Türkiye’nin Farklı İklim Koşullarında Isıl Konfor Sıcaklıklarına Bağlı Olarak Konutların Enerji Performanslarının Değerlendirilmesi
Yıl 2021,
, 262 - 285, 15.06.2021
Ebru Hancioglu Kuzgunkaya
,
Nurdan Yıldırım Özcan
,
Gülden Gökçen Akkurt
Öz
Isıl konfor, insanın yapısı, yaşı, cinsiyeti gibi kişisel parametrelerin yanı sıra çevresel parametrelere de bağlıdır. HVAC sistemlerinin çalışma şekli ve dış hava sıcaklıkları ısıl konfor için önemli parametrelerdir. Fanger deneysel çalışmalar sonucu “tahmini ortalama oy (PMV)” olarak adlandırılan bir gösterge oluşturmuş ve PMV=0’ı konfor için en iyi değer olarak belirlemiştir. Bu çalışmada, farklı iklim bölgelerinden dört il seçilerek, her bir il için ısıl konfor sıcaklıkları belirlenmiş ve bu ısıl konfor sıcaklıklarındaki enerji performansları değerlendirilmiştir. Isıtma ve soğutma sistemi için kişisel kontrole izin verilmeyen tam mekanik kontrollü sistem seçilmiş, kesikli ve sürekli rejim için hesaplamalar yapılmıştır. Çalışmada, konfor koşullarının PMV=0 olması durumunda enerji tüketimleri incelenerek iller arasındaki ısıl konfor memnuniyeti ve enerji tüketiminindeki farklılıklar saptanmaya çalışılmıştır. PMV değerlerinin istatistiksel analizinde, İzmir ili için kesikli rejimde çalışmanın sürekli rejime göre daha iyi olmasına rağmen İstanbul için sürekli rejimde konfor koşulları açısından daha iyi sonuçlar alınmıştır. Tüm illerde sürekli rejim uygulandığında birim enerji tüketiminde artış olduğu belirlenmiştir. Sürekli rejim, kesikli rejime göre ısıtma enerji tüketiminde % 4,5-6,2, soğutma enerji tüketiminde ise % 9,1-23,2 daha yüksektir.
Destekleyen Kurum
Türk Tesisat Mühendisleri Derneği
Teşekkür
Projeyi maddi olarak destekleyen Türk Tesisat Mühendisleri Derneği (TTMD)’ne ve çok sayıdaki simülasyon verilerini derleyebilmemiz için yardımcı programlar yazan Orhan Özcan’a teşekkür ederiz.
Kaynakça
- Fanger, PO. 1970. Thermal Comfort Analyses and Applications in Environmental Engineering, McGraw-Hill, London.
- EN 15251, 2007. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics.
- EN ISO 7730, 2005. Ergonomics of the Thermal Environment- Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria.
- Corgnati, SP., Fabrizio, E., Filippi, M. 2008. “The impact of indoor thermal conditions, system controls and building types on the building energy demand”, Energy Buildings, 40, 627-636, doi: 10.1016/j.enbuild.2007.04.017.
- Becker, R., Goldberger, I., Paciuk, M. 2007. “Improving energy performance of school buildings while ensuring indoor air quality ventilation”, Building and Environment, 42, 3261-3276, doi: 10.1016/j.buildenv.2006.08.016.
- Van der Linden, K., Boerstra, AC., Raube, AK., Kurvers, SR. 2002. “Thermal indoor climate building performance characterized by human comfort response”, Energy Buildings, 34, 737-744, doi: 10.1016/S0378-7788(01)00144-X.
- Huh, J., Brandemuehl, MJ. 2008. “Optimization of air-conditioning system operating strategies for hot and humid climates”, Energy Buildings, 40, 1202-1213, doi: 10.1016/j.enbuild.2007.10.018
- Atmaca, I., Kaynakli, O., Yigit, A. 2007. “Effects of radiant temperature on thermal comfort”, Building and Environment, 42, 3210-3220, doi: 10.1016/j.buildenv.2006.08.009.
- ANSI/ASHRAE Standard 55, 2017. Thermal Environmental Conditions for Human Occupancy.
EU Directive 2018/844. 2018. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=EN son erişim tarihi: 22.07.2020.
- ISO 13790, 2008. Energy Performance of buildings- Calculation of Energy Use for Space Heating and Cooling.
- Yang, KH., Su, CH. 1997. “An approach to building energy savings using the PMV index”, Building and Environment, 32 (1), 25-30, doi: 10.1016/S0360-1323(96)00027-3.
