Biyokömür-Soma Kömür Karışımlarının Oksiyanma Koşullarında Birlikte Yakılmasının Deneysel İncelenmesi ve Emisyonlar Üzerindeki Etkileri
Yıl 2021,
, 731 - 749, 08.12.2021
Babak Keivani
,
Hayati Olgun
,
Aysel. T Atimtay
Öz
Bu deneysel çalışma, kızılçam talaşından elde edilen biyokömürün Soma linyit ile birlikte yakılmasını kapsamaktadır. Deneyler 30 kW termal kapasiteli dolaşımlı akışkan yataklı yakma (DAY) sisteminde, havada ve oksijence zengin hava ortamında gerçekleşmiştir. Deneylerde akışkan yatağın içindeki yanma sıcaklığı 850 + 50 °C’de tutulmuştur. Farklı oranlarda linyit ve biyokömür karışımları oksijence zengin ortamda yanma testleri yapılmıştır Kızılçam talaşı için 300 °C ve 30 dakika işlem koşullarının soma linyit ile biyokömürün akışkan yatakta birlikte yakılması açısından en uygun üretim koşulları olacağı görüşüne varılmıştır. Linyitteki biyokömür karışımın payı %50’ye kadar artırılmıştır. Yakıt karışımlarının ağırlıkça %50’ye kadar çıktığı ve sistemde biyokömürün etkin bir şekilde yakıldı bulunmuştur. Sonuçlar kömür ve biyokömürün birlikte yanması için biyokömürün iyi bir katkı yakıtı olabileceğini göstermektedir. Ayrıca oksijence zengin ortamında birlikte yakmanın SO2, CO ve N2O’nun baca gazı emisyonlarını azaltmak için bir seçenek olduğunu göstermiştir. Havaya oksijen eklenmesi yanma verimini arttırmış ve CO emisyonlarını azaltmıştır. Biyokömürün içinde kükürt bulunmadığından SO2 emisyonlarını önemli ölçüde azaltmıştır. Bununla birlikte, NOx emisyonları, yüksek oksijen konsantrasyonları ve yüksek seviyelerde biyokömür ilavesi ile artmıştır.
Teşekkür
213M527 numaralı Tübitak 1003 “Dolaşımlı Akışkan Yatak Yakma Sisteminde Linyit ve Biyokömürün Oksijence Zengin Ortamda Yakılması (OKSİYANMA)” projesi kapsamında TÜBİTAK ARDEB’e desteklerinden dolayı çok teşekkür ederiz.
Kaynakça
- Saracoglu, N. 2015. Energy production from forest residues in Turkey, 3rd International Symposium and Innovative Technologies in Engineering and Science, Valencia, Spain. ISITES.
- Ersoy, M. 2015. Role of coal in Turkey, Workshop on best practices in production of electricity from coal, 29 October 2015, Genova, https://www.unece.org/.../se/.../8_M.Ersoy_TURKEY.pdf (Accesed 08 February 2019).
- Varol, M., Atimtay, A.T., Olgun, H. and Atakül, H. 2014. Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor: Part 1, Effect of excess air ratio, Fuel, 117, 792–800.
- Atimtay, A.T., Kayahan, U., Unlu, A., Engin, B., Varol, M., Olgun, H., Atakul, H. 2017. Co-firing of pine chips with Turkish lignites in 750 kWth circulating fluidized bed combustion system, Bioresource Technology, 224, 601–610.
- Acar, C. and Dincer, I. 2017. Environmental impact assessment of renewables and Conventional fuels for different end use purpose, Int. J. Global Warming, 13 )3/4(, 260-277.
- Kourkoumpas, D.S., Stamatiou, G., Karellas, S., Grammelis, P. and Kakaras, E. 2017. An environmental and economic evaluation of the lignite power generation system by using the life cycle analysis principles, Int. J. Global Warming, 13(3/4), 297-329.
- Tumuluru, J.S., Sosanj, S., Hess, J.R., Wright C.T. and Boardman, R.D. 2011. A review on biomass torrefaction process and product properties for energy applications, Industrial Biotechnology, 384-401.
