Derleme
BibTex RIS Kaynak Göster

SOĞUK PÜSKÜRTME TEKNOLOJİSİ VE UYGULAMALARI

Yıl 2021, , 106 - 150, 11.03.2021
https://doi.org/10.46399/muhendismakina.801291

Öz

Soğuk püskürtme, katı tozların yakınsak/ıraksak türde bir nozul vasıtasıyla altlığa doğru hızlandırıldığı bir katı hal biriktirme işlemidir. Kaplama birikimi püskürtülen parçacıkları ergitmeden gerçekleşir. Püskürtülen parçacıklar yüksek kinetik enerjiye sahip olduğu için çarpma esnasında altlığa yapışır. Başarılı bir yapışma sağlamak için toz parçacıkların, kendi malzeme özelliklerine bağlı olan kritik hız değerini çarpma esnasında aşması gereklidir. Metaller, seramikler, kompozitler ve polimerler gibi farklı malzemeler soğuk püskürtme kullanılarak biriktirilebilir. Soğuk püskürtme, yüzey kaplaması elde etmek için yeni ve gelecek vaat eden bir teknolojidir ve biriktirme için termal enerji yerine kinetik enerji kullandığından termal püskürtmeye göre çeşitli teknolojik avantajlar sunar. Sonuç olarak, kalıntı gerilmeler, oksidasyon ve istenmeyen kimyasal reaksiyonlar önlenebilir. Soğuk püskürtme teknolojisi endüstride birçok uygulama alanına sahiptir. Birçok endüstride kullanılan bileşenlerin korunması ve onarımı amacıyla geliştirilmiştir. Son yıllarda soğuk püskürtme işlemi elektronik sistemlerin tamiri, eklemeli imalat, kaynak, sert lehimleme, yüzey koruma, tıbbi cihazlar ve tıbbi malzemeler gibi uygulama alanlarında kullanılmaktadır. Bu çalışma, soğuk püskürtme işleminin tarihsel gelişimini, temel ilkelerini ve özelliklerini, yapışma mekanizmasını ve endüstriyel uygulama alanlarını kısaca gözden geçirerek soğuk püskürtme işlemini özetlemektedir.