- Karyono, TH. 2000. “Report on thermal comfort and building energy studies in Jakarta-Indonesia”, Building and Environment, 35 (1), 77-90, doi: 10.1016/S0360-1323(98)00066-3.
- Hanqing, W., Chunhua, H., Zhiqiang, L., Guangfa, T., Yingyun, L., Zhiyong, W. 2006. “Dynamic evaluation of thermal comfort environment of airconditioned buildings”, Building and Environment, 41 (11), 1522-1529, doi: 10.1016/j.buildenv.2005.06.002.
- Tham, KW., and Ullah, MB. 1993. Building energy performance and thermal comfort in Singapore. ASHRAE Transactions, 99 (1), 308-321.
- Holz, R., Hourigan, A., Sloop, R., Monkman, P., Krarti, M. 1997. “Effects of standard energy conserving measures on thermal comfort”, Building and Environment, 32:1, 31-43, doi: 10.1016/S0360-1323(96)00025-X.
- Karlsson, JF., Moshfegh, B. 2005. “Energy demand and indoor climate in a low energy building-changed control strategies and boundary conditions”, Energy Buildings, 38, 315-326, doi: 10.1016/j.enbuild.2005.06.013.
- Arslanoğlu, N., Yiğit, A. 2011. “The Effect Of Dıfferent Indoor Air Velocities And Temperatures On Thermal Comfort”, Isı Bilimi ve Tekniği Dergisi, 31, 2, 95-100.
- Abdallah, M., Clevenger, C. Golparvar-Fard, M. 2015. “Developing a Thermal Comfort Report Card for Building”, Procedia Engineering, 118, 675 – 682, doi: 10.1016/j.proeng.2015.08.502.
- Zinzi, M., Carnielo, E. 2017. “Impact of urban temperatures on energy performance and thermal comfort in residential buildings. The case of Rome, Italy”, Energy Buildings, 157, 20–29, doi: 10.1016/j.enbuild.2017.05.021.
- Zhaoa, Z., Houchatia, M., Beitelmala, A. 2017. “An Energy Efficiency Assessment of the Thermal Comfort in an Office building”, Energy Procedia, 134, 885–893, doi: 10.1016/j.egypro.2017.09.550.
- Irulegia, O., Ruiz-Pardo, A., Serra, A., Salmerón, JM., Vega, R. 2017. “Retrofit Strategies Towards Net Zero Energy Educational Buildings: A case Study At The University Of The Basque Country”, Energy Buildings, 144, 387–400, https://doi.org/10.1016/j.enbuild.2017.03.030.
- Gagnona, R., Gosselina, L., Decker, S. 2018. “Sensitivity analysis of energy performance and thermal comfort throughout building design process”, Energy Buildings, 164, 278–294, doi: 10.1016/j.enbuild.2017.12.066.
- Yun, GY. 2018. “Influences of perceived control on thermal comfort and energy use in buildings”, Energy Buildings, 158, 822–830, doi: 10.1016/j.enbuild.2017.10.044.
- Abreu-Harbich, LV., Chaves, VLA. Brandstetter, MCGO. 2018. “Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate”, Building and Environment,135, 257–268, doi: 10.1016/j.buildenv.2018.03.017.
- Ozkan, A., Kesik, T., Yilmaz, AZ., O’Brien, W. 2019. “Development and visualization of time-based building energy performance metrics”, Building Research & Information, 47:5, 493-517, doi: 10.1080/09613218.2018.1451959.
- Camacho-Montano, SC., Wagner, A., Erhorn-Kluttig, H., Mumovic, D., Summerfield, A. 2019. “Clearing the air on EU guidance projects for school buildings”, Building Research & Information, 47:5, 624-634, doi: 10.1080/09613218.2018.1448961.
- Pathirana, S., Rodrigo, A., Halwatura, R. 2019. “Efect of building shape, orientation, window to wall ratios and zones on energy efciency and thermal comfort of naturally ventilated houses in tropical climate”, International Journal of Energy and Environmental Engineering, 10:107–120, https://doi.org/10.1007/s40095-018-0295-3.
- Dong, Z., Boyi, Q., Chunlong, W. 2019. “Energy-saving evaluation and control optimization of an ASHP heating system based on indoor thermal comfort”, Solar Energy, 194, 913–922, doi: 10.1016/j.solener.2019.11.042.
- Ming, R., Yu, W., Zhao, X., Liu, Y., Li, B., Essah, E., Yao, R. 2020. “Assessing energy saving potentials of office buildings based on adaptive thermal comfort using a tracking-based method”, Energy Buildings, 208, 109611, doi: 10.1016/j.enbuild.2019.109611.
- TS 825, 2008. B inalarda Isı Yalıtım Kuralları.