- Recari, J., Berrueco, C., Puy, N., Alier, S., Bartroli, J. and Farriol, X. 2017. Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes, Applied Energy, 203, 177–188.
- NASA, Global Climate Change. 2019. https://climate.nasa.gov/vital-signs/carbon-dioxide/. Erişim tarihi Şubat 25, 2019.
- Olgun, H., Keivani, B., Gultekin, S. and Kabadayi A. 2016. Experimental study on torrefaction of pine wood in a continuous screw conveyor, 6th International Symposium on Energy from Biomass and Waste, Venice -Italy, November 14-17.
- Keivani, B., Gultekin, S., Olgun, H., and Atimtay, A.T. 2018. Torrefaction of pine wood in a continuous system and optimization of torrefaction conditions, International Journal of Energy Research, 4597-4609.
- Engin, B., Atakül, H. 2016. Air and oxy-fuel combustion kinetics of low rank lignite, Journal of the Energy Institute, 1-12.
- Rui, S., Xiaohan, R., Xiaoxiao, M., Nikita, V., Martin, S., Yiannis, A.L. 2017 Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass, Fuel, 188: 310–323.
- Gil, M.V., García, R., Pevida, C. and Rubiera, F. 2015. Grindability and combustion behavior of coal and torrefied biomass blends, Bioresource Technology, 191:205–212.
- Kayahan, U. and Ozdogan, S. 2016. Oxygen enriched combustion and co-combustion of lignites and biomass in a 30 kWth circulating fluidized bed, Energy, 116, 317-328.
- Romeo, L.M., Díez, L.I., Guedea, I., Bolea, I., Lupiáñez, C., González, A., Pallarés, J., and Teruel, E. 2011. Design and operation assessment of an oxyfuel fluidized bed combustor, Exp. Therm. Fluid Sci, 35(3), 477–484.
- Khan, A.A., De Jong, W., Jansens, P.J. and Spliethoff, H. 2008. Biomass combustion in fluidized bed boilers: Potential problems and remedies, Fuel Processing Technology, 90, 21–50.
- Miller, J.A., Bowman, G.T. 1989. Mechanism and modeling of nitrogen chemistry in combustion, Prog Energy Combust Sci, 15, 287-338.
- Duan, L., Duan, Y., Zhao, C., and Anthony, E.J. 2015. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor, Fuel. 150, 8–13.
- Patumsawad, S. and Cliffe, K.R. 2002. Experimental study on fluidized bed combustion of high moisture municipal solid waste, Energy Conversion and Management, 43, 2329–2340.
Experimental Investigation of Co-combustion of Biocoal with Soma Lignite in Air and The Oxygen-enriched Air Atmospheres and Its Effects on Emissions
Yıl 2021,
, 731 - 749, 08.12.2021
Babak Keivani
,
Hayati Olgun
,
Aysel. T Atimtay
Öz
This experimental work includes the co-combustion of Soma lignite with biochar obtained from red pine sawdust. The experiments were carried out in a circulating fluidized bed combustion (DAY) system with a thermal capacity of 30 kW, in air and in an oxygen-rich air atmosphere. In this study, the combustion temperature in the fluidized bed was kept at 850 + 50 °C. Combustion tests of Soma lignite and biochar mixtures at different rates were carried out in an oxygen-rich medium. It was concluded that 300 °C and 30 minutes processing conditions for red pine sawdust would be the most suitable production conditions for the co-combustion of soma lignite and biochar in a fluidized. The share of biochar mixture in lignite has been increased up to 50%. by weight. It was found that the biochar was burned effectively when the mixture of biochar was up to 50%. The obtained results emphasized that biochar can be a good additive fuel for co-combustion of coal and biochar. It has also shown that co-combustion in an oxygen-rich atmosphere is a choice to decrease stack emissions of SO2, CO and N2O. Addition of oxygen to air increased the combustion efficiency and reduced CO emissions. Since biocoal does not have sulfur in it significantly reduced SO2 emissions. However, emissions of NOx increased with high oxygen concentrations and high levels of biocoal addition.
