., Mcdonald, H. (1977). Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method. Journal of Computational Physics, 24, 312–397.
  • Leyland, P., Vos, J. B. (1995). NSMB: A Modular Navier-Stokes Multiblock Code for CFD. 33rd Aerospace Sciences Meeting and Exhibition. https://doi.org/https://doi.org/10.2514/6.1995-568
  • Lındemuth, I., Killeen, J. (1973). Alternating Direction Implicit Techniques for Two-dimensional Magnetohydrodynamic Calculations. Journal of Computational Physics, 13(2), 181–208. https://doi.org/https://doi.org/10.1016/0021-9991(73)90022-3
  • Obayashi, S., Fujıı, K. (1985). Computation of Three-Dimensional Viscous Transonic Flows with the LU Factored Scheme. 7th Computational Physics Conference, 192–202.
  • Pulliam, T. H., Steger, J. L. (1980). Implicit Finite-Difference Simulations of Three-Dimensional Compressible Flow. AIAA Journal, 18(2), 159–167. https://doi.org/10.2514/3.50745
  • Rizzi, A., Eliasson, P., Ingemar Lındblad, I., Charles Hırsch, I., Lacor, C., and Haeuser, J. (1993). The Engineering of Multiblock/Multigrid Software for Navier-Stokes Flows on Structured Meshes. Computers Fluids, 22(3), 341–367.
  • Sıcları, M., Delguıdıce, P., and Jameson, A. (1989). A Multigrid Finite Volume Method for Solving the Euler and Navier-Stokes Equations for High Speed Flows. 27th Aerospace Sciences Meeting. https://doi.org/10.2514/6.1989-283
  • Takaki, R., Makida, M., Yamamoto, K., Yamane, T., Enomoto, S., Yamazakı, H., Iwamiya, T., and Nakamura, T. (2002). Current Status of CFD Platform - UPACS -. In P. Wilders, A. Ecer, N. Satofuka, J. Periaux, & P. Fox (Eds.), Parallel Computational Fluid Dynamics 2001 (pp. 339–346). North-Holland. https://doi.org/https://doi.org/10.1016/B978-044450672-6/50094-3
  • Yadlin, Y., Caughey, D. A. (1991). Block Multigrid Implicit Solution of the Euler Equations of Compressible Fluid Flow. AIAA Journal, 29(5), 712–719. https://doi.org/10.2514/3.10645

ÜÇ BOYUTLU EULER/NAVİER-STOKES DENKLEMLERİ İÇİN ÇOK BLOKLU YAPISAL AĞLI ÇÖZÜCÜ GELİŞTİRİLMESİ VE DOĞRULANMASI

Yıl 2023, , 386 - 395, 10.07.2023
https://doi.org/10.46399/muhendismakina.1252286

Öz

Bu çalışmada üç boyutlu Euler-Navier Stokes denklemleri için çok boyutlu yapısal ağlı bir çözücü geliştirilmiştir. Çözücü, denklem çözümleri için sonlu farklar metodu ve yukarı-aşağı yaklaşık çarpanlarına ayırma algoritması kullanmaktadır. Çok bloklu yapısal ağ kullanımı ise algoritmanın kompleks geometriler için kullanımına olanak sağlamaktadır. Geliştirilen çözücünün doğruluğu, daha önce deneysel olarak test edilen tek motor arka gövde etkileşimi sonuçlarıyla karşılaştırılmıştır. Geliştirilen çözücünün kullanımıyla elde edilen sayısal veriler, deneysel verilerle uyumluluk gösterdiğinden, geliştirilen çözücünün akış fiziğini yeteri kadar temsil edebildiği gösterilmiştir.

Kaynakça

  • Beam, R. M., Warming, R. F. (1976). An Implicit Finite-difference Algorithm for Hyperbolic Systems in Conservation-law Form. Journal of Computational Physics, 22(1), 87–110. https://doi.org/https://doi.org/10.1016/0021-9991(76)90110-8
  • Beam, R. M., Warming, R. F. (1978). An Implicit Factored Scheme for the Compressible Navier-Stokes Equations. AIAA Journal, 16(4), 393–402. https://doi.org/10.2514/3.60901
  • Berrier, B. L. (1994). Single-Engine Tail Interference Model. In A Selection of Experimental Test Cases for the Validation of CFD Codes (Vol. 2, Issue 303, pp. 452–475). NTRS-NASA.
  • Blazek, J. (2005). Introduction. In Computational Fluid Dynamics: Principles and Applications (pp. 1–4). Elsevier. https://doi.org/10.1016/B978-008044506-9/50003-5
  • Briley, W. R., Mcdonald, H. (1977). Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method. Journal of Computational Physics, 24, 312–397.
  • Leyland, P., Vos, J. B. (1995). NSMB: A Modular Navier-Stokes Multiblock Code for CFD. 33rd Aerospace Sciences Meeting and Exhibition. https://doi.org/https://doi.org/10.2514/6.1995-568
  • Lındemuth, I., Killeen, J. (1973). Alternating Direction Implicit Techniques for Two-dimensional Magnetohydrodynamic Calculations. Journal of Computational Physics, 13(2), 181–208. https://doi.org/https://doi.org/10.1016/0021-9991(73)90022-3
  • Obayashi, S., Fujıı, K. (1985). Computation of Three-Dimensional Viscous Transonic Flows with the LU Factored Scheme. 7th Computational Physics Conference, 192–202.
  • Pulliam, T. H., Steger, J. L. (1980). Implicit Finite-Difference Simulations of Three-Dimensional Compressible Flow. AIAA Journal, 18(2), 159–167. https://doi.org/10.2514/3.50745
  • Rizzi, A., Eliasson, P., Ingemar Lındblad, I., Charles Hırsch, I., Lacor, C., and Haeuser, J. (1993). The Engineering of Multiblock/Multigrid Software for Navier-Stokes Flows on Structured Meshes. Computers Fluids, 22(3), 341–367.
  • Sıcları, M., Delguıdıce, P., and Jameson, A. (1989). A Multigrid Finite Volume Method for Solving the Euler and Navier-Stokes Equations for High Speed Flows. 27th Aerospace Sciences Meeting. https://doi.org/10.2514/6.1989-283
  • Takaki, R., Makida, M., Yamamoto, K., Yamane, T., Enomoto, S., Yamazakı, H., Iwamiya, T., and Nakamura, T. (2002). Current Status of CFD Platform - UPACS -. In P. Wilders, A. Ecer, N. Satofuka, J. Periaux, & P. Fox (Eds.), Parallel Computational Fluid Dynamics 2001 (pp. 339–346). North-Holland. https://doi.org/https://doi.org/10.1016/B978-044450672-6/50094-3
  • Yadlin, Y., Caughey, D. A. (1991). Block Multigrid Implicit Solution of the Euler Equations of Compressible Fluid Flow. AIAA Journal, 29(5), 712–719. https://doi.org/10.2514/3.10645
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Defne Kıran 0000-0003-2654-9686

Ali Ruhsen Çete 0000-0002-5877-4223

Yayımlanma Tarihi 10 Temmuz 2023
Gönderilme Tarihi 17 Şubat 2023
Kabul Tarihi 17 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kıran, D., & Çete, A. R. (2023). DEVELOPMENT AND VERİFİCATİON OF A MULTİBLOCK STRUCTURED GRİD SOLVER FOR 3D EULER/NAVİER-STOKES EQUATİONS. Mühendis Ve Makina, 64(711), 386-395. https://doi.org/10.46399/muhendismakina.1252286

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520