Derleme
BibTex RIS Kaynak Göster

Tel Ark Eklemeli İmalat: Son Gelişmeler ve Değerlendirmeler**

Yıl 2022, , 82 - 116, 10.12.2021
https://doi.org/10.46399/muhendismakina.995979

Öz

Yenilikçi bir imalat teknolojisi olan metal eklemeli imalat (MEİ) günümüzde havacılık-uzay, enerji, otomotiv, tıp gibi çeşitli endüstriyel alanlarda uygulanmaktadır. Bu imalat yöntemlerinde metal parçaların üretimi, üç farklı şekilde yapılmaktadır. Bunlar toz sermeli ergitme, toz beslemeli ergitme ve tel eklemeli ergitme sistemleridir. Bu yöntemlerden ilk ikisinde hammadde olarak metal veya alaşım tozları kullanılırken üçüncü yöntemde metal veya alaşımlardan imal edilmiş ilave tel başlangıç malzemesidir. Ancak, metal tozlarının özellikle de alaşım tozlarının maliyetleri oldukça yüksektir. Bu da tel kullanılarak yapılan eklemeli metal parça üretimini oldukça cazip hale getirmektedir. Tel ark eklemeli üretimin (TAEİ) diğer bir avantajı da, küçük ve orta büyüklükteki parçaların ekonomik olarak ve yüksek hızda üretebilmesi potansiyelidir. Günümüzde, bu yenilikçi imalat teknolojisi Ti ve alaşımları, Al ve alaşımları, Ni-esaslı alaşımlar ve çelik gibi değişik mühendislik malzemelerinden parça üretiminde ümit vadeden bir üretim teknolojisi olarak kabul edilmektedir. Bu makalede tel ark eklemeli imalat konusundaki çalışmalar ve yaygın kullanılan metalik teller tartışılacak ve bu yöntem ile üretilen parçaların içyapı ve mekanik özellikleri ele alınacaktır. Ayrıca, TAEİ’ta karşılaşılan deformasyon, porozite ve çatlak oluşumu gibi hatalar ve bunların nedenleri de tartışılacaktır. Son olarak bu üretim yönteminin metal parça imalatında yaygın olarak kullanılabilmesi için aşılması gereken sorunlar özetlenecektir.

Kaynakça

  • Tino et al., R. 2020. “Additive manufacturing in radiation oncology: A review of clinical practice, emerging trends and research opportunities”, Int. J. Extrem. Manuf., vol. 2, 012003.
  • Baufeld, B., Biest, O.V.D., Gault, R. 2010. “Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties”, Mater. Des., vol. 31, pp. s106-s111.
  • Han, Y., Lu, W., Jarvis, T., et al. 2015. “Investigation on the microstructure of direct laser additive manufactured Ti6Al4V alloy”, Materials Research, vol. 18, pp. 24-28.
  • Gu, D., Guo, M., Zhang, H., et al. 2020. “Effects of laser scanning strategies on selective laser melting of pure tungsten”, Int. J. Extrem. Manuf., vol. 2, 025001.
  • Spencer, J., Dickens, P., Wykes, C. 1998. “Rapid prototyping of metal parts by three-dimensional welding”, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., vol. 212, pp. 175-182.
  • Zhang, Y., Chen, Y., Li, P., Male, A.T. 2003. “Weld deposition-based rapid prototyping: a preliminary study”, J. Mater. Process. Technol., vol. 135, pp. 347-357.
  • Kwak, Y.M., Doumanidis, C.C. 2002. “Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding”, J. Manuf. Process., vol. 4, pp. 28-41.
  • Wang, Y., Chen, X., Konovalov, S.V. 2017. “Additive manufacturing based on welding arc: A low-cost method”, J. Surf. Invest., vol. 11, pp. 1317-1328.
  • Williams, S.W., Martina, F., Addison, A.C., et al. 2016. “Wire + arc additive manufacturing”, Mater. Sci. Technol., vol. 32 (7), pp. 641-647.
  • Guo, Y., Pan, H., Ren, L., Quan, G. 2019. “Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy”, Mater. Lett., vol. 247, pp. 4-6.
  • Wang, Y., Konovalov, S., Chen, X., et al. 2021. “Research on Cu-6.6%Al-3.2%Si alloy by dual wire arc additive manufacturing”, JMEPEG, vol. 30, pp. 1694-1702.
  • Martina, F., Mehnen, J., Williams, S.W., et al. 2012. “Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V”, J. Mater. Process. Technol., vol. 212, pp. 1377-1386.
  • Ding, D., Shen, C., Pan, Z., et al. 2016. “Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished Part, CAD Comput. Aided Des., vol. 73, pp. 66-75.
  • Frazier, W.E. 2014. “Metal additive manufacturing: a review”, J. Mater. Eng. Perform., vol. 23, pp. 1917-1928.
  • Martina, F., Colegrove, P.A., Williams, S.W., Meyer, J. 2015. “Microstructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components”, Metall. Mater. Trans. A, vol. 46, pp. 6103-6118.
  • Önal, A. 2017. “WAAM işleminde soğuk metal transferi (CMT) teknolojisinin kullanımı”, X. Kaynak Teknolojisi Ulusal Kongre ve Sergisi Bildiriler Kitabı, 17-18 Kasım 2017, Ankara, S. 1-10.
  • Rosli, N.A., Alkahari, M.R., bin Abdollah, M.F., et al. 2021. “Review on effect of heat input for wire arc additive manufacturing process”, J Mater Res & Technol, vol. 11, pp. 2127-2145.
  • Dhinakaran, V., Ajith, J., Fathima Yasin Fahmidha, A., et al. 2020. “Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys – A review”, Materials Today: Proceedings, vol. 21,pp. 920-925.
  • Xia, C., Pan, Z., Polden, J., et al. 2020. “A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system”, Journal of Manufacturing Systems, vol. 57, pp. 31-45.
  • Rodrigues, T.A., Duarte, V., Miranda, R.M., et al. 2019. “Current status and perspectives on wire and arc additive manufacturing (WAAM) ”, Materials, vol. 12, 1121.
  • Zhang, Y., Wu, L., Guo, X., et al. 2018. “Additive Manufacturing of Metallic Materials: A Review”, Journal of Materials Engineering and Performance (JMEPEG), vol. 27, pp. 1-13.
  • Wu, B., Pan, Z., Ding, D., et al. 2018. “A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement”, J Manuf Process, vol. 35, pp. 127-139.
  • Derekar, K.S. 2018. “A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium”, Mater Sci Technol, vol. 34 (8), pp. 895-916.
  • Ding, D., Pan, Z., Cuiuri, D., Li, H.J. 2015. “Wire-feed additive manufacturing of metal components: technologies, developments and future interests”, Int. J. Adv. Manuf. Technol., vol. 81, pp. 465-481.
  • Çam G. 2022. “Prospects of producing aluminum parts by Wire Arc Additive Manufacturing (WAAM)”, Materials Today: Proceedings, doi: https://doi.org/10.1016/j.matpr.2022.02.137
  • Simchi, A., Petzoldt, F., Pohl, H. 2003. “On the development of direct laser sintering for rapid tooling”, J Mater Process Technol, vol. 141 (3), pp. 319-328.
  • Heinl, P., Müller, L., Körner, C., et al. 2008. “Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting”, Acta Biomater, vol. 4 (5),pp. 1536-1544.
  • Agarwala, M., Bourell, D., Beaman, J., Marcus, H., Barlow, J. 1995. “Direct selective laser sintering of metals”, Rapid Prototyp J, vol. 1 (1), pp. 26-36.
  • Kruth, J.P., Froyen, L., Van Vaerenbergh, J., et al. 2004. “Selective laser melting of iron-based powder”, J Mater Process Technol, vol. 149 (1-3), pp. 616-622.