Kaynakça
- Saracoglu, N. 2015. Energy production from forest residues in Turkey, 3rd International Symposium and Innovative Technologies in Engineering and Science, Valencia, Spain. ISITES.
- Ersoy, M. 2015. Role of coal in Turkey, Workshop on best practices in production of electricity from coal, 29 October 2015, Genova, https://www.unece.org/.../se/.../8_M.Ersoy_TURKEY.pdf (Accesed 08 February 2019).
- Varol, M., Atimtay, A.T., Olgun, H. and Atakül, H. 2014. Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor: Part 1, Effect of excess air ratio, Fuel, 117, 792–800.
- Atimtay, A.T., Kayahan, U., Unlu, A., Engin, B., Varol, M., Olgun, H., Atakul, H. 2017. Co-firing of pine chips with Turkish lignites in 750 kWth circulating fluidized bed combustion system, Bioresource Technology, 224, 601–610.
- Acar, C. and Dincer, I. 2017. Environmental impact assessment of renewables and Conventional fuels for different end use purpose, Int. J. Global Warming, 13 )3/4(, 260-277.
- Kourkoumpas, D.S., Stamatiou, G., Karellas, S., Grammelis, P. and Kakaras, E. 2017. An environmental and economic evaluation of the lignite power generation system by using the life cycle analysis principles, Int. J. Global Warming, 13(3/4), 297-329.
- Tumuluru, J.S., Sosanj, S., Hess, J.R., Wright C.T. and Boardman, R.D. 2011. A review on biomass torrefaction process and product properties for energy applications, Industrial Biotechnology, 384-401.
- Recari, J., Berrueco, C., Puy, N., Alier, S., Bartroli, J. and Farriol, X. 2017. Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes, Applied Energy, 203, 177–188.
- NASA, Global Climate Change. 2019. https://climate.nasa.gov/vital-signs/carbon-dioxide/. Erişim tarihi Şubat 25, 2019.
- Olgun, H., Keivani, B., Gultekin, S. and Kabadayi A. 2016. Experimental study on torrefaction of pine wood in a continuous screw conveyor, 6th International Symposium on Energy from Biomass and Waste, Venice -Italy, November 14-17.
- Keivani, B., Gultekin, S., Olgun, H., and Atimtay, A.T. 2018. Torrefaction of pine wood in a continuous system and optimization of torrefaction conditions, International Journal of Energy Research, 4597-4609.
- Engin, B., Atakül, H. 2016. Air and oxy-fuel combustion kinetics of low rank lignite, Journal of the Energy Institute, 1-12.
- Rui, S., Xiaohan, R., Xiaoxiao, M., Nikita, V., Martin, S., Yiannis, A.L. 2017 Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass, Fuel, 188: 310–323.
- Gil, M.V., García, R., Pevida, C. and Rubiera, F. 2015. Grindability and combustion behavior of coal and torrefied biomass blends, Bioresource Technology, 191:205–212.
- Kayahan, U. and Ozdogan, S. 2016. Oxygen enriched combustion and co-combustion of lignites and biomass in a 30 kWth circulating fluidized bed, Energy, 116, 317-328.
- Romeo, L.M., Díez, L.I., Guedea, I., Bolea, I., Lupiáñez, C., González, A., Pallarés, J., and Teruel, E. 2011. Design and operation assessment of an oxyfuel fluidized bed combustor, Exp. Therm. Fluid Sci, 35(3), 477–484.
- Khan, A.A., De Jong, W., Jansens, P.J. and Spliethoff, H. 2008. Biomass combustion in fluidized bed boilers: Potential problems and remedies, Fuel Processing Technology, 90, 21–50.
- Miller, J.A., Bowman, G.T. 1989. Mechanism and modeling of nitrogen chemistry in combustion, Prog Energy Combust Sci, 15, 287-338.
- Duan, L., Duan, Y., Zhao, C., and Anthony, E.J. 2015. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor, Fuel. 150, 8–13.
- Patumsawad, S. and Cliffe, K.R. 2002. Experimental study on fluidized bed combustion of high moisture municipal solid waste, Energy Conversion and Management, 43, 2329–2340.