Kaynakça

  • Thurston, S.H. Method of Impacting One Metal Upon Another, US706701, year of priority (issued): 1900 (1902).
  • Thurston, S.H. Process of Coating One Metal with Another Metal, US706702, year of priority (issued): 1901 (1902).
  • Rocheville, C. F. 1958. Device for Treating the Surface of a Workpeice. US3100724, year of priority (issued).
  • Papyrin, A., Kosarev, V., Klinkov, S., Alkhimov, A., & Fomin, V. 2007. Discovery of the cold spray phenomenon and its basic features, Editor(s): Papyrin, A., Kosarev, V., Klinkov, S., Alkimov, A., Fomin, V., ISBN-13: 9780080451558, Cold Spray Technology, Pages 1-32, Elsevier.
  • AlMangour, B. 2018. Fundamentals of Cold Spray Processing: Evolution and Future Perspectives, P. Cavaliere (ed.), Cold-Spray Coatings. (pp. 3-24). Springer, Cham. https://doi.org/10.1007/978-3-319-67183-3_1
  • Irissou, E., Legoux, J. G., Ryabinin, A. N., Jodoin, B., & Moreau, C. 2008. “Review on cold spray process and technology: part I—intellectual property,” Journal of Thermal Spray Technology, vol. 17, no. 4, 495-516. https://doi.org/10.1007/s11666-008-9203-3
  • M.F. Smith, Chapter 1: Introduction to Cold Spray, Editor(s): Kay, C. M., & Karthikeyan, J. In High Pressure Cold Spray: Principles and Applications, ASM International, 2016, Pages 1-16.
  • Alkhimov, A. P., Papyrin, A. N., Kosarev, V. F., Nesterovich, N. I., & Shushpanov, M. M. 1994. U.S. Patent No. 5,302,414. Washington, DC: U.S. Patent and Trademark Office.
  • Dykhuizen, R. C., & Smith, M. F. 1998. “Gas dynamic principles of cold spray,” Journal of Thermal spray technology, vol. 7, no. 2, p. 205-212. https://doi.org/10.1361/105996398770350945
  • Dykhuizen, R. C., Smith, M. F., Gilmore, D. L., Neiser, R. A., Jiang, X., & Sampath, S. 1999. “Impact of high velocity cold spray particles,” Journal of Thermal spray technology, vol. 8, no. 4, p. 559-564. https://doi.org/10.1361/105996399770350250
  • Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. 2003. “Bonding mechanism in cold gas spraying,” Acta Materialia, vol. 51, no. 15, p. 4379-4394. https://doi.org/10.1016/s1359-6454(03)00274-x
  • Schmidt, T., Gärtner, F., Assadi, H., & Kreye, H. 2006. “Development of a generalized parameter window for cold spray deposition, ” Acta materialia, vol. 54, no. 3, p. 729-742. https://doi.org/10.1016/j.actamat.2005.10.005
  • Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. 2016. “Cold spraying–A materials perspective,” Acta Materialia, vol. 116, p. 382-407. https://doi.org/10.1016/j.actamat.2016.06.034
  • Schmidt, T., Assadi, H., Gärtner, F., Richter, H., Stoltenhoff, T., Kreye, H., & Klassen, T. 2009. “From Particle Acceleration to Impact and Bonding in Cold Spraying,” Journal of Thermal Spray Technology, vol. 18, no. 5-6, p. 794-808. https://doi.org/10.1007/s11666-009-9357-7
  • Li, W. Y., Li, C. J., & Liao, H. 2010. “Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings,” Applied Surface Science, vol. 256, no.16, p. 4953-4958. https://doi.org/10.1016/j.apsusc.2010.03.008
  • Vidaller, M. V., List, A., Gaertner, F., Klassen, T., Dosta, S., & Guilemany, J. M. 2015. “Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates,” Journal of Thermal Spray Technology, vol. 24, no. 4, p. 644-658. https://doi.org/10.1007/s11666-014-0200-4
  • Grujicic, M., Zhao, C. L., DeRosset, W. S., & Helfritch, D. 2004. “Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process,” Materials & design, vol. 25, no. 8, p. 681-688. https://doi.org/10.1016/j.matdes.2004.03.008
  • Grujicic, M., Saylor, J. R., Beasley, D. E., DeRosset, W. S., & Helfritch, D. 2003. “Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process,” Applied Surface Science, vol. 219, no. 3-4, p. 211-227. https://doi.org/10.1016/s0169-4332(03)00643-3
  • Hussain, T., McCartney, D. G., Shipway, P. H., & Zhang, D. 2009. “Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components,” Journal of Thermal Spray Technology, vol. 18, no. 3, p. 364-379. https://doi.org/10.1007/s11666-009-9298-1
  • Champagne, V. K. 2007. The cold spray materials deposition process, ISBN: 978-1-84569-181-3, Elsevier Science.
  • Rokni, M. R., Nutt, S. R., Widener, C. A., Crawford, G. A., & Champagne, V. K. 2018. Structure–Properties Relations in High-Pressure Cold-Sprayed Deposits. In Cold-Spray Coatings (p. 143-192), Editor: Cavaliere, P., ISBN: 978-3-319-67182-6, Springer, Cham.
  • Gärtner, F., Stoltenhoff, T., Schmidt, T., & Kreye, H. 2006. “The cold spray process and its potential for industrial applications,” Journal of Thermal Spray Technology, vol. 15, no. 2, p. 223-232. https://doi.org/10.1361/105996306x108110
  • Smith, M. F. 2007. Comparing cold spray with thermal spray coating technologies. In The cold spray materials deposition process (p. 43-61), ISBN: 978-1-84569-181-3, Woodhead Publishing.
  • Ghelichi, R., & Guagliano, M. 2009. “Coating by the cold spray process: a state of the art,” Frattura ed Integrità Strutturale, vol. 3, no. 8, p. 30-44. https://doi.org/10.3221/igf-esis.08.03
  • Kliemann, J. O., Gutzmann, H., Gärtner, F., Hübner, H., Borchers, C., & Klassen, T. 2011. “Formation of cold-sprayed ceramic titanium dioxide layers on metal surfaces,” Journal of thermal spray technology, vol. 20, no. 1-2, p. 292-298. https://doi.org/10.1007/s11666-010-9563-3
  • Borchers, C. , Gärtner, F. , Stoltenhoff, T. , & Kreye, H. 2005. “Formation of persistent dislocation loops by ultra-high strain-rate deformation during cold spraying,” Acta Materialia, vol. 53, no. 10, p. 2991-3000. https://doi.org/10.1016/j.actamat.2005.02.048