  • Furumoto, T., et al. 2009. “Study on laser consolidation of metal powder with Yb:fiber laser-evaluation of line consolidation structure”, J Mater Process Technol, vol. 209, pp. 5973-5980.
  • Milewski, J.O., Lewis, G., Thoma, D. 1998. “Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition”. J Mater Process Technol, vol. 75, pp. 165-172.
  • Levy, G.N., Schindel, R., Kruth, J.P. 2003. “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives”, CIRP Ann Manuf Technol, vol. 52, pp. 589-609.
  • Lewandowski, J.J., Seifi, M. 2016. “Metal additive manufacturing: a review of mechanical properties”, Annu Rev Mater Res, vol. 46, pp. 151-186.
  • Gao, W., Zhang, Y., Ramanujan, D., et al. 2015. “The status, challenges, and future of additive manufacturing in engineering”, Comput Des, vol. 69, pp. 65-89.
  • Unocic, R., et al. 2004. “Process efficiency measurements in the laser engineered net shaping process”, Metall Mater Trans B, vol. 35, pp. 143-152.
  • Rännar, L.E., et al. 2007. “Efficient cooling with tool inserts manufactured by electron beam melting”, Rapid Prototyp J, vol. 13, pp. 128-135.
  • DuPont, J., Marder, A.R. 1995. “Thermal efficiency of arc welding processes”, Weld J, vol. 74, pp. 406s-416s.
  • McAndrew, A.R., et al. 2018. “Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement”, Addit. Manuf., vol. 21, pp. 340-349.
  • Baker, R. 1925. “Method of making decorative articles”; US patent no. 1 533 300 1925.
  • Acheson, R. 1990. “Automatic welding apparatus for weld build-up and method of achieving weld build-up”; US patent no. 4 952 769 1990.
  • Cotteleer, M., Joyce, J. 2014. “3D opportunity – additive manufacturing paths to performance, innovation, and growth”, Deloitte Rev., vol. 14.
  • Spencer, J., Dickens, P., Wykes, C. 1998. “Rapid prototyping of metal parts by three-dimensional welding”, Proc Inst Mech Eng Part B - J Eng Manuf, vol. 212, pp. 175-182.
  • fronius.com: “CMT Advanced”, 2015. https://www.fronius.com/cps/rde/xchg/SID-2BF524E9-5150258D/fronius_international/hs.xsl/79_17482_ENG_HTML.htm.
  • Shinn, B.W., Farson, D.F., Denney, P. E. 2005. Laser stabilisation of arc cathode spots in titanium welding, Sci. Technol. Weld. Join., vol. 10 (4), pp. 475-481.
  • Wang, F., et al. 2013. “Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V”, Metall. Mater. Trans. A, vol. 44A (2), pp. 968-977.
  • Martina, F., et al. 2012. “Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V”, J. Mater. Process. Technol., vol. 212 (6), pp. 1377-1386.
  • Dharmawan, A.G., Padmanathan, S., Xiong, Y., et al. 2018. “Maximizing robot manipulator’s functional redundancy via sequential informed optimization”, Proc. of 3rd Int. Conf. on Advanced Robotics and Mechatronics (ICARM), 18-20 July 2018, Singapore, pp. 334-339.
  • Ding, D., Pan, Z., Cuiuri, D., Li, H. 2015. “A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures”, Robot Comput Integr Manuf, vol. 34, pp. 8-19.
  • Ding, D., Pan, Z., Cuiuri, D., et al. 2016. “Adaptive path planning for wire-feed additive manufacturing using medial axis transformation”, J. Clean Prod, vol. 133, pp. 942-952.
  • Ding, D., Pan, Z., Cuiuri, D., Li, H. 2015. “A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM) ”, Robot Comput Integr Manuf, vol. 31, pp. 101-110.
  • Ding, D., Pan, Z., Cuiuri, D., et al. 2016. “Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing”, Robot Comput Integr Manuf, vol. 39, pp. 32-42.
  • Ding, D., Shen, C., Pan, Z., et al. 2016. “Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part”, Comput Des, vol.73, pp. 66-75.
  • Sequeira Almeida, P. 2012. “Process control and development in wire and arc additive manufacturing”, Cranfield University, UK.
  • Xiong, J., Yin, Z., Zhang, W. 2016. “Closed-loop control of variable layer width for thinwalled parts in wire and arc additive manufacturing”, J Mater Process Technol, vol. 233, pp. 100-106.
  • Geng, H., Li, J., Xiong, J., et al. 2017. “Optimization of wire feed for GTAW based additive manufacturing”, J Mater Process Technol, vol. 243, pp. 40-47.
  • Ding, J., Colegrove, P., Mehnen, J., et al. 2011. “Thermomechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts”, Comput Mater Sci, vol. 50, pp. 3315-3322.
  • Zhang, S., Li, J., Kou, H., et al. 2016. “Effects of thermal history on the microstructure evolution of Ti-6Al-4V during solidification”, J Mater Process Technol, vol. 227, pp. 281-287.
  • Denlinger, E.R., Heigel, J.C., Michaleris, P., Palmer, T.A. 2015. “Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys”, J Mater Process Technol, vol. 215, pp. 123-131.
  • Cam, G., Flower, H.M., West, D.R.F. 1991. “Constitution of Ti-Al-C alloys in the temperature range 1250-750 °C”, Mater. Sci. Tech., vol. 7 (6), pp. 505-511. doi: 10.1179/mst.1991.7.6.505
  • Çam, G., İpekoğlu, G., Bohm, K.-H., Koçak, M. 2006. “Investigation into the microstructure and mechanical properties of diffusion bonded TiAl alloys”, J Mater Sci, vol. 41 (16), pp. 5273-5282. doi: 10.1007/s10853-006-0292-4
  • Çam, G., Clemens, H., Gerling, R., Koçak, M. 1999. “Diffusion bonding of fine grained gamma-TiAl sheets”, Zeitschrift für Metallkunde, vol. 90 (4), pp. 284-288.
  • Thijs, L., Verhaeghe, F., Craeghs, T., et al. 2010. “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V”, Acta Mater, vol. 58, pp. 3303-3312.
  • Baufeld, B., Van der Biest, O., Gault, R. 2009. “Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition”, Int J Mater Res, vol. 100, pp. 1536-1542.
  • Lin, J., Lv, Y., Liu, Y., et al. 2017. “Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment”, J Mech Behav Biomed Mater, vol. 69, pp. 19-29.
  • Lin, J., Lv, Y., Liu, Y., et al. 2016. “Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing”, Mater Des, vol. 102, pp. 30-40.
  • Baufeld, B., Brandl, E., Van der Biest, O. 2011. “Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition”, J Mater Process Technol, vol. 211, pp. 1146-1158.
  • Wang, F., Williams, S.W., Rush, M. 2011. “Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy”, Int J Adv Manuf Technol, vol. 57, pp. 597-603. Brandl, E., Greitemeier, D. 2012. “Microstructure of additive layer manufactured Ti-6Al-4V after exceptional post heat treatments”, Mater Lett, vol. 81, pp. 84-87.
  • Szost, B.A., Terzi, S., Martina, F., et al. 2016. “A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components”, Mater Des, vol. 89, pp. 559-567.
  • Brandl, E., Baufeld, B., Leyens, C., Gault, R. 2010. “Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications”, Phys Procedia, vol. 5, pp. 595-606.
  • Zhang, J., Zhang, X., Wang, X., et al. 2016. “Crack path selection at the interface of wrought and wire + arc additive manufactured Ti-6Al-4V”, Mater Des, vol. 104, pp. 365-375.
  • Brandl, E., Schoberth, A., Leyens, C. 2012. “Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM) ”, Mater Sci Eng A, vol. 532, pp. 295-307.
  • Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C. 2016. “Additive manufacturing of metals”, Acta Mater, vol. 117, pp. 371-392.
  • Hirata, Y. 2003. “Pulsed arc welding”, Weld Int, vol. 17, pp. 98-115.
  • Kurkin, S., Anufriev, V. 1984. “Preventing distortion of welded thin walled members of AMg6 and 1201 aluminum alloys by rolling the weld with a roller behind the welding arc”, Weld. Prod., vol. 31 (10), pp. 32-34.
  • Colegrove, P.A., Coules, H., Fairman, J., et al. 2013. “Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling”, J. Mater. Process. Technol., vol. 213 (10), pp. 1782-1791.
  • Martina, F., Williams, S.W., Colegrove, P.A. 2013. “Improved microstructure and increased mechanical properties of additive manufacture produced Ti-6Al-4V by interpass cold rolling”, Proc. 24th Int. Solid Freeform Fabrication Symp., Austin, TX, USA, August 2013, University of Texas, pp. 490-496.
  • Martina, F. 2014. “Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scale wire + arc additive manufacturing”, PhD thesis, Cranfield University, Cranfield, UK.
  • Hönnige, J.R., et al. 2018. “Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling”, Mater. Des., vol. 150, pp. 193-205.
  • Martina, F., Roy, M.J., Szost, B.A., et al. 2016. “Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti-6Al-4V components”, Mater. Sci. Technol., vol. 32, pp. 1439-1448.
  • Gu, J., Ding, J., Williams, S.W., et al. 2016. “The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys”, J Mater Process Technol, vol. 230, pp. 26-34.
  • Wang, P., Hu, S., Shen, J., Liang, Y. 2017. “Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy”, J Mater Process Technol, vol. 245, pp. 122-133.
  • Brice, C., Shenoy, R., Kral, M., Buchannan, K. 2015. “Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing”, Mater Sci Eng A, vol. 648, pp. 9-14.
  • Cong, B., Ding, J., Williams, S.W. 2015. “Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy”, Int. J. Adv. Manuf. Technol., vol. 76, pp. 1593-1606.
  • Gu, J., Cong, B., Ding, J., Williams, S.W., Zhai, Y. 2014. “Wire + arc additive manufacturing of aluminium”, Proc. 25th Int. Solid Freeform Fabrication Symp., August 2014, University of Texas, pp. 451-458. 86. Gu, J., et al. 2016. “The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy”, Mater Sci Eng A, vol. 651, pp. 18-26.
  • Hönnige, J.R., Colegrove, P.A., Ganguly, S., et al. 2018. “Control of residual stress and distortion in aluminium wire + arc additive manufacture with rolling”, Addit. Manuf., vol. 22, pp. 775-783.
  • Gu, J., Wang, X., Bai, J., et al. 2018. “Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling”, Mater. Sci. Eng. A, vol. 712, pp. 292-301.
  • Fang, X., et al. 2018. “Microstructure evolution and mechanical behavior of 2219 aluminum alloys additively fabricated by the cold metal transfer process”, Materials, vol. 11, 812.
  • Horgar, A., Fostervoll, H., Nyhus, B., et al. 2018. “Additive manufacturing using WAAM with AA5183 wire”, Journal of Materials Processing Technology, vol. 259, pp. 68-74.
  • Çam, G., Ventzke, V., J.F. dos Santos, et al. 1999. “Characterisation of electron beam welded aluminium alloys”, Sci. Technol. Weld. Join., vol. 4 (5), pp. 317-323. doi: 10.1179/136217199101537941
  • Çam, G., Koçak, M. 2007. “Microstructural and mechanical characterization of electron beam welded Al-alloy 7020”, J. Mater. Sci., vol. 42 (17), pp. 7154-7161. doi: 10.1007/s10853-007-1604-z
  • Çam, G., Ventzke, V., dos Santos, J.F., et al. 1999. “Characterization of laser and electron beam welded Al-alloys”, Prakt. Metallogr., vol. 36 (2), pp. 59-89.
  • Pakdil, M., Çam, G., Koçak, M., Erim, S. 2011. “Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy”, Mater. Sci. Eng. A, vol. 528 (24), pp. 7350-7356. doi: 10.1016/j.msea.2011.06.010
  • İpekoğlu, G., Çam, G. 2019. “Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance”, IOP Conf. Series: Materials Science and Engineering, vol. 629, 012007. doi: 10.1088/1757-899X/629/1/012007
  • Serindağ, H.T., Çam, G. 2020. “CMT ve darbeli CMT ark kaynaklı AA7075-T6 Al-alaşımı alın bağlantıların mekanik davranışına kaynak hatalarının etkisinin araştırılması”, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, Cilt 7, 100. Yıl Özel Sayısı, S. 248-262. doi: 10.35193/bseufbd.654456
  • Heidarzadeh, A., Mironov, S., Kaibyshev, R., Çam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field D.P., Robson J.D., Deschamps A., Withers P.J. 2021. “Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution”, Progress in Materials Science, vol. 117, 100752. https://doi.org/10.1016/j.pmatsci.2020.100752
  • Kashaev, N., Ventzke, V., Çam, G. 2018. “Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications”, J Manuf Process, vol. 36, pp. 571-600. doi: 10.1016/ j.jmapro.2018.10.005
  • Çam, G., İpekoğlu, G. 2017. “Recent developments in joining of aluminium alloys”, Int. J. Adv. Manuf. Technol., vol. 91 (5-8), pp. 1851-1866. doi: 10.1007/s00170-016-9861-0
  • Çam, G. 2011. “Friction stir welded structural materials: Beyond Al-alloys”, Int. Mater. Rev., vol. 56 (1), pp. 1-48. doi: 10.1179/095066010X12777205875750
  • Çam, G. 2005. “Sürtünme karıştırma kaynağı (SKK) - Al-alaşımları için geliştirilmiş yeni bir kaynak teknolojisi”, Mühendis ve Makina, Cilt 46 (541), S. 30-39.
  • Von Strombeck, A., Çam, G., Dos Santos, J.F., Ventzke, V., Koçak, M. 2001. “A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys”, In Proc. of the TMS 2001 Annual Meeting Aluminum, Automotive and Joining (New Orleans, Louisiana, USA, February 12-14, 2001), eds: S.K. Das, J.G. Kaufman, and T.J. Lienert, pub.: TMS, Warrendale, PA, USA, pp. 249-264.
  • Çam, G., İpekoğlu, G., Tarık Serindağ, H. 2014. “Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints”, Sci. Technol. Weld. Join., vol. 19 (8), pp. 715-720. doi: 10.1179/1362171814Y.0000000247
  • İpekoğlu, G., Gören Kıral, B., Erim, S., Çam, G. 2012. “Investigation of the effect of temper condition friction stir weldability of AA7075 Al-alloy plates”, Mater. Tehnol., vol. 46 (6), pp. 627-632. doi: 669.715:621.791:620.17
  • İpekoğlu, G., Erim, S., Gören Kıral, B., Çam, G. 2013. “Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates”, Kovove Mater., vol. 51 (3), pp. 155-163. doi: 10.4149/km-2013-3-155
  • Çam G., Javaheri V., and Heidarzadeh A. 2022. “Advances in FSW and FSSW of Dissimilar Al-Alloy Plates”, Journal of Adhesion Science and Technology, doi: https://doi.org/10.1080/01694243.2022.2028073
  • İpekoğlu, G., Çam, G. 2014. “Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys”, Metall. Mater. Trans. A, vol. 45A (7), pp. 3074-3087. doi: 10.1007/s11661-014-2248-7
  • İpekoğlu, G., Erim, S., Çam, G. 2014. “Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions”, Metall. Mater. Trans. A, vol. 45A (2), pp. 864-877. doi: 10.1007/s11661-013-2026-y
  • İpekoğlu, G., Erim, S., Çam, G. 2014. “Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates”, Int. J. Adv. Manuf. Technol., vol. 70 (1), pp. 201-213. doi: 10.1007/s00170-013-5255-8
  • İpekoglu, G., Akçam, Ö., Çam, G. 2018. “Farklı kalınlıktaki AA6061-T6 levhaların sürtünme karıştırma kaynağı için uygun kaynak parametrelerinin belirlenmesi”, Afyon Kocatepe Üniv. Fen ve Müh. Bil. Dergisi (AKÜ FEMÜBİD), Cilt 18 (1), 015901, S. 324-335. doi: 10.5578/fmbd.66765
  • İpekoglu, G., Çam, G. 2012. “Farklı Al-alaşımı levhaların (AA6061/AA7075) sürtünme karıştırma kaynağına temper durumunun etkisi”, Mühendis ve Makina, Cilt 53 (629), S. 40-47.
