Araştırma Makalesi
BibTex RIS Kaynak Göster

MODEL SELECTION IN THE NON-HOMOGENEOUS POISSON PROCESS FOR THE RELIABILITY OF A MACHINE

Yıl 2025, Cilt: 66 Sayı: 719, 239 - 252, 30.06.2025
https://doi.org/10.46399/muhendismakina.1728546

Öz

Model selection plays an important role, especially in critical areas such as reliability analysis. Non-homogeneous Poisson process (NHPP) is a statistical approach widely used to model the frequency of time-dependent events. In such processes, correct model selection is vital to effectively evaluate the performance and reliability of the system. In this study, two basic models frequently used in NHPP, the power law model and the log-linear model, are compared. The research focuses on the reliability of ATM machines of a bank. The reliability performance and expected failure numbers of both models are calculated using the data between the failure times of ATMs. In the study, the predictive power and accuracy of the models are compared; their suitability to real data is evaluated with statistical methods. The obtained results are compared and it is decided which model is a better choice.

Kaynakça

  • Ascher, H., Hansen, CK. (1998). Spurious exponentially observed when incorrectly fitting a distribution to nonstationary data, IEEE Transactions on Reliability, 47 (4), 451-459.
  • Babayiğit, C. (2019). Analysis of maintenance and repair data, Master Thesis, Erciyes University.
  • Barlow R. E., Davis B. (1977). Analysis of time between failures for repairable components, Proceedings of SIAM Conference on Nuclear System Reliability Engineering and Risk Assesment, 543-561.
  • Bugatekin, A. (2017). Testing the reliability of a machine with non-homogeneous poisson process, Fırat University Journal of Engineering Sciences, 29(1), 207-211.
  • Chattarje, S., Singh JA. (2014). A NHPP based software reliability model and optimal release policy with logistic-exponential test coverage under imperfect debugging, International Journal of System Assurance Engineering Management, 5(3), 399-406. Doi: https://doi.org/10.1007/s13198-013-0181-6
  • Cox, D.R., Lewis, P.A.W. (1966). The statistical analysis of series of events. Methuen, London.
  • Crow, L.R. (1974). Reliability analysis for complex systems in reliability and biometry, edited by F. Proschan and R.J. Serfling. SIAM, Philadelphia, PA.
  • Crowder, MJ., Kimber, AC., Smith, RL., Sweeting, TJ. (1991). Statistical analysis of reliability data. Chapman and Hall/CRC London.
  • Dincer N. G., Demir S., Yalçin M. O. (2022), Forecasting COVİD19 reliability of the countries by using non-homogeneous poisson process models, New Generation Computing, 40, 1143-1164, Doi: https://doi.org/10.1007/s00354-022-00183-1
  • Elsayed, EA. (1996). Reliability engineering, 1st Edition, Addison Wesley Longman.
  • Engelhardt M., Bain L. J. (1978), Prediction intervals for the weibull process, Technometrics, 20(2), 167-169.
  • Grabski F. (2019), Nonhomogeneous poisson process and compound poisson processes in the modelling of random processes related to road accidents, Journal of KONES Powertrain and Transport, 26(1), 39-46. Doi: https://doi.org/10.2478/kones-2019-0005
  • Gül, F.N, (2023), Nonhomogeneous poisson process and its application, Master Thesis, Gebze Technical University.
  • Halim S. Z., Quddus N., Pasman H. (2021), Time-trend analysis of offshore fire incidents using nonhomogeneous poisson process through bayesion inference, Process Safety and Environmental Protection, 147, 421-429. Doi: https://doi.org/10.1016/j.psep.2020.09.049
  • Jones, RB. (1995). Risk based management: A reliability centered approach. Gulf Publishing Company.
  • Kumar, U., Klefsjö, B. (1992). Reliability analysis of hydraulic systems of LHD machines using the power law process model, Reliability Engineering and System Safety, vol. 35, no.3, p. 217-224. Doi: https://doi.org/10.1016/0951-8320(92)90080-5
  • Lawless, JF. (2003). Statistical models and methods for lifetime data. John Wiley; New York.
  • London, D. (1988). Survival models and their estimation. Actex Publications Winsted and Avon.
  • Meeker, WQ., Escobar LA. (1998). Statistical methods for reliability data. Wiley; New York.
  • Perera, LP., Machado, MM., Valland, A., Manguinho, DA. (2015). Modelling of system failures in gas turbine engines on offshore platforms, IFAC-Papers Online, 48(6), 194-199. Doi: https://doi.org/10.1016/j.ifacol.2015.08.031
  • Rausand, M., Hoyland, A. (2004). A System reliability theory: Models, statistical methods and application, Wiley, New York.
  • Saldanha, C., Luiz, P. (1995). An application of non-homogeneous poisson process to the reliability analysis of service water pumps of nuclear power plants, Universidad Federal.
  • Samanta, B., Sarkar, B., Mukherjee, SK. (2001). Reliability analysis of shovel machines used in an open cast coal mine, Mineral Resourch Engineering, 10(2), 219-231. Doi: https://doi.org/10.1142/S0950609801000610
  • Sumiati I., Rahmani U., Supian S., Subiyanto S. (2019). Application of the non-homogeneous poisson processes for Counting Earthquakes, World Scientific News, 127 (3), 163-176.
  • Srivastava N. K., Mondal S. (2016). Devepolment of predictive maintenance model for N-Component repairable system using NHPP models and system availability concept, Global Business Review, 17(1), 105-115. Doi: https://doi.org/10.1177/0972150915610697
  • Uzgören, N., Elevli, S. (2010). Non-homogeneous poisson process: Reliability analysis of a mining equipment, Gazi University Journal of Engineering and Architecture Faculty, 25(4), 827-837.
  • Wang, P., Coit, DW. (2005). Repairable systems reliability trend tests and evaluation, Annual Reliability and Maintainability Symposium, 416-421. Doi: https://doi.org/10.1109/RAMS.2005.1408398
  • Wang, ZM., Yu, X. (2012). Log-linear process modeling for repairable systems with time trends and its applications in reliability assessment of numerically controlled machine tools, Journal of Risk and Reliability, 227(1), 55-65. Doi: https://doi.org/10.1177/1748006X12460633
  • Ye, ZS., Xie, M., Tang, LC. (2013). Reliability evaluation of hard disk drive failures based on counting process, Reliability Engineering System Safety, 8, 110-118. Doi: https://doi.org/10.1016/j.ress.2012.07.003
  • Zahedi, H. (2018). Repairable systems reliability; modeling, inference, misconceptions and their causes, Journal of Quality Technology, 21(4), 298-299. Doi: https://doi.org/10.1080/00224065.1989.11979195