  • Sundararajan, G. , Phani, P. S. , Jyothirmayi, A. , & Gundakaram, R. C. 2009. “The influence of heat treatment on the microstructural, mechanical and corrosion behaviour of cold sprayed SS 316L coatings,” Journal of materials science, vol. 44, no. 9, p. 2320-2326. https://doi.org/10.1007/s10853-008-3200-2
  • Murray, J. W., Zuccoli, M. V., & Hussain, T. 2018. “Heat treatment of cold-sprayed C355 Al for repair: microstructure and mechanical properties,” Journal of Thermal Spray Technology, vol. 27, no. 1-2, p. 159-168. https://doi.org/10.1007/s11666-017-0665-z
  • Raoelison, R. N., Xie, Y., Sapanathan, T., Planche, M. P., Kromer, R., Costil, S., & Langlade, C. 2018. “Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date”, Additive Manufacturing, vol. 19, p. 134-159. https://doi.org/10.1016/j.addma.2017.07.001
  • Li, W., Yang, K., Yin, S., Yang, X., Xu, Y., & Lupoi, R. 2018. “Solid-state additive manufacturing and repairing by cold spraying: A review,” Journal of Materials Science & Technology, vol. 34, no. 3, p. 440-457. https://doi.org/10.1016/j.jmst.2017.09.015
  • Yin, S., Aldwell, B., & Lupoi, R. 2018. Cold Spray Additive Manufacture and Component Restoration. In Cold-Spray Coatings (pp. 195-224), Editor: Cavaliere, P., ISBN: 978-3-319-67182-6, Springer, Cham.
  • Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., & Lupoi, R. 2018. “Cold spray additive manufacturing and repair: Fundamentals and applications,” Additive Manufacturing, vol. 21, p. 628-650. https://doi.org/10.1016/j.addma.2018.04.017
  • Davis, J. R. (Ed.). 2004. Handbook of thermal spray technology. ASM international.
  • Pawlowski, L. 2008. The science and engineering of thermal spray coatings, 2nd edition, ISBN: 978-0-471-49049-4, John Wiley & Sons.
  • Hussain, T., Yue, S., & Li, C. J. 2015. Characteristics of feedstock materials. In Modern Cold Spray (pp. 73-105), Editor: Julio Villafuerte, ISBN 978-3-319-16771-8, Springer International Publishing, Switzerland.
  • Irissou, E., Legoux, J. G., Arsenault, B., & Moreau, C. 2007. “Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties,” Journal of Thermal Spray Technology, vol. 5, no. 16, p. 661-668. https://doi.org/10.1007/s11666-007-9086-8
  • Melendez, N. M., & McDonald, A. G. 2013. “Development of WC-based metal matrix composite coatings using low-pressure cold gas dynamic spraying,” Surface and Coatings Technology, vol. 214, p. 101-109. https://doi.org/10.1016/j.surfcoat.2012.11.010
  • Zhang, Y., Epshteyn, Y., & Chromik, R. R. 2018. "Dry sliding wear behaviour of cold-sprayed Cu-MoS2 and Cu-MoS2-WC composite coatings: The influence of WC," Tribology International, vol. 123, p. 296-306. https://doi.org/10.1016/j.triboint.2017.12.015
  • Yandouzi, M., Richer, P., & Jodoin, B. 2009. “SiC particulate reinforced Al–12Si alloy composite coatings produced by the pulsed gas dynamic spray process: Microstructure and properties,” Surface and Coatings Technology, vol. 203, issues 20-21, p. 3260-3270. https://doi.org/10.1016/j.surfcoat.2009.04.001
  • Villafuerte, J. 2015. Modern cold spray: materials, process, and applications, Editor: Julio Villafuerte, ISBN 978-3-319-16771-8, Springer International Publishing, Switzerland.
  • Karthikeyan, J. 2007. The advantages and disadvantages of the cold spray coating process. In The cold spray materials deposition process (pp. 62-71), ISBN: 978-1-84569-181-3, Woodhead Publishing.
  • Raoelison, R. N., Verdy, C., & Liao, H. 2017. “Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications,” Materials & Design, 133, 266-287. https://doi.org/10.1016/j.matdes.2017.07.067
  • Gouldstone, A., Choi, W., Chi, W., Wu, Y., & Sampath, S. 2007. Mechanical, thermal and electrical properties of cold sprayed coatings. In The Cold Spray Materials Deposition Process (pp. 245-263), ISBN: 978-1-84569-181-3, Woodhead Publishing.
  • Wolfe, D. E., Eden, T. J., Potter, J. K., & Jaroh, A. P. 2006. “Investigation and characterization of Cr3C2-based wear-resistant coatings applied by the cold spray process,” Journal of thermal spray technology, vol. 15, no.3, p. 400-412. https://doi.org/10.1361/105996306X124400
  • Khalkhali, Z., & Rothstein, J. P. 2020. “Characterization of the cold spray deposition of a wide variety of polymeric powders,” Surface and Coatings Technology, vol. 383, 125251. https://doi.org/10.1016/j.surfcoat.2019.125251
  • Tang, J., Zhao, Z., Li, N., Qiu, X., Shen, Y., Cui, X., ... & Xiong, T. 2019. “Influence of feedstock powder on microstructure and mechanical properties of Ta cold spray depositions,” Surface and Coatings Technology, vol. 377, 124903. https://doi.org/10.1016/j.surfcoat.2019.124903
  • Padmini, B. V., Mathapati, M., Niranjan, H. B., Sampathkumaran, P., Seetharamu, S., Ramesh, M. R., & Mohan, N. 2019. “High temperature tribological studies of cold sprayed nickel based alloy on low carbon steels,” Materials Today: Proceedings, vol. 27, part 3, p. 1951-1958. https://doi.org/10.1016/j.matpr.2019.09.025
  • Wang, X., Zhang, L., Zhou, X., Wu, W., & Jie, X. 2020. “Corrosion behavior of Al2O3-reinforced graphene encapsulated Al composite coating fabricated by low pressure cold spraying,” Surface and Coatings Technology, vol. 386, 125486. https://doi.org/10.1016/j.surfcoat.2020.125486
  • Xie, X., Ma, Y., Chen, C., Ji, G., Verdy, C., Wu, H., ... & Liao, H. 2020. “Cold spray additive manufacturing of metal matrix composites (MMCs) using a novel nano-TiB2-reinforced 7075Al powder,” Journal of Alloys and Compounds, vol. 819, 152962. https://doi.org/10.1016/j.jallcom.2019.152962