  • Agrawal, B.K. 2007. ‘Introduction to engineering materials’, Tata McGraw-Hill, New Delhi, India.
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G. 2019. “Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel”, IOP Conf. Series: Mater Sci and Eng, vol. 629, 012010. doi: 10.1088/1757-899X/629/1/012010
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., Sekban, D.M., Çam, G. 2019. “Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints”, Materials Research Express, vol. 6 (4), 046537. doi: 10.1088/2053-1591/aafb9f
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G. 2018. “Mechanical properties of friction stir welded St 37 and St 44 steel joints”, Materials Testing, vol. 60 (12), pp. 1163-1170. doi: 10.3139/120.111266
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G. 2018. “Microstructure and mechanical properties of friction stir welded St52 steel joints”, Int. J. of Minerals, Metallurgy and Materials, vol. 25 (12), pp. 1457-1464. doi: 10.1007/s12613-018-1700-x
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., Sekban, D.M., Çam, G. 2018. “Sürtünme karıştırma kaynağıyla birleştirilen St37/St52 levhaların mikroyapı karakterizasyonu ve mekanik özellikleri”, Fen ve Müh. Dergisi, Dokuz Eylül Üniv., Müh. Fak., Cilt. 20 (59), S. 471-480. doi: 10.21205/deufmd. 2018205937
  • Haden, C.V., Zeng, G., Carter III, F.M., et al. 2017. “Wire and arc additive manufactured steel: Tensile and wear properties”, Addit. Manuf., vol. 16, pp. 115-123.
  • Yilmaz, O., Ugla, A.A. 2017. “Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: Shaped metal deposition using pulsed current arc”, Int. J. Adv. Manuf. Technol., vol. 89, pp. 13-25.
  • Queguineur, A., Rückert, G., Cortial, F., et al. 2018. “Evaluation of wire arc additive manufacturing for large-sized components in naval applications”, Weld. World., vol. 62, pp. 259-266.
  • Wang, L., Xue, J., Wang, Q. 2019. “Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel”, Mater. Sci. Eng. A, vol. 751, pp. 183-190.
  • Chen, X., et al. 2017. “Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing”, Mater Sci Eng A, vol. 703, pp. 567-577.
  • Posch, G., Chladil, K., Chladil, H. 2017. “Material properties of CMT-metal additive manufactured duplex stainless steel blade-like geometries”, Welding in the World, vol. 61,pp. 873-882.
  • Ge., J., Lin, J., Lei, Y., Fu, H. 2018. “Location-related thermal history, microstructure, and mechanical properties of arc additively manufactured 2Cr13 steel using cold metal transfer welding”, Mater Sci Eng A, vol. 715, pp. 144-153.
  • Ge., J., Lin, J., Lei, Y., Fu, H. 2018. “Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties”, Journal Alloys and Compounds, vol. 748, pp. 911-921.
  • Hoefer, K., Haelsig, A., Mayr, P. 2018.“Arc-based additive manufacturing of steel components-Comparison of wire- and powder-based variants”, Welding in the World, vol. 62, pp. 243-247.
  • Çam, G., Koçak, M. 1998. “Progress in joining of advanced materials - Part II: Joining of metal matrix composites and joining of other advanced materials”, Sci. Technol. Weld. Join., vol. 3 (4), pp. 159-175. DOI: 10.1179/stw.1998.3.4.159
  • Çam, G., Koçak, M. 1998. “Progress in joining of advanced materials”, Int. Mater. Rev., vol. 43 (1), pp. 1-44. DOI: 10.1179/imr.1998.43.1.1
  • Wang, J.F., Sun, Q.J., Wang, H., Liu, J.P., Feng, J.C. 2016. “Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding”, Mater. Sci. Eng. A, vol. 676, pp. 395-405.
  • Juric, I., et al. 2019. “Influence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured Inconel 625”, JOM, vol. 71 (2), pp. 703-708.
  • Xu, X., Ganguly, S., Ding, J., Seow, C.E., Williams, S. 2018. “Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing”, Mater. Des., vol. 160, pp. 1042-1051.
  • Xu, X., Ding, J., Ganguly, S., Williams, S. 2018. “Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process”, J. Mater. Process. Technol., vol. 265, pp. 201-209.
  • Baufeld, B. 2012. “Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD) ”, JMEP, vol. 21 (7), pp. 1416-1421.
  • Xu, F.J., Lv, Y.H., Liu, Y.X., et al. 2013. “Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process”, J Mater Sci Technol, vol. 29, pp. 480-488.
  • Xu, F.J., Lv, Y.H., Liu, Y.X., et al. 2013. “Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition”, Mater Des, vol. 45, pp. 446-455.
  • Wang, J.F., Sun, Q.J., Wang, H., et al. 2016. “Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding”, Mater Sci Eng A, vol. 676, pp. 395-405.
  • Guo, J., Zhou, Y., Liu, C., et al. 2016. “Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency”, Materials; vol. 9, 823.
  • Han, S., Zielewski, M., Holguin, D.M., et al. 2018. “Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing”, Appl. Sci., vol. 8 (8), 1306.
  • Ding, D., Pan, Z., van Duin, S., Li, H., Shen, C. 2016. “Fabricating superior NiAl bronze components through wire arc additive manufacturing”, Materials, vol. 9, 652.
  • Shen, C., Pan, Z., Ding, D., et al. 2018. “The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process”, Addit. Manuf., vol. 23, pp. 411-421.
  • Shen, C., Pan, Z., Ma, Y., Cuiuri, D., Li, H. 2015. “Fabrication of iron-rich Fe-Al intermetallics using the wire-arc additive manufacturing process”, Addit Manuf, vol. 7, pp. 20-26.
  • Shen, C., Pan, Z., Cuiuri, D., Dong, B., Li, H. 2016. “In-depth study of the mechanical properties for Fe3Al based iron aluminide fabricated using the wire-arc additive manufacturing process”, Mater Sci Eng A, vol. 669, pp. 118-126.
  • Ma, Y., Cuiuri, D., Hoye, N., et al. 2014. “Characterization of in-situ alloyed and additively manufactured titanium aluminides”, Metall. Mater. Trans. B, vol. 45, pp. 2299-2303.
  • Ma, Y., et al. 2015. “Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding”, Addit Manuf, 2015; 8: 71-77.
  • Ma, Y., Cuiuri, D., Hoye, N., Li, H., Pan, Z. 2015. “The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding”, Mater. Sci. Eng. A, vol. 631, pp. 230-240.
  • Ma, Y., et al. 2016. “The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process”, Mater Sci Eng A, vol. 657, pp. 86-95.
  • Abe, T., Sasahara, H. 2016. “Dissimilar metal deposition with a stainless steel and nickel based alloy using wire and arc-based additive manufacturing”, Precis Eng, vol. 45, pp. 387-395. 148. Liu, L., et al. 2013. “Additive manufacturing of steel-bronze bimetal by shaped metal deposition: interface characteristics and tensile properties”, Int J Adv Manuf Technol, vol. 69, pp. 2131-2137.