- Eskin, N., Turkmen, H. 2008. “Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey”, Energy Buildings, 40, 763–773, https://doi.org/10.1016/j.enbuild.2007.05.008.
- Inanici, MN., Demirbilek, FN. 2000. “Thermal performance optimization of building aspect ratio and south window size in five cities having different climatic characteristics of Turkey”, Building and Environment, 35, 41-52, doi: 10.1016/S0360-1323(99)00002-5.
- Uçar, A., Balo, F. 2009. “Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey”, Applied Energy, 86, 730-736, doi: 10.1016/j.apenergy.2008.09.015.
- Oral, KO., and Yılmaz, Z. 2003. “Building form for cold climatic zones related to building envelope from heating energy conservation point of view”, Energy Buildings, 35, 383–388, doi: 10.1016/S0378-7788(02)00111-1.
- Kaya, M., Fırat, İ., Çomaklı, Ö. 2016. “Erzincan İlindeki Binalarda Isı Yalıtımının Enerji Tasarrufuna Etkisinin Ekonomik Analizi”, Isı Bilimi ve Tekniği Dergisi, 36, 1, 47-55.
- Kon, O., Yüksel, B. 2016. “Farklı Amaçlarla Kullanılan Binaların Çatı, Döşeme Ve Dış Duvarları İçin Ölçülerek Hesaplanan Optimum Yalıtım Kalınlıkları”, Isı Bilimi Ve Tekniği Dergisi, 36, 1, 17-27.
- Özcan, NY., Kuzgunkaya, E., Akkurt, GG. 2018. “Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (2), 784-798, doi:10.16984/Saufenbilder.292296
- Altun, M., Akçamete, A., Meral Akgül Ç. 2019. “Dış sıcaklık verisinin bina ısıtma enerji gereksinimine etkisinin ve TS 825 derece-gün bölge kümelendirmesinin geçerliliğinin incelenmesi”, Pamukkale Universitesi Mühendislik Bilimi Dergisi, doi: 10.5505/pajes.2019.00334
- EnergyPlus Engineering Reference. 2019. The Reference to EnergyPlus Calculations. https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.9.0/EngineeringReference.pdf
- Aktacir, MA., Nacar, MA., Yeşilata, B. 2011. “İzmir Binalarda Enerji Verimliliği Amaçlı Yazılımlar Üzerine Kısa Bir Değerlendirme”, X. Ulusal Tesisat Mühendisliği Kongresi, İzmir.
- ASHRAE, 2005. Nonresidential Cooling and Heating Load Calculations, Chapter 30, ASHRAE Handbook Fundamentals, ASHRAE, Atlanta.
- Rees, SJ., Davies, MG., Spitler, JD., Haves, P. 2000. “Qualitative comparison of North American and U.K. cooling load calculation methods”, HVAC&Research, 6, 75-99, doi: 10.1080/10789669.2000.10391251.
- ANSI/ASHRAE 140, 2007. Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.
- Design Builder Software. 2020. http://www.designbuilder.co.uk.
- METEONORM. 2020. Global Meteorological Database for Engineers, Planners and Education, www.meteonorm.com.
- SAP2012, 2013. The Government's Standard Assessment Procedure for Energy Rating of Dwellings, 2012 Ed., Version 9.92.
- TS EN 832, 2007. Binaların Isıl Performansı-Meskenlerde Isıtma Amacıyla Kullanılan Enerjinin Hesaplanması.
Assessment Of Building Energy Performance Depending On Thermal Comfort Temperatures At Turkey's Different Climate Conditions
Yıl 2021,
, 262 - 285, 15.06.2021
Ebru Hancioglu Kuzgunkaya
,
Nurdan Yıldırım Özcan
,
Gülden Gökçen Akkurt
Kaynakça
- Fanger, PO. 1970. Thermal Comfort Analyses and Applications in Environmental Engineering, McGraw-Hill, London.
- EN 15251, 2007. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics.
- EN ISO 7730, 2005. Ergonomics of the Thermal Environment- Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria.
- Corgnati, SP., Fabrizio, E., Filippi, M. 2008. “The impact of indoor thermal conditions, system controls and building types on the building energy demand”, Energy Buildings, 40, 627-636, doi: 10.1016/j.enbuild.2007.04.017.
- Becker, R., Goldberger, I., Paciuk, M. 2007. “Improving energy performance of school buildings while ensuring indoor air quality ventilation”, Building and Environment, 42, 3261-3276, doi: 10.1016/j.buildenv.2006.08.016.