  • Frattolin, J., Roy, R., Rajagopalan, S., Walsh, M., Yue, S., Bertrand, O. F., & Mongrain, R. 2019. “A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material,” Acta biomaterialia, vol. 99, p. 479-494. https://doi.org/10.1016/j.actbio.2019.08.034
  • Drehmann, R., Grund, T., Lampke, T., Wielage, B., Manygoats, K., Schucknecht, T., & Rafaja, D. 2014. “Splat formation and adhesion mechanisms of cold gas-sprayed Al coatings on Al 2 O 3 substrates,” Journal of thermal spray technology, vol. 23, no. 1-2, p. 68-75. https://doi.org/10.1007/s11666-013-9966-z
  • Goldbaum, D., Poirier, D., Irissou, E., Legoux, J. G., & Moreau, C. (2015). Review on cold spray process and technology US patents. In Modern Cold Spray (pp. 403-429), Editor: Julio Villafuerte, ISBN 978-3-319-16771-8, Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-16772-5_12
  • Champagne, V. K. Jr, Champagne, V. K. III & Widener, C. 2018. Cold Spray Applications. In Cold-Spray Coatings (pp. 25-56), Editor: Cavaliere, P. , ISBN: 978-3-319-67182-6, Springer, Cham.
  • Slattery, K. T. (2008). Sprayed preforms to forming structural members. U.S. Patent No. 7,381,446 B2,3 June.
  • Heinrich, P., Richter, P., Höll, H., & Bahr, E. 2012. Method for producing a pipe. US Patent No. 8,316,916 B2, 27 November.
  • Payne, D. A., & Garland, P. E. 2008. Method of repair of thin wall housings. US Patent No. 7,367,488 B2, 6 May.
  • Calla, E., Pabla, S., & Goetze, R. 2012. Turbine rotor fabrication using cold spraying. US Patent No. 8,261,444 B2, 11 Sep.
  • Jensen, J. D., Klingemann, J., Krüger, U., Körtvelyessy, D., Lüthen, V., Reiche, R., & Stier, O. 2013. Method for repairing a component by coating. U.S. Patent No. 8,343,573 B2, 1 Jan.
  • Schmid, R. K., & Doesburg, J. C. 2010. Material and method of manufacture of a solder joint with high thermal conductivity and high electrical conductivity. US Patent No. 7,758,916 B2, 20 June.
  • Miller, S. A., Shekhter, L. N., & Zimmerman, S. 2011. Methods of joining protective metal-clad structures. US Patent No. 8,002,169, 23 Aug.
  • Ohno, H. 2013. Semiconductor device. US Patent No. 8,436,461 B2, 7 May.
  • Schaeffer, J. C., Anand, K., Amancherla, S., & Calla, E. 2013. Titanium aluminide application process and article with titanium aluminide surface. U.S. Patent No. 8,475,882 B2, 2 July.
  • Ajdelsztajn, L., Ruud, J. A., & Hanlon. T. 2013. Cold spray deposition method. US Patent No. 8,591,986 B1, 26 Nov.
  • Raybould, D., Madhava, M. N., Chung, V., Duffy, T. R., & Floyd, M. 2008. Methods for coating a magnesium component. US Patent No. 7,455,881 B2, 25 Nov.
  • Bunting, B. W., DeBiccari, A., Vargas, C., Kinstler, M. D., & Anderson, D. W. 2013. Corrosion protective coating through cold spray. US Patent No. 8,597,724 B2, 3 Dec.
  • Miyamoto, N., & Hirano, M. 2011. Bearing material coated slide member and method for manufacturing the same. US Patent No. 7,964,239 B2, 21 June.
  • Haynes, J. D., DeBiccari, A., & Shubert, G. 2012. Cold sprayed porous metal seals. U.S. Patent No. 8,192,792 B2, 5 June.
  • Schlichting, K. W., & Freling, M. 2012. Porous protective coating for turbine engine components. US Patent No. 8,147,982 B2, 3 April.
  • Barker, M. H., Hyvärinen, O., & Osara, K. 2011. Method for forming an electrocatalytic surface on an electrode and the electrode. U.S. Patent No. 7,871,504 B2, 18 Jan.
  • Miyamato, N., & Tsuzuki, Y. 2011. Method of forming a metal powder film a thermal conduction member, power module, vehicle inverter, and vehicle formed thereof. US Patent No. 8,025,921 B2, 27 Sep.
  • Tsuzuki, Y., & Miyamoto, N. 2013. Method for manufacturing heat transfer member, power module, vehicle inverter, and vehicle. U.S. Patent No. 8,499,825 B2, 6 Aug.
  • Kruger, U., & Ullrich, R. 2011. Cold gas spraying method. U.S. Patent No. 8,012,601 B2, 6 Sep.
  • Doye, C., Krüger, U., & Pyritz, U. 2012. Method for producing a coating through cold gas spraying. U.S. Patent No. 8,241,702 B2, 14 Aug.
  • Kramer, P. A. 2009. Method and apparatus for spray processing of porous medical devices. U.S. Patent No. 7,514,122 B2, 7 Apr.
  • Van Steenkiste, T. H., Drew, G. A., Gorkiewicz, D. W., & Gillispie, B. A. 2004. Kinetic sprayed electrical contacts on conductive substrates. U.S. Patent No. 6,685,988 B2, 3 Feb.
  • Elmoursi, A. A., Lautzenhiser, F. P., Campbell, A. B., & Smith, J. R. 2009. Copper circuit formed by kinetic spray. U.S. Patent No. 7,476,422 B2, 13 Jan.
  • Teets, R. E., VanSteenkiste, T. H., Kruger, D. D., Beer, R. C. 2011. Secure physical connections formed by a kinetic spray process. U.S. Patent No. 7,900,812 B2, 8 Mar.
  • Ginder, J., McCune, R., & Leonardi, F. 2007. Method of manufacturing electromagnetic devices using kinetic spray. U.S. Patent No. 7,244,512 B2, 17 Jul.
  • Ogilvie, W. 2005. Method and Apparatus for the Manufacture of Electric Circuits. International Publication No. WO 2005/053367 A2, 9 June.
  • Kosarev, V. F., Klinkov, S. V., & Sova, A. A. 2007. “Recently patented facilities and applications in cold spray engineering,” Recent Patents on Engineering, 1(1), 35-42. https://doi.org/10.2174/187221207779814716
  • Eden, T. J., Wolfe, D. E., Champagne, V., & Widener, C. 2016. “Cold Spray Applications in the Defense Industry,” J High Pressure Cold Spray: Principles and Applications, 227-251. https://doi.org/10.31399/asm.tb.hpcspa.t54460227
  • Stoltenhoff, T., Zimmermann, F., Gorris, K., Burger, H., 2009. Process for the repair and restoration of dynamically stressed components comprising aluminium alloys for aircraft applications. Patent No. US 2009/0148622 A1, 11 June.