  • Tammas-Williams, S., Todd, I. 2017. “Design for additive manufacturing with site-specific properties in metals and alloys”, Scr. Mater., vol. 135, pp. 105-110.
  • Oliveira, J.P., Cavaleiro, A.J., Schell, N., et al. 2018. “Effects of laser processing on the transformation characteristics of NiTi: A contribute to additive manufacturing”, Scr. Mater., vol. 152, pp. 122-126.
  • Qi, Z., Cong, B., Qi, B., et al. 2018. “Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys”, J. Mater. Process. Tech., vol. 255, pp. 347-353.
  • Wu, B., et al. 2017. “Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V”, J Mater Process Technol, vol. 250, pp. 304-312.
  • Masubuchi, K. 2013. “Analysis of welded structures: residual stresses, distortion, and their consequences”, Elsevier, Amsterdam.
  • Sames, W.J., List, F., Pannala, S., Dehoff, R.R., Babu, S.S. 2016. “The metallurgy and processing science of metal additive manufacturing”, Int Mater Rev, vol. 61, pp. 315-360.
  • Wang, H., Kovacevic, R. 2011. “Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy”, Proc Instn Mech Engrs, vol. 215, Part B, pp. 1519-1527.
  • Mukherjee, T., Zhang, W., DebRoy, T. 2017. “An improved prediction of residual stresses and distortion in additive manufacturing”, Comput Mater Sci, vol. 126, pp. 360-372.
  • Edwards, P., O’Conner, A., Ramulu, M. 2013. “Electron beam additive manufacturing of titanium components: properties and performance”, J Manuf Sci Eng, vol. 135, 061016.
  • Busachi, A., Erkoyuncu, J., Colegrove, P.A., Martina, F., Ding, J. 2015. “Designing a WAAM based manufacturing system for defence applications”, Procedia Cirp, vol. 37, pp. 48-53.
  • Sames, W.J., Medina, F., Peter, W.H., Babu, S.S., Dehoff, R.R. 2014. “Effect of process control andpowder quality on inconel 718 produced using electron beam melting”, 8th International Symposium on Superalloy 718 and Derivatives. John Wiley & Sons, Inc., pp. 409-423.
  • Devletian, J.H., Wood, W.E. 1983. “Factors affecting porosity in aluminum welds - a review”, Welding Research Council.
  • Bai, J., Ding, H., Gu, J., Wang, X., Qiu, H. 2107. “Porosity evolution in additively manufactured aluminium alloy during high temperature exposure”, IOP Conference Series: Materials Science and Engineering, vol. 167, 012045.
  • Colegrove, P.A., Donoghue, J., Martina, F., Gu, J., Prangnell, P., Hönnige, J. 2017. “Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components”, Scr. Mater., vol. 135, pp. 111-118.
  • Xie, Y., Zhang, H., Zhou, F. 2016. “Improvement in geometrical accuracy and mechanical property for arc-based additive manufacturing using metamorphic rolling mechanism”, J. Manuf. Sci. Eng., vol. 138, 111002.
  • Sames, W.J., et al. 2016. “The metallurgy and processing science of metal additive manufacturing”, Int Mater Rev, vol. 61, pp. 315-360.
  • Tian, Y., Ouyang, B., Gontcharov, A., et al. 2017. “Microstructure evolution of Inconel 625 with 0.4 wt% boron modification during gas tungsten arc deposition”, J Alloys Compd, vol. 694, pp. 429-438.

Wire Arc Additive Manufacturing (WAAM): Recent Developments and Prospects

Yıl 2022, , 82 - 116, 10.12.2021
https://doi.org/10.46399/muhendismakina.995979

Öz

Metal additive manufacturing (MAM) which is an innovative technology is presently being applied in various industries such as aeronautics-space, energy, automotive, and medicine. Metal parts are produced in three different ways in metal additive manufacturing methods. These are powder bed fusion, powder fed fusion and wire fed fusion systems. In the first two of these methods, metal or alloy powders are used as raw materials, while in the third method, the filler wire made of metal or alloys is the starting material. However, metal powders, especially alloy powders, are quite costly. This in turn makes the production of metal parts using filler wire very attractive. Another advantage of wire arc additive manufacturing (WAAM) is its potential to produce small- and medium-sized parts economically with high deposition rate. Nowadays, this innovative manufacturing technology is being considered a promising fabrication technology for manufacturing several products from various engineering materials such as titanium and its alloys, aluminum and its alloys, nickel-based alloys and steels. In this paper, studies on WAAM and commonly used metallic wires and the microstructure and mechanical properties of the parts produced by this method will be discussed. In addition, defects such as deformation, porosity and crack formation encountered in WAAM and their reasons will also be discussed. Finally, the problems which have to be overcome for a wider application of this production method in the manufacturing of metallic parts, will be summarized.

Kaynakça

  • Tino et al., R. 2020. “Additive manufacturing in radiation oncology: A review of clinical practice, emerging trends and research opportunities”, Int. J. Extrem. Manuf., vol. 2, 012003.
  • Baufeld, B., Biest, O.V.D., Gault, R. 2010. “Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties”, Mater. Des., vol. 31, pp. s106-s111.
  • Han, Y., Lu, W., Jarvis, T., et al. 2015. “Investigation on the microstructure of direct laser additive manufactured Ti6Al4V alloy”, Materials Research, vol. 18, pp. 24-28.
  • Gu, D., Guo, M., Zhang, H., et al. 2020. “Effects of laser scanning strategies on selective laser melting of pure tungsten”, Int. J. Extrem. Manuf., vol. 2, 025001.
  • Spencer, J., Dickens, P., Wykes, C. 1998. “Rapid prototyping of metal parts by three-dimensional welding”, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., vol. 212, pp. 175-182.
  • Zhang, Y., Chen, Y., Li, P., Male, A.T. 2003. “Weld deposition-based rapid prototyping: a preliminary study”, J. Mater. Process. Technol., vol. 135, pp. 347-357.
  • Kwak, Y.M., Doumanidis, C.C. 2002. “Geometry regulation of material deposition in near-net shape manufacturing by thermally scanned welding”, J. Manuf. Process., vol. 4, pp. 28-41.
  • Wang, Y., Chen, X., Konovalov, S.V. 2017. “Additive manufacturing based on welding arc: A low-cost method”, J. Surf. Invest., vol. 11, pp. 1317-1328.
  • Williams, S.W., Martina, F., Addison, A.C., et al. 2016. “Wire + arc additive manufacturing”, Mater. Sci. Technol., vol. 32 (7), pp. 641-647.
  • Guo, Y., Pan, H., Ren, L., Quan, G. 2019. “Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy”, Mater. Lett., vol. 247, pp. 4-6.
  • Wang, Y., Konovalov, S., Chen, X., et al. 2021. “Research on Cu-6.6%Al-3.2%Si alloy by dual wire arc additive manufacturing”, JMEPEG, vol. 30, pp. 1694-1702.
  • Martina, F., Mehnen, J., Williams, S.W., et al. 2012. “Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V”, J. Mater. Process. Technol., vol. 212, pp. 1377-1386.
  • Ding, D., Shen, C., Pan, Z., et al. 2016. “Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished Part, CAD Comput. Aided Des., vol. 73, pp. 66-75.
  • Frazier, W.E. 2014. “Metal additive manufacturing: a review”, J. Mater. Eng. Perform., vol. 23, pp. 1917-1928.
  • Martina, F., Colegrove, P.A., Williams, S.W., Meyer, J. 2015. “Microstructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components”, Metall. Mater. Trans. A, vol. 46, pp. 6103-6118.