BİR MAKİNENİN GÜVENİLİRLİĞİ İÇİN HOMOJEN OLMAYAN POİSSON SÜRECİNDE MODEL SEÇİMİ

Yıl 2025, Cilt: 66 Sayı: 719, 239 - 252, 30.06.2025
https://doi.org/10.46399/muhendismakina.1728546

Öz

Model seçimi, özellikle güvenilirlik analizi gibi kritik alanlarda önemli bir rol oynar. Homojen olmayan Poisson süreci (NHPP), zamana bağlı olayların sıklığını modellemek için yaygın olarak kullanılan istatistiksel bir yaklaşımdır. Bu tür süreçlerde doğru model seçimi, sistemin performansını ve güvenilirliğini etkili bir şekilde değerlendirmek için hayati önem taşır. Bu çalışmada, NHPP'de sıkça kullanılan iki temel model, kuvvet yasası modeli ve log-lineer model, karşılaştırılmıştır. Araştırma kapsamında bir bankanın ATM makinelerinin güvenilirliği üzerine odaklanılmıştır. ATM’lerin arıza süreleri arasındaki veriler kullanılarak her iki modelin güvenilirlik performansı ve beklenen arıza sayıları hesaplanmıştır. Çalışmada, modellerin tahmin gücü ve doğruluğu kıyaslanmış; gerçek verilere uygunlukları istatistiksel yöntemlerle değerlendirilmiştir. Elde edilen sonuçlar karşılaştırılarak hangi modelin daha iyi bir seçim olduğuna karar verilmiştir.