COLD SPRAY TECHNOLOGY AND ITS APPLICATIONS

Yıl 2021, , 106 - 150, 11.03.2021
https://doi.org/10.46399/muhendismakina.801291

Öz

Cold spray (CS) is a solid-state deposition process in which solid powders are accelerated towards the substrate via a converging/diverging nozzle. Coating deposition occurs without melting the sprayed particles. Spray particles adhere to the substrate on impact because of their high kinetic energy. For successful bonding, powder particles have to exceed a critical velocity on impact, which is dependent on the properties of the particular spray material. Different materials such as metals, ceramics, composites and polymers can be deposited using CS. CS is a novel and promising technology to obtain surface coating, offering several technological advantages over thermal spray since it utilizes kinetic energy rather than thermal energy for deposition. As a result, residual stresses, oxidation and undesired chemical reactions can be avoided. Cold spray technology has many applications in the industry. It has been developed for the protection and repair of components used in many industries. In recent years, cold spray process has been used in application fields such as repair of electronic systems, additive manufacturing, welding, brazing, surface protection, medical devices, and medical materials. This study summarizes the cold spray process by briefly reviewing the historical development, basic principles and features, adhesion mechanism and application areas of the cold spray process.

Kaynakça

  • Thurston, S.H. Method of Impacting One Metal Upon Another, US706701, year of priority (issued): 1900 (1902).
  • Thurston, S.H. Process of Coating One Metal with Another Metal, US706702, year of priority (issued): 1901 (1902).
  • Rocheville, C. F. 1958. Device for Treating the Surface of a Workpeice. US3100724, year of priority (issued).
  • Papyrin, A., Kosarev, V., Klinkov, S., Alkhimov, A., & Fomin, V. 2007. Discovery of the cold spray phenomenon and its basic features, Editor(s): Papyrin, A., Kosarev, V., Klinkov, S., Alkimov, A., Fomin, V., ISBN-13: 9780080451558, Cold Spray Technology, Pages 1-32, Elsevier.
  • AlMangour, B. 2018. Fundamentals of Cold Spray Processing: Evolution and Future Perspectives, P. Cavaliere (ed.), Cold-Spray Coatings. (pp. 3-24). Springer, Cham. https://doi.org/10.1007/978-3-319-67183-3_1
  • Irissou, E., Legoux, J. G., Ryabinin, A. N., Jodoin, B., & Moreau, C. 2008. “Review on cold spray process and technology: part I—intellectual property,” Journal of Thermal Spray Technology, vol. 17, no. 4, 495-516. https://doi.org/10.1007/s11666-008-9203-3
  • M.F. Smith, Chapter 1: Introduction to Cold Spray, Editor(s): Kay, C. M., & Karthikeyan, J. In High Pressure Cold Spray: Principles and Applications, ASM International, 2016, Pages 1-16.
  • Alkhimov, A. P., Papyrin, A. N., Kosarev, V. F., Nesterovich, N. I., & Shushpanov, M. M. 1994. U.S. Patent No. 5,302,414. Washington, DC: U.S. Patent and Trademark Office.
  • Dykhuizen, R. C., & Smith, M. F. 1998. “Gas dynamic principles of cold spray,” Journal of Thermal spray technology, vol. 7, no. 2, p. 205-212. https://doi.org/10.1361/105996398770350945
  • Dykhuizen, R. C., Smith, M. F., Gilmore, D. L., Neiser, R. A., Jiang, X., & Sampath, S. 1999. “Impact of high velocity cold spray particles,” Journal of Thermal spray technology, vol. 8, no. 4, p. 559-564. https://doi.org/10.1361/105996399770350250
  • Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. 2003. “Bonding mechanism in cold gas spraying,” Acta Materialia, vol. 51, no. 15, p. 4379-4394. https://doi.org/10.1016/s1359-6454(03)00274-x
  • Schmidt, T., Gärtner, F., Assadi, H., & Kreye, H. 2006. “Development of a generalized parameter window for cold spray deposition, ” Acta materialia, vol. 54, no. 3, p. 729-742. https://doi.org/10.1016/j.actamat.2005.10.005
  • Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. 2016. “Cold spraying–A materials perspective,” Acta Materialia, vol. 116, p. 382-407. https://doi.org/10.1016/j.actamat.2016.06.034
  • Schmidt, T., Assadi, H., Gärtner, F., Richter, H., Stoltenhoff, T., Kreye, H., & Klassen, T. 2009. “From Particle Acceleration to Impact and Bonding in Cold Spraying,” Journal of Thermal Spray Technology, vol. 18, no. 5-6, p. 794-808. https://doi.org/10.1007/s11666-009-9357-7
  • Li, W. Y., Li, C. J., & Liao, H. 2010. “Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings,” Applied Surface Science, vol. 256, no.16, p. 4953-4958. https://doi.org/10.1016/j.apsusc.2010.03.008
  • Vidaller, M. V., List, A., Gaertner, F., Klassen, T., Dosta, S., & Guilemany, J. M. 2015. “Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates,” Journal of Thermal Spray Technology, vol. 24, no. 4, p. 644-658. https://doi.org/10.1007/s11666-014-0200-4