  • Önal, A. 2017. “WAAM işleminde soğuk metal transferi (CMT) teknolojisinin kullanımı”, X. Kaynak Teknolojisi Ulusal Kongre ve Sergisi Bildiriler Kitabı, 17-18 Kasım 2017, Ankara, S. 1-10.
  • Rosli, N.A., Alkahari, M.R., bin Abdollah, M.F., et al. 2021. “Review on effect of heat input for wire arc additive manufacturing process”, J Mater Res & Technol, vol. 11, pp. 2127-2145.
  • Dhinakaran, V., Ajith, J., Fathima Yasin Fahmidha, A., et al. 2020. “Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys – A review”, Materials Today: Proceedings, vol. 21,pp. 920-925.
  • Xia, C., Pan, Z., Polden, J., et al. 2020. “A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system”, Journal of Manufacturing Systems, vol. 57, pp. 31-45.
  • Rodrigues, T.A., Duarte, V., Miranda, R.M., et al. 2019. “Current status and perspectives on wire and arc additive manufacturing (WAAM) ”, Materials, vol. 12, 1121.
  • Zhang, Y., Wu, L., Guo, X., et al. 2018. “Additive Manufacturing of Metallic Materials: A Review”, Journal of Materials Engineering and Performance (JMEPEG), vol. 27, pp. 1-13.
  • Wu, B., Pan, Z., Ding, D., et al. 2018. “A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement”, J Manuf Process, vol. 35, pp. 127-139.
  • Derekar, K.S. 2018. “A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium”, Mater Sci Technol, vol. 34 (8), pp. 895-916.
  • Ding, D., Pan, Z., Cuiuri, D., Li, H.J. 2015. “Wire-feed additive manufacturing of metal components: technologies, developments and future interests”, Int. J. Adv. Manuf. Technol., vol. 81, pp. 465-481.
  • Çam G. 2022. “Prospects of producing aluminum parts by Wire Arc Additive Manufacturing (WAAM)”, Materials Today: Proceedings, doi: https://doi.org/10.1016/j.matpr.2022.02.137
  • Simchi, A., Petzoldt, F., Pohl, H. 2003. “On the development of direct laser sintering for rapid tooling”, J Mater Process Technol, vol. 141 (3), pp. 319-328.
  • Heinl, P., Müller, L., Körner, C., et al. 2008. “Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting”, Acta Biomater, vol. 4 (5),pp. 1536-1544.
  • Agarwala, M., Bourell, D., Beaman, J., Marcus, H., Barlow, J. 1995. “Direct selective laser sintering of metals”, Rapid Prototyp J, vol. 1 (1), pp. 26-36.
  • Kruth, J.P., Froyen, L., Van Vaerenbergh, J., et al. 2004. “Selective laser melting of iron-based powder”, J Mater Process Technol, vol. 149 (1-3), pp. 616-622.
  • Furumoto, T., et al. 2009. “Study on laser consolidation of metal powder with Yb:fiber laser-evaluation of line consolidation structure”, J Mater Process Technol, vol. 209, pp. 5973-5980.
  • Milewski, J.O., Lewis, G., Thoma, D. 1998. “Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition”. J Mater Process Technol, vol. 75, pp. 165-172.
  • Levy, G.N., Schindel, R., Kruth, J.P. 2003. “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives”, CIRP Ann Manuf Technol, vol. 52, pp. 589-609.
  • Lewandowski, J.J., Seifi, M. 2016. “Metal additive manufacturing: a review of mechanical properties”, Annu Rev Mater Res, vol. 46, pp. 151-186.
  • Gao, W., Zhang, Y., Ramanujan, D., et al. 2015. “The status, challenges, and future of additive manufacturing in engineering”, Comput Des, vol. 69, pp. 65-89.
  • Unocic, R., et al. 2004. “Process efficiency measurements in the laser engineered net shaping process”, Metall Mater Trans B, vol. 35, pp. 143-152.
  • Rännar, L.E., et al. 2007. “Efficient cooling with tool inserts manufactured by electron beam melting”, Rapid Prototyp J, vol. 13, pp. 128-135.
  • DuPont, J., Marder, A.R. 1995. “Thermal efficiency of arc welding processes”, Weld J, vol. 74, pp. 406s-416s.
  • McAndrew, A.R., et al. 2018. “Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement”, Addit. Manuf., vol. 21, pp. 340-349.
  • Baker, R. 1925. “Method of making decorative articles”; US patent no. 1 533 300 1925.
  • Acheson, R. 1990. “Automatic welding apparatus for weld build-up and method of achieving weld build-up”; US patent no. 4 952 769 1990.
  • Cotteleer, M., Joyce, J. 2014. “3D opportunity – additive manufacturing paths to performance, innovation, and growth”, Deloitte Rev., vol. 14.
  • Spencer, J., Dickens, P., Wykes, C. 1998. “Rapid prototyping of metal parts by three-dimensional welding”, Proc Inst Mech Eng Part B - J Eng Manuf, vol. 212, pp. 175-182.
  • fronius.com: “CMT Advanced”, 2015. https://www.fronius.com/cps/rde/xchg/SID-2BF524E9-5150258D/fronius_international/hs.xsl/79_17482_ENG_HTML.htm.
  • Shinn, B.W., Farson, D.F., Denney, P. E. 2005. Laser stabilisation of arc cathode spots in titanium welding, Sci. Technol. Weld. Join., vol. 10 (4), pp. 475-481.
  • Wang, F., et al. 2013. “Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V”, Metall. Mater. Trans. A, vol. 44A (2), pp. 968-977.
  • Martina, F., et al. 2012. “Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V”, J. Mater. Process. Technol., vol. 212 (6), pp. 1377-1386.
  • Dharmawan, A.G., Padmanathan, S., Xiong, Y., et al. 2018. “Maximizing robot manipulator’s functional redundancy via sequential informed optimization”, Proc. of 3rd Int. Conf. on Advanced Robotics and Mechatronics (ICARM), 18-20 July 2018, Singapore, pp. 334-339.
  • Ding, D., Pan, Z., Cuiuri, D., Li, H. 2015. “A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures”, Robot Comput Integr Manuf, vol. 34, pp. 8-19.
  • Ding, D., Pan, Z., Cuiuri, D., et al. 2016. “Adaptive path planning for wire-feed additive manufacturing using medial axis transformation”, J. Clean Prod, vol. 133, pp. 942-952.
  • Ding, D., Pan, Z., Cuiuri, D., Li, H. 2015. “A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM) ”, Robot Comput Integr Manuf, vol. 31, pp. 101-110.
  • Ding, D., Pan, Z., Cuiuri, D., et al. 2016. “Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing”, Robot Comput Integr Manuf, vol. 39, pp. 32-42.
  • Ding, D., Shen, C., Pan, Z., et al. 2016. “Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part”, Comput Des, vol.73, pp. 66-75.
  • Sequeira Almeida, P. 2012. “Process control and development in wire and arc additive manufacturing”, Cranfield University, UK.
  • Xiong, J., Yin, Z., Zhang, W. 2016. “Closed-loop control of variable layer width for thinwalled parts in wire and arc additive manufacturing”, J Mater Process Technol, vol. 233, pp. 100-106.
  • Geng, H., Li, J., Xiong, J., et al. 2017. “Optimization of wire feed for GTAW based additive manufacturing”, J Mater Process Technol, vol. 243, pp. 40-47.
  • Ding, J., Colegrove, P., Mehnen, J., et al. 2011. “Thermomechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts”, Comput Mater Sci, vol. 50, pp. 3315-3322.
  • Zhang, S., Li, J., Kou, H., et al. 2016. “Effects of thermal history on the microstructure evolution of Ti-6Al-4V during solidification”, J Mater Process Technol, vol. 227, pp. 281-287.