- Van der Linden, K., Boerstra, AC., Raube, AK., Kurvers, SR. 2002. “Thermal indoor climate building performance characterized by human comfort response”, Energy Buildings, 34, 737-744, doi: 10.1016/S0378-7788(01)00144-X.
- Huh, J., Brandemuehl, MJ. 2008. “Optimization of air-conditioning system operating strategies for hot and humid climates”, Energy Buildings, 40, 1202-1213, doi: 10.1016/j.enbuild.2007.10.018
- Atmaca, I., Kaynakli, O., Yigit, A. 2007. “Effects of radiant temperature on thermal comfort”, Building and Environment, 42, 3210-3220, doi: 10.1016/j.buildenv.2006.08.009.
- ANSI/ASHRAE Standard 55, 2017. Thermal Environmental Conditions for Human Occupancy.
EU Directive 2018/844. 2018. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=EN son erişim tarihi: 22.07.2020.
- ISO 13790, 2008. Energy Performance of buildings- Calculation of Energy Use for Space Heating and Cooling.
- Yang, KH., Su, CH. 1997. “An approach to building energy savings using the PMV index”, Building and Environment, 32 (1), 25-30, doi: 10.1016/S0360-1323(96)00027-3.
- Karyono, TH. 2000. “Report on thermal comfort and building energy studies in Jakarta-Indonesia”, Building and Environment, 35 (1), 77-90, doi: 10.1016/S0360-1323(98)00066-3.
- Hanqing, W., Chunhua, H., Zhiqiang, L., Guangfa, T., Yingyun, L., Zhiyong, W. 2006. “Dynamic evaluation of thermal comfort environment of airconditioned buildings”, Building and Environment, 41 (11), 1522-1529, doi: 10.1016/j.buildenv.2005.06.002.
- Tham, KW., and Ullah, MB. 1993. Building energy performance and thermal comfort in Singapore. ASHRAE Transactions, 99 (1), 308-321.
- Holz, R., Hourigan, A., Sloop, R., Monkman, P., Krarti, M. 1997. “Effects of standard energy conserving measures on thermal comfort”, Building and Environment, 32:1, 31-43, doi: 10.1016/S0360-1323(96)00025-X.
- Karlsson, JF., Moshfegh, B. 2005. “Energy demand and indoor climate in a low energy building-changed control strategies and boundary conditions”, Energy Buildings, 38, 315-326, doi: 10.1016/j.enbuild.2005.06.013.
- Arslanoğlu, N., Yiğit, A. 2011. “The Effect Of Dıfferent Indoor Air Velocities And Temperatures On Thermal Comfort”, Isı Bilimi ve Tekniği Dergisi, 31, 2, 95-100.
- Abdallah, M., Clevenger, C. Golparvar-Fard, M. 2015. “Developing a Thermal Comfort Report Card for Building”, Procedia Engineering, 118, 675 – 682, doi: 10.1016/j.proeng.2015.08.502.
- Zinzi, M., Carnielo, E. 2017. “Impact of urban temperatures on energy performance and thermal comfort in residential buildings. The case of Rome, Italy”, Energy Buildings, 157, 20–29, doi: 10.1016/j.enbuild.2017.05.021.
- Zhaoa, Z., Houchatia, M., Beitelmala, A. 2017. “An Energy Efficiency Assessment of the Thermal Comfort in an Office building”, Energy Procedia, 134, 885–893, doi: 10.1016/j.egypro.2017.09.550.
- Irulegia, O., Ruiz-Pardo, A., Serra, A., Salmerón, JM., Vega, R. 2017. “Retrofit Strategies Towards Net Zero Energy Educational Buildings: A case Study At The University Of The Basque Country”, Energy Buildings, 144, 387–400, https://doi.org/10.1016/j.enbuild.2017.03.030.
- Gagnona, R., Gosselina, L., Decker, S. 2018. “Sensitivity analysis of energy performance and thermal comfort throughout building design process”, Energy Buildings, 164, 278–294, doi: 10.1016/j.enbuild.2017.12.066.
- Yun, GY. 2018. “Influences of perceived control on thermal comfort and energy use in buildings”, Energy Buildings, 158, 822–830, doi: 10.1016/j.enbuild.2017.10.044.
- Abreu-Harbich, LV., Chaves, VLA. Brandstetter, MCGO. 2018. “Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate”, Building and Environment,135, 257–268, doi: 10.1016/j.buildenv.2018.03.017.
- Ozkan, A., Kesik, T., Yilmaz, AZ., O’Brien, W. 2019. “Development and visualization of time-based building energy performance metrics”, Building Research & Information, 47:5, 493-517, doi: 10.1080/09613218.2018.1451959.