  • Grujicic, M., Zhao, C. L., DeRosset, W. S., & Helfritch, D. 2004. “Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process,” Materials & design, vol. 25, no. 8, p. 681-688. https://doi.org/10.1016/j.matdes.2004.03.008
  • Grujicic, M., Saylor, J. R., Beasley, D. E., DeRosset, W. S., & Helfritch, D. 2003. “Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process,” Applied Surface Science, vol. 219, no. 3-4, p. 211-227. https://doi.org/10.1016/s0169-4332(03)00643-3
  • Hussain, T., McCartney, D. G., Shipway, P. H., & Zhang, D. 2009. “Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components,” Journal of Thermal Spray Technology, vol. 18, no. 3, p. 364-379. https://doi.org/10.1007/s11666-009-9298-1
  • Champagne, V. K. 2007. The cold spray materials deposition process, ISBN: 978-1-84569-181-3, Elsevier Science.
  • Rokni, M. R., Nutt, S. R., Widener, C. A., Crawford, G. A., & Champagne, V. K. 2018. Structure–Properties Relations in High-Pressure Cold-Sprayed Deposits. In Cold-Spray Coatings (p. 143-192), Editor: Cavaliere, P., ISBN: 978-3-319-67182-6, Springer, Cham.
  • Gärtner, F., Stoltenhoff, T., Schmidt, T., & Kreye, H. 2006. “The cold spray process and its potential for industrial applications,” Journal of Thermal Spray Technology, vol. 15, no. 2, p. 223-232. https://doi.org/10.1361/105996306x108110
  • Smith, M. F. 2007. Comparing cold spray with thermal spray coating technologies. In The cold spray materials deposition process (p. 43-61), ISBN: 978-1-84569-181-3, Woodhead Publishing.
  • Ghelichi, R., & Guagliano, M. 2009. “Coating by the cold spray process: a state of the art,” Frattura ed Integrità Strutturale, vol. 3, no. 8, p. 30-44. https://doi.org/10.3221/igf-esis.08.03
  • Kliemann, J. O., Gutzmann, H., Gärtner, F., Hübner, H., Borchers, C., & Klassen, T. 2011. “Formation of cold-sprayed ceramic titanium dioxide layers on metal surfaces,” Journal of thermal spray technology, vol. 20, no. 1-2, p. 292-298. https://doi.org/10.1007/s11666-010-9563-3
  • Borchers, C. , Gärtner, F. , Stoltenhoff, T. , & Kreye, H. 2005. “Formation of persistent dislocation loops by ultra-high strain-rate deformation during cold spraying,” Acta Materialia, vol. 53, no. 10, p. 2991-3000. https://doi.org/10.1016/j.actamat.2005.02.048
  • Sundararajan, G. , Phani, P. S. , Jyothirmayi, A. , & Gundakaram, R. C. 2009. “The influence of heat treatment on the microstructural, mechanical and corrosion behaviour of cold sprayed SS 316L coatings,” Journal of materials science, vol. 44, no. 9, p. 2320-2326. https://doi.org/10.1007/s10853-008-3200-2
  • Murray, J. W., Zuccoli, M. V., & Hussain, T. 2018. “Heat treatment of cold-sprayed C355 Al for repair: microstructure and mechanical properties,” Journal of Thermal Spray Technology, vol. 27, no. 1-2, p. 159-168. https://doi.org/10.1007/s11666-017-0665-z
  • Raoelison, R. N., Xie, Y., Sapanathan, T., Planche, M. P., Kromer, R., Costil, S., & Langlade, C. 2018. “Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date”, Additive Manufacturing, vol. 19, p. 134-159. https://doi.org/10.1016/j.addma.2017.07.001
  • Li, W., Yang, K., Yin, S., Yang, X., Xu, Y., & Lupoi, R. 2018. “Solid-state additive manufacturing and repairing by cold spraying: A review,” Journal of Materials Science & Technology, vol. 34, no. 3, p. 440-457. https://doi.org/10.1016/j.jmst.2017.09.015
  • Yin, S., Aldwell, B., & Lupoi, R. 2018. Cold Spray Additive Manufacture and Component Restoration. In Cold-Spray Coatings (pp. 195-224), Editor: Cavaliere, P., ISBN: 978-3-319-67182-6, Springer, Cham.
  • Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., & Lupoi, R. 2018. “Cold spray additive manufacturing and repair: Fundamentals and applications,” Additive Manufacturing, vol. 21, p. 628-650. https://doi.org/10.1016/j.addma.2018.04.017
  • Davis, J. R. (Ed.). 2004. Handbook of thermal spray technology. ASM international.
  • Pawlowski, L. 2008. The science and engineering of thermal spray coatings, 2nd edition, ISBN: 978-0-471-49049-4, John Wiley & Sons.
  • Hussain, T., Yue, S., & Li, C. J. 2015. Characteristics of feedstock materials. In Modern Cold Spray (pp. 73-105), Editor: Julio Villafuerte, ISBN 978-3-319-16771-8, Springer International Publishing, Switzerland.
  • Irissou, E., Legoux, J. G., Arsenault, B., & Moreau, C. 2007. “Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties,” Journal of Thermal Spray Technology, vol. 5, no. 16, p. 661-668. https://doi.org/10.1007/s11666-007-9086-8
  • Melendez, N. M., & McDonald, A. G. 2013. “Development of WC-based metal matrix composite coatings using low-pressure cold gas dynamic spraying,” Surface and Coatings Technology, vol. 214, p. 101-109. https://doi.org/10.1016/j.surfcoat.2012.11.010