Kaynakça

  • Ascher, H., Hansen, CK. (1998). Spurious exponentially observed when incorrectly fitting a distribution to nonstationary data, IEEE Transactions on Reliability, 47 (4), 451-459.
  • Babayiğit, C. (2019). Analysis of maintenance and repair data, Master Thesis, Erciyes University.
  • Barlow R. E., Davis B. (1977). Analysis of time between failures for repairable components, Proceedings of SIAM Conference on Nuclear System Reliability Engineering and Risk Assesment, 543-561.
  • Bugatekin, A. (2017). Testing the reliability of a machine with non-homogeneous poisson process, Fırat University Journal of Engineering Sciences, 29(1), 207-211.
  • Chattarje, S., Singh JA. (2014). A NHPP based software reliability model and optimal release policy with logistic-exponential test coverage under imperfect debugging, International Journal of System Assurance Engineering Management, 5(3), 399-406. Doi: https://doi.org/10.1007/s13198-013-0181-6
  • Cox, D.R., Lewis, P.A.W. (1966). The statistical analysis of series of events. Methuen, London.
  • Crow, L.R. (1974). Reliability analysis for complex systems in reliability and biometry, edited by F. Proschan and R.J. Serfling. SIAM, Philadelphia, PA.
  • Crowder, MJ., Kimber, AC., Smith, RL., Sweeting, TJ. (1991). Statistical analysis of reliability data. Chapman and Hall/CRC London.
  • Dincer N. G., Demir S., Yalçin M. O. (2022), Forecasting COVİD19 reliability of the countries by using non-homogeneous poisson process models, New Generation Computing, 40, 1143-1164, Doi: https://doi.org/10.1007/s00354-022-00183-1
  • Elsayed, EA. (1996). Reliability engineering, 1st Edition, Addison Wesley Longman.
  • Engelhardt M., Bain L. J. (1978), Prediction intervals for the weibull process, Technometrics, 20(2), 167-169.
  • Grabski F. (2019), Nonhomogeneous poisson process and compound poisson processes in the modelling of random processes related to road accidents, Journal of KONES Powertrain and Transport, 26(1), 39-46. Doi: https://doi.org/10.2478/kones-2019-0005
  • Gül, F.N, (2023), Nonhomogeneous poisson process and its application, Master Thesis, Gebze Technical University.
  • Halim S. Z., Quddus N., Pasman H. (2021), Time-trend analysis of offshore fire incidents using nonhomogeneous poisson process through bayesion inference, Process Safety and Environmental Protection, 147, 421-429. Doi: https://doi.org/10.1016/j.psep.2020.09.049
  • Jones, RB. (1995). Risk based management: A reliability centered approach. Gulf Publishing Company.
  • Kumar, U., Klefsjö, B. (1992). Reliability analysis of hydraulic systems of LHD machines using the power law process model, Reliability Engineering and System Safety, vol. 35, no.3, p. 217-224. Doi: https://doi.org/10.1016/0951-8320(92)90080-5
  • Lawless, JF. (2003). Statistical models and methods for lifetime data. John Wiley; New York.
  • London, D. (1988). Survival models and their estimation. Actex Publications Winsted and Avon.
  • Meeker, WQ., Escobar LA. (1998). Statistical methods for reliability data. Wiley; New York.
  • Perera, LP., Machado, MM., Valland, A., Manguinho, DA. (2015). Modelling of system failures in gas turbine engines on offshore platforms, IFAC-Papers Online, 48(6), 194-199. Doi: https://doi.org/10.1016/j.ifacol.2015.08.031
  • Rausand, M., Hoyland, A. (2004). A System reliability theory: Models, statistical methods and application, Wiley, New York.
  • Saldanha, C., Luiz, P. (1995). An application of non-homogeneous poisson process to the reliability analysis of service water pumps of nuclear power plants, Universidad Federal.
  • Samanta, B., Sarkar, B., Mukherjee, SK. (2001). Reliability analysis of shovel machines used in an open cast coal mine, Mineral Resourch Engineering, 10(2), 219-231. Doi: https://doi.org/10.1142/S0950609801000610
  • Sumiati I., Rahmani U., Supian S., Subiyanto S. (2019). Application of the non-homogeneous poisson processes for Counting Earthquakes, World Scientific News, 127 (3), 163-176.
  • Srivastava N. K., Mondal S. (2016). Devepolment of predictive maintenance model for N-Component repairable system using NHPP models and system availability concept, Global Business Review, 17(1), 105-115. Doi: https://doi.org/10.1177/0972150915610697
  • Uzgören, N., Elevli, S. (2010). Non-homogeneous poisson process: Reliability analysis of a mining equipment, Gazi University Journal of Engineering and Architecture Faculty, 25(4), 827-837.
  • Wang, P., Coit, DW. (2005). Repairable systems reliability trend tests and evaluation, Annual Reliability and Maintainability Symposium, 416-421. Doi: https://doi.org/10.1109/RAMS.2005.1408398
  • Wang, ZM., Yu, X. (2012). Log-linear process modeling for repairable systems with time trends and its applications in reliability assessment of numerically controlled machine tools, Journal of Risk and Reliability, 227(1), 55-65. Doi: https://doi.org/10.1177/1748006X12460633
  • Ye, ZS., Xie, M., Tang, LC. (2013). Reliability evaluation of hard disk drive failures based on counting process, Reliability Engineering System Safety, 8, 110-118. Doi: https://doi.org/10.1016/j.ress.2012.07.003
  • Zahedi, H. (2018). Repairable systems reliability; modeling, inference, misconceptions and their causes, Journal of Quality Technology, 21(4), 298-299. Doi: https://doi.org/10.1080/00224065.1989.11979195
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ayse T. Bugatekin Bu kişi benim 0000-0001-8949-8367

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 22 Mart 2024
Kabul Tarihi 26 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 66 Sayı: 719

Kaynak Göster

APA Bugatekin, A. T. (2025). MODEL SELECTION IN THE NON-HOMOGENEOUS POISSON PROCESS FOR THE RELIABILITY OF A MACHINE. Mühendis ve Makina, 66(719), 239-252. https://doi.org/10.46399/muhendismakina.1728546

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520