- Camacho-Montano, SC., Wagner, A., Erhorn-Kluttig, H., Mumovic, D., Summerfield, A. 2019. “Clearing the air on EU guidance projects for school buildings”, Building Research & Information, 47:5, 624-634, doi: 10.1080/09613218.2018.1448961.
- Pathirana, S., Rodrigo, A., Halwatura, R. 2019. “Efect of building shape, orientation, window to wall ratios and zones on energy efciency and thermal comfort of naturally ventilated houses in tropical climate”, International Journal of Energy and Environmental Engineering, 10:107–120, https://doi.org/10.1007/s40095-018-0295-3.
- Dong, Z., Boyi, Q., Chunlong, W. 2019. “Energy-saving evaluation and control optimization of an ASHP heating system based on indoor thermal comfort”, Solar Energy, 194, 913–922, doi: 10.1016/j.solener.2019.11.042.
- Ming, R., Yu, W., Zhao, X., Liu, Y., Li, B., Essah, E., Yao, R. 2020. “Assessing energy saving potentials of office buildings based on adaptive thermal comfort using a tracking-based method”, Energy Buildings, 208, 109611, doi: 10.1016/j.enbuild.2019.109611.
- TS 825, 2008. B inalarda Isı Yalıtım Kuralları.
- Eskin, N., Turkmen, H. 2008. “Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey”, Energy Buildings, 40, 763–773, https://doi.org/10.1016/j.enbuild.2007.05.008.
- Inanici, MN., Demirbilek, FN. 2000. “Thermal performance optimization of building aspect ratio and south window size in five cities having different climatic characteristics of Turkey”, Building and Environment, 35, 41-52, doi: 10.1016/S0360-1323(99)00002-5.
- Uçar, A., Balo, F. 2009. “Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey”, Applied Energy, 86, 730-736, doi: 10.1016/j.apenergy.2008.09.015.
- Oral, KO., and Yılmaz, Z. 2003. “Building form for cold climatic zones related to building envelope from heating energy conservation point of view”, Energy Buildings, 35, 383–388, doi: 10.1016/S0378-7788(02)00111-1.
- Kaya, M., Fırat, İ., Çomaklı, Ö. 2016. “Erzincan İlindeki Binalarda Isı Yalıtımının Enerji Tasarrufuna Etkisinin Ekonomik Analizi”, Isı Bilimi ve Tekniği Dergisi, 36, 1, 47-55.
- Kon, O., Yüksel, B. 2016. “Farklı Amaçlarla Kullanılan Binaların Çatı, Döşeme Ve Dış Duvarları İçin Ölçülerek Hesaplanan Optimum Yalıtım Kalınlıkları”, Isı Bilimi Ve Tekniği Dergisi, 36, 1, 17-27.
- Özcan, NY., Kuzgunkaya, E., Akkurt, GG. 2018. “Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (2), 784-798, doi:10.16984/Saufenbilder.292296
- Altun, M., Akçamete, A., Meral Akgül Ç. 2019. “Dış sıcaklık verisinin bina ısıtma enerji gereksinimine etkisinin ve TS 825 derece-gün bölge kümelendirmesinin geçerliliğinin incelenmesi”, Pamukkale Universitesi Mühendislik Bilimi Dergisi, doi: 10.5505/pajes.2019.00334
- EnergyPlus Engineering Reference. 2019. The Reference to EnergyPlus Calculations. https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.9.0/EngineeringReference.pdf
- Aktacir, MA., Nacar, MA., Yeşilata, B. 2011. “İzmir Binalarda Enerji Verimliliği Amaçlı Yazılımlar Üzerine Kısa Bir Değerlendirme”, X. Ulusal Tesisat Mühendisliği Kongresi, İzmir.
- ASHRAE, 2005. Nonresidential Cooling and Heating Load Calculations, Chapter 30, ASHRAE Handbook Fundamentals, ASHRAE, Atlanta.
- Rees, SJ., Davies, MG., Spitler, JD., Haves, P. 2000. “Qualitative comparison of North American and U.K. cooling load calculation methods”, HVAC&Research, 6, 75-99, doi: 10.1080/10789669.2000.10391251.
- ANSI/ASHRAE 140, 2007. Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.
- Design Builder Software. 2020. http://www.designbuilder.co.uk.
- METEONORM. 2020. Global Meteorological Database for Engineers, Planners and Education, www.meteonorm.com.
- SAP2012, 2013. The Government's Standard Assessment Procedure for Energy Rating of Dwellings, 2012 Ed., Version 9.92.
- TS EN 832, 2007. Binaların Isıl Performansı-Meskenlerde Isıtma Amacıyla Kullanılan Enerjinin Hesaplanması.