  • Zhang, Y., Epshteyn, Y., & Chromik, R. R. 2018. "Dry sliding wear behaviour of cold-sprayed Cu-MoS2 and Cu-MoS2-WC composite coatings: The influence of WC," Tribology International, vol. 123, p. 296-306. https://doi.org/10.1016/j.triboint.2017.12.015
  • Yandouzi, M., Richer, P., & Jodoin, B. 2009. “SiC particulate reinforced Al–12Si alloy composite coatings produced by the pulsed gas dynamic spray process: Microstructure and properties,” Surface and Coatings Technology, vol. 203, issues 20-21, p. 3260-3270. https://doi.org/10.1016/j.surfcoat.2009.04.001
  • Villafuerte, J. 2015. Modern cold spray: materials, process, and applications, Editor: Julio Villafuerte, ISBN 978-3-319-16771-8, Springer International Publishing, Switzerland.
  • Karthikeyan, J. 2007. The advantages and disadvantages of the cold spray coating process. In The cold spray materials deposition process (pp. 62-71), ISBN: 978-1-84569-181-3, Woodhead Publishing.
  • Raoelison, R. N., Verdy, C., & Liao, H. 2017. “Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications,” Materials & Design, 133, 266-287. https://doi.org/10.1016/j.matdes.2017.07.067
  • Gouldstone, A., Choi, W., Chi, W., Wu, Y., & Sampath, S. 2007. Mechanical, thermal and electrical properties of cold sprayed coatings. In The Cold Spray Materials Deposition Process (pp. 245-263), ISBN: 978-1-84569-181-3, Woodhead Publishing.
  • Wolfe, D. E., Eden, T. J., Potter, J. K., & Jaroh, A. P. 2006. “Investigation and characterization of Cr3C2-based wear-resistant coatings applied by the cold spray process,” Journal of thermal spray technology, vol. 15, no.3, p. 400-412. https://doi.org/10.1361/105996306X124400
  • Khalkhali, Z., & Rothstein, J. P. 2020. “Characterization of the cold spray deposition of a wide variety of polymeric powders,” Surface and Coatings Technology, vol. 383, 125251. https://doi.org/10.1016/j.surfcoat.2019.125251
  • Tang, J., Zhao, Z., Li, N., Qiu, X., Shen, Y., Cui, X., ... & Xiong, T. 2019. “Influence of feedstock powder on microstructure and mechanical properties of Ta cold spray depositions,” Surface and Coatings Technology, vol. 377, 124903. https://doi.org/10.1016/j.surfcoat.2019.124903
  • Padmini, B. V., Mathapati, M., Niranjan, H. B., Sampathkumaran, P., Seetharamu, S., Ramesh, M. R., & Mohan, N. 2019. “High temperature tribological studies of cold sprayed nickel based alloy on low carbon steels,” Materials Today: Proceedings, vol. 27, part 3, p. 1951-1958. https://doi.org/10.1016/j.matpr.2019.09.025
  • Wang, X., Zhang, L., Zhou, X., Wu, W., & Jie, X. 2020. “Corrosion behavior of Al2O3-reinforced graphene encapsulated Al composite coating fabricated by low pressure cold spraying,” Surface and Coatings Technology, vol. 386, 125486. https://doi.org/10.1016/j.surfcoat.2020.125486
  • Xie, X., Ma, Y., Chen, C., Ji, G., Verdy, C., Wu, H., ... & Liao, H. 2020. “Cold spray additive manufacturing of metal matrix composites (MMCs) using a novel nano-TiB2-reinforced 7075Al powder,” Journal of Alloys and Compounds, vol. 819, 152962. https://doi.org/10.1016/j.jallcom.2019.152962
  • Frattolin, J., Roy, R., Rajagopalan, S., Walsh, M., Yue, S., Bertrand, O. F., & Mongrain, R. 2019. “A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material,” Acta biomaterialia, vol. 99, p. 479-494. https://doi.org/10.1016/j.actbio.2019.08.034
  • Drehmann, R., Grund, T., Lampke, T., Wielage, B., Manygoats, K., Schucknecht, T., & Rafaja, D. 2014. “Splat formation and adhesion mechanisms of cold gas-sprayed Al coatings on Al 2 O 3 substrates,” Journal of thermal spray technology, vol. 23, no. 1-2, p. 68-75. https://doi.org/10.1007/s11666-013-9966-z
  • Goldbaum, D., Poirier, D., Irissou, E., Legoux, J. G., & Moreau, C. (2015). Review on cold spray process and technology US patents. In Modern Cold Spray (pp. 403-429), Editor: Julio Villafuerte, ISBN 978-3-319-16771-8, Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-16772-5_12
  • Champagne, V. K. Jr, Champagne, V. K. III & Widener, C. 2018. Cold Spray Applications. In Cold-Spray Coatings (pp. 25-56), Editor: Cavaliere, P. , ISBN: 978-3-319-67182-6, Springer, Cham.
  • Slattery, K. T. (2008). Sprayed preforms to forming structural members. U.S. Patent No. 7,381,446 B2,3 June.
  • Heinrich, P., Richter, P., Höll, H., & Bahr, E. 2012. Method for producing a pipe. US Patent No. 8,316,916 B2, 27 November.
  • Payne, D. A., & Garland, P. E. 2008. Method of repair of thin wall housings. US Patent No. 7,367,488 B2, 6 May.
  • Calla, E., Pabla, S., & Goetze, R. 2012. Turbine rotor fabrication using cold spraying. US Patent No. 8,261,444 B2, 11 Sep.