  • Denlinger, E.R., Heigel, J.C., Michaleris, P., Palmer, T.A. 2015. “Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys”, J Mater Process Technol, vol. 215, pp. 123-131.
  • Cam, G., Flower, H.M., West, D.R.F. 1991. “Constitution of Ti-Al-C alloys in the temperature range 1250-750 °C”, Mater. Sci. Tech., vol. 7 (6), pp. 505-511. doi: 10.1179/mst.1991.7.6.505
  • Çam, G., İpekoğlu, G., Bohm, K.-H., Koçak, M. 2006. “Investigation into the microstructure and mechanical properties of diffusion bonded TiAl alloys”, J Mater Sci, vol. 41 (16), pp. 5273-5282. doi: 10.1007/s10853-006-0292-4
  • Çam, G., Clemens, H., Gerling, R., Koçak, M. 1999. “Diffusion bonding of fine grained gamma-TiAl sheets”, Zeitschrift für Metallkunde, vol. 90 (4), pp. 284-288.
  • Thijs, L., Verhaeghe, F., Craeghs, T., et al. 2010. “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V”, Acta Mater, vol. 58, pp. 3303-3312.
  • Baufeld, B., Van der Biest, O., Gault, R. 2009. “Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition”, Int J Mater Res, vol. 100, pp. 1536-1542.
  • Lin, J., Lv, Y., Liu, Y., et al. 2017. “Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment”, J Mech Behav Biomed Mater, vol. 69, pp. 19-29.
  • Lin, J., Lv, Y., Liu, Y., et al. 2016. “Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing”, Mater Des, vol. 102, pp. 30-40.
  • Baufeld, B., Brandl, E., Van der Biest, O. 2011. “Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition”, J Mater Process Technol, vol. 211, pp. 1146-1158.
  • Wang, F., Williams, S.W., Rush, M. 2011. “Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy”, Int J Adv Manuf Technol, vol. 57, pp. 597-603. Brandl, E., Greitemeier, D. 2012. “Microstructure of additive layer manufactured Ti-6Al-4V after exceptional post heat treatments”, Mater Lett, vol. 81, pp. 84-87.
  • Szost, B.A., Terzi, S., Martina, F., et al. 2016. “A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components”, Mater Des, vol. 89, pp. 559-567.
  • Brandl, E., Baufeld, B., Leyens, C., Gault, R. 2010. “Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications”, Phys Procedia, vol. 5, pp. 595-606.
  • Zhang, J., Zhang, X., Wang, X., et al. 2016. “Crack path selection at the interface of wrought and wire + arc additive manufactured Ti-6Al-4V”, Mater Des, vol. 104, pp. 365-375.
  • Brandl, E., Schoberth, A., Leyens, C. 2012. “Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM) ”, Mater Sci Eng A, vol. 532, pp. 295-307.
  • Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C. 2016. “Additive manufacturing of metals”, Acta Mater, vol. 117, pp. 371-392.
  • Hirata, Y. 2003. “Pulsed arc welding”, Weld Int, vol. 17, pp. 98-115.
  • Kurkin, S., Anufriev, V. 1984. “Preventing distortion of welded thin walled members of AMg6 and 1201 aluminum alloys by rolling the weld with a roller behind the welding arc”, Weld. Prod., vol. 31 (10), pp. 32-34.
  • Colegrove, P.A., Coules, H., Fairman, J., et al. 2013. “Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling”, J. Mater. Process. Technol., vol. 213 (10), pp. 1782-1791.
  • Martina, F., Williams, S.W., Colegrove, P.A. 2013. “Improved microstructure and increased mechanical properties of additive manufacture produced Ti-6Al-4V by interpass cold rolling”, Proc. 24th Int. Solid Freeform Fabrication Symp., Austin, TX, USA, August 2013, University of Texas, pp. 490-496.
  • Martina, F. 2014. “Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scale wire + arc additive manufacturing”, PhD thesis, Cranfield University, Cranfield, UK.
  • Hönnige, J.R., et al. 2018. “Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling”, Mater. Des., vol. 150, pp. 193-205.
  • Martina, F., Roy, M.J., Szost, B.A., et al. 2016. “Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti-6Al-4V components”, Mater. Sci. Technol., vol. 32, pp. 1439-1448.
  • Gu, J., Ding, J., Williams, S.W., et al. 2016. “The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys”, J Mater Process Technol, vol. 230, pp. 26-34.
  • Wang, P., Hu, S., Shen, J., Liang, Y. 2017. “Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy”, J Mater Process Technol, vol. 245, pp. 122-133.
  • Brice, C., Shenoy, R., Kral, M., Buchannan, K. 2015. “Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing”, Mater Sci Eng A, vol. 648, pp. 9-14.
  • Cong, B., Ding, J., Williams, S.W. 2015. “Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy”, Int. J. Adv. Manuf. Technol., vol. 76, pp. 1593-1606.
  • Gu, J., Cong, B., Ding, J., Williams, S.W., Zhai, Y. 2014. “Wire + arc additive manufacturing of aluminium”, Proc. 25th Int. Solid Freeform Fabrication Symp., August 2014, University of Texas, pp. 451-458. 86. Gu, J., et al. 2016. “The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy”, Mater Sci Eng A, vol. 651, pp. 18-26.
  • Hönnige, J.R., Colegrove, P.A., Ganguly, S., et al. 2018. “Control of residual stress and distortion in aluminium wire + arc additive manufacture with rolling”, Addit. Manuf., vol. 22, pp. 775-783.
  • Gu, J., Wang, X., Bai, J., et al. 2018. “Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling”, Mater. Sci. Eng. A, vol. 712, pp. 292-301.
  • Fang, X., et al. 2018. “Microstructure evolution and mechanical behavior of 2219 aluminum alloys additively fabricated by the cold metal transfer process”, Materials, vol. 11, 812.
  • Horgar, A., Fostervoll, H., Nyhus, B., et al. 2018. “Additive manufacturing using WAAM with AA5183 wire”, Journal of Materials Processing Technology, vol. 259, pp. 68-74.
  • Çam, G., Ventzke, V., J.F. dos Santos, et al. 1999. “Characterisation of electron beam welded aluminium alloys”, Sci. Technol. Weld. Join., vol. 4 (5), pp. 317-323. doi: 10.1179/136217199101537941
  • Çam, G., Koçak, M. 2007. “Microstructural and mechanical characterization of electron beam welded Al-alloy 7020”, J. Mater. Sci., vol. 42 (17), pp. 7154-7161. doi: 10.1007/s10853-007-1604-z
  • Çam, G., Ventzke, V., dos Santos, J.F., et al. 1999. “Characterization of laser and electron beam welded Al-alloys”, Prakt. Metallogr., vol. 36 (2), pp. 59-89.
  • Pakdil, M., Çam, G., Koçak, M., Erim, S. 2011. “Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy”, Mater. Sci. Eng. A, vol. 528 (24), pp. 7350-7356. doi: 10.1016/j.msea.2011.06.010
  • İpekoğlu, G., Çam, G. 2019. “Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance”, IOP Conf. Series: Materials Science and Engineering, vol. 629, 012007. doi: 10.1088/1757-899X/629/1/012007
  • Serindağ, H.T., Çam, G. 2020. “CMT ve darbeli CMT ark kaynaklı AA7075-T6 Al-alaşımı alın bağlantıların mekanik davranışına kaynak hatalarının etkisinin araştırılması”, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, Cilt 7, 100. Yıl Özel Sayısı, S. 248-262. doi: 10.35193/bseufbd.654456
  • Heidarzadeh, A., Mironov, S., Kaibyshev, R., Çam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field D.P., Robson J.D., Deschamps A., Withers P.J. 2021. “Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution”, Progress in Materials Science, vol. 117, 100752. https://doi.org/10.1016/j.pmatsci.2020.100752
  • Kashaev, N., Ventzke, V., Çam, G. 2018. “Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications”, J Manuf Process, vol. 36, pp. 571-600. doi: 10.1016/ j.jmapro.2018.10.005
  • Çam, G., İpekoğlu, G. 2017. “Recent developments in joining of aluminium alloys”, Int. J. Adv. Manuf. Technol., vol. 91 (5-8), pp. 1851-1866. doi: 10.1007/s00170-016-9861-0
  • Çam, G. 2011. “Friction stir welded structural materials: Beyond Al-alloys”, Int. Mater. Rev., vol. 56 (1), pp. 1-48. doi: 10.1179/095066010X12777205875750
  • Çam, G. 2005. “Sürtünme karıştırma kaynağı (SKK) - Al-alaşımları için geliştirilmiş yeni bir kaynak teknolojisi”, Mühendis ve Makina, Cilt 46 (541), S. 30-39.