  • Jensen, J. D., Klingemann, J., Krüger, U., Körtvelyessy, D., Lüthen, V., Reiche, R., & Stier, O. 2013. Method for repairing a component by coating. U.S. Patent No. 8,343,573 B2, 1 Jan.
  • Schmid, R. K., & Doesburg, J. C. 2010. Material and method of manufacture of a solder joint with high thermal conductivity and high electrical conductivity. US Patent No. 7,758,916 B2, 20 June.
  • Miller, S. A., Shekhter, L. N., & Zimmerman, S. 2011. Methods of joining protective metal-clad structures. US Patent No. 8,002,169, 23 Aug.
  • Ohno, H. 2013. Semiconductor device. US Patent No. 8,436,461 B2, 7 May.
  • Schaeffer, J. C., Anand, K., Amancherla, S., & Calla, E. 2013. Titanium aluminide application process and article with titanium aluminide surface. U.S. Patent No. 8,475,882 B2, 2 July.
  • Ajdelsztajn, L., Ruud, J. A., & Hanlon. T. 2013. Cold spray deposition method. US Patent No. 8,591,986 B1, 26 Nov.
  • Raybould, D., Madhava, M. N., Chung, V., Duffy, T. R., & Floyd, M. 2008. Methods for coating a magnesium component. US Patent No. 7,455,881 B2, 25 Nov.
  • Bunting, B. W., DeBiccari, A., Vargas, C., Kinstler, M. D., & Anderson, D. W. 2013. Corrosion protective coating through cold spray. US Patent No. 8,597,724 B2, 3 Dec.
  • Miyamoto, N., & Hirano, M. 2011. Bearing material coated slide member and method for manufacturing the same. US Patent No. 7,964,239 B2, 21 June.
  • Haynes, J. D., DeBiccari, A., & Shubert, G. 2012. Cold sprayed porous metal seals. U.S. Patent No. 8,192,792 B2, 5 June.
  • Schlichting, K. W., & Freling, M. 2012. Porous protective coating for turbine engine components. US Patent No. 8,147,982 B2, 3 April.
  • Barker, M. H., Hyvärinen, O., & Osara, K. 2011. Method for forming an electrocatalytic surface on an electrode and the electrode. U.S. Patent No. 7,871,504 B2, 18 Jan.
  • Miyamato, N., & Tsuzuki, Y. 2011. Method of forming a metal powder film a thermal conduction member, power module, vehicle inverter, and vehicle formed thereof. US Patent No. 8,025,921 B2, 27 Sep.
  • Tsuzuki, Y., & Miyamoto, N. 2013. Method for manufacturing heat transfer member, power module, vehicle inverter, and vehicle. U.S. Patent No. 8,499,825 B2, 6 Aug.
  • Kruger, U., & Ullrich, R. 2011. Cold gas spraying method. U.S. Patent No. 8,012,601 B2, 6 Sep.
  • Doye, C., Krüger, U., & Pyritz, U. 2012. Method for producing a coating through cold gas spraying. U.S. Patent No. 8,241,702 B2, 14 Aug.
  • Kramer, P. A. 2009. Method and apparatus for spray processing of porous medical devices. U.S. Patent No. 7,514,122 B2, 7 Apr.
  • Van Steenkiste, T. H., Drew, G. A., Gorkiewicz, D. W., & Gillispie, B. A. 2004. Kinetic sprayed electrical contacts on conductive substrates. U.S. Patent No. 6,685,988 B2, 3 Feb.
  • Elmoursi, A. A., Lautzenhiser, F. P., Campbell, A. B., & Smith, J. R. 2009. Copper circuit formed by kinetic spray. U.S. Patent No. 7,476,422 B2, 13 Jan.
  • Teets, R. E., VanSteenkiste, T. H., Kruger, D. D., Beer, R. C. 2011. Secure physical connections formed by a kinetic spray process. U.S. Patent No. 7,900,812 B2, 8 Mar.
  • Ginder, J., McCune, R., & Leonardi, F. 2007. Method of manufacturing electromagnetic devices using kinetic spray. U.S. Patent No. 7,244,512 B2, 17 Jul.
  • Ogilvie, W. 2005. Method and Apparatus for the Manufacture of Electric Circuits. International Publication No. WO 2005/053367 A2, 9 June.
  • Kosarev, V. F., Klinkov, S. V., & Sova, A. A. 2007. “Recently patented facilities and applications in cold spray engineering,” Recent Patents on Engineering, 1(1), 35-42. https://doi.org/10.2174/187221207779814716
  • Eden, T. J., Wolfe, D. E., Champagne, V., & Widener, C. 2016. “Cold Spray Applications in the Defense Industry,” J High Pressure Cold Spray: Principles and Applications, 227-251. https://doi.org/10.31399/asm.tb.hpcspa.t54460227
  • Stoltenhoff, T., Zimmermann, F., Gorris, K., Burger, H., 2009. Process for the repair and restoration of dynamically stressed components comprising aluminium alloys for aircraft applications. Patent No. US 2009/0148622 A1, 11 June.
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm icindekiler-sunuş
Yazarlar

Elif Tekin 0000-0001-9162-7172

Serden Uyum 0000-0002-1120-4709

Buğra Karahan 0000-0001-8053-056X

Kadir Cihan Tekin 0000-0001-7507-6550

Uğur Malayoğlu 0000-0002-3196-1475

Yayımlanma Tarihi 11 Mart 2021
Gönderilme Tarihi 28 Eylül 2020
Kabul Tarihi 4 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Tekin, E., Uyum, S., Karahan, B., Tekin, K. C., vd. (2021). SOĞUK PÜSKÜRTME TEKNOLOJİSİ VE UYGULAMALARI. Mühendis Ve Makina, 62(702), 106-150. https://doi.org/10.46399/muhendismakina.801291

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520