  • Von Strombeck, A., Çam, G., Dos Santos, J.F., Ventzke, V., Koçak, M. 2001. “A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys”, In Proc. of the TMS 2001 Annual Meeting Aluminum, Automotive and Joining (New Orleans, Louisiana, USA, February 12-14, 2001), eds: S.K. Das, J.G. Kaufman, and T.J. Lienert, pub.: TMS, Warrendale, PA, USA, pp. 249-264.
  • Çam, G., İpekoğlu, G., Tarık Serindağ, H. 2014. “Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints”, Sci. Technol. Weld. Join., vol. 19 (8), pp. 715-720. doi: 10.1179/1362171814Y.0000000247
  • İpekoğlu, G., Gören Kıral, B., Erim, S., Çam, G. 2012. “Investigation of the effect of temper condition friction stir weldability of AA7075 Al-alloy plates”, Mater. Tehnol., vol. 46 (6), pp. 627-632. doi: 669.715:621.791:620.17
  • İpekoğlu, G., Erim, S., Gören Kıral, B., Çam, G. 2013. “Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates”, Kovove Mater., vol. 51 (3), pp. 155-163. doi: 10.4149/km-2013-3-155
  • Çam G., Javaheri V., and Heidarzadeh A. 2022. “Advances in FSW and FSSW of Dissimilar Al-Alloy Plates”, Journal of Adhesion Science and Technology, doi: https://doi.org/10.1080/01694243.2022.2028073
  • İpekoğlu, G., Çam, G. 2014. “Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys”, Metall. Mater. Trans. A, vol. 45A (7), pp. 3074-3087. doi: 10.1007/s11661-014-2248-7
  • İpekoğlu, G., Erim, S., Çam, G. 2014. “Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions”, Metall. Mater. Trans. A, vol. 45A (2), pp. 864-877. doi: 10.1007/s11661-013-2026-y
  • İpekoğlu, G., Erim, S., Çam, G. 2014. “Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates”, Int. J. Adv. Manuf. Technol., vol. 70 (1), pp. 201-213. doi: 10.1007/s00170-013-5255-8
  • İpekoglu, G., Akçam, Ö., Çam, G. 2018. “Farklı kalınlıktaki AA6061-T6 levhaların sürtünme karıştırma kaynağı için uygun kaynak parametrelerinin belirlenmesi”, Afyon Kocatepe Üniv. Fen ve Müh. Bil. Dergisi (AKÜ FEMÜBİD), Cilt 18 (1), 015901, S. 324-335. doi: 10.5578/fmbd.66765
  • İpekoglu, G., Çam, G. 2012. “Farklı Al-alaşımı levhaların (AA6061/AA7075) sürtünme karıştırma kaynağına temper durumunun etkisi”, Mühendis ve Makina, Cilt 53 (629), S. 40-47.
  • Agrawal, B.K. 2007. ‘Introduction to engineering materials’, Tata McGraw-Hill, New Delhi, India.
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G. 2019. “Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel”, IOP Conf. Series: Mater Sci and Eng, vol. 629, 012010. doi: 10.1088/1757-899X/629/1/012010
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., Sekban, D.M., Çam, G. 2019. “Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints”, Materials Research Express, vol. 6 (4), 046537. doi: 10.1088/2053-1591/aafb9f
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G. 2018. “Mechanical properties of friction stir welded St 37 and St 44 steel joints”, Materials Testing, vol. 60 (12), pp. 1163-1170. doi: 10.3139/120.111266
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G. 2018. “Microstructure and mechanical properties of friction stir welded St52 steel joints”, Int. J. of Minerals, Metallurgy and Materials, vol. 25 (12), pp. 1457-1464. doi: 10.1007/s12613-018-1700-x
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., Sekban, D.M., Çam, G. 2018. “Sürtünme karıştırma kaynağıyla birleştirilen St37/St52 levhaların mikroyapı karakterizasyonu ve mekanik özellikleri”, Fen ve Müh. Dergisi, Dokuz Eylül Üniv., Müh. Fak., Cilt. 20 (59), S. 471-480. doi: 10.21205/deufmd. 2018205937
  • Haden, C.V., Zeng, G., Carter III, F.M., et al. 2017. “Wire and arc additive manufactured steel: Tensile and wear properties”, Addit. Manuf., vol. 16, pp. 115-123.
  • Yilmaz, O., Ugla, A.A. 2017. “Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: Shaped metal deposition using pulsed current arc”, Int. J. Adv. Manuf. Technol., vol. 89, pp. 13-25.
  • Queguineur, A., Rückert, G., Cortial, F., et al. 2018. “Evaluation of wire arc additive manufacturing for large-sized components in naval applications”, Weld. World., vol. 62, pp. 259-266.
  • Wang, L., Xue, J., Wang, Q. 2019. “Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel”, Mater. Sci. Eng. A, vol. 751, pp. 183-190.
  • Chen, X., et al. 2017. “Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing”, Mater Sci Eng A, vol. 703, pp. 567-577.
  • Posch, G., Chladil, K., Chladil, H. 2017. “Material properties of CMT-metal additive manufactured duplex stainless steel blade-like geometries”, Welding in the World, vol. 61,pp. 873-882.
  • Ge., J., Lin, J., Lei, Y., Fu, H. 2018. “Location-related thermal history, microstructure, and mechanical properties of arc additively manufactured 2Cr13 steel using cold metal transfer welding”, Mater Sci Eng A, vol. 715, pp. 144-153.
  • Ge., J., Lin, J., Lei, Y., Fu, H. 2018. “Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties”, Journal Alloys and Compounds, vol. 748, pp. 911-921.
  • Hoefer, K., Haelsig, A., Mayr, P. 2018.“Arc-based additive manufacturing of steel components-Comparison of wire- and powder-based variants”, Welding in the World, vol. 62, pp. 243-247.
  • Çam, G., Koçak, M. 1998. “Progress in joining of advanced materials - Part II: Joining of metal matrix composites and joining of other advanced materials”, Sci. Technol. Weld. Join., vol. 3 (4), pp. 159-175. DOI: 10.1179/stw.1998.3.4.159
  • Çam, G., Koçak, M. 1998. “Progress in joining of advanced materials”, Int. Mater. Rev., vol. 43 (1), pp. 1-44. DOI: 10.1179/imr.1998.43.1.1
  • Wang, J.F., Sun, Q.J., Wang, H., Liu, J.P., Feng, J.C. 2016. “Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding”, Mater. Sci. Eng. A, vol. 676, pp. 395-405.
  • Juric, I., et al. 2019. “Influence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured Inconel 625”, JOM, vol. 71 (2), pp. 703-708.
  • Xu, X., Ganguly, S., Ding, J., Seow, C.E., Williams, S. 2018. “Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing”, Mater. Des., vol. 160, pp. 1042-1051.
  • Xu, X., Ding, J., Ganguly, S., Williams, S. 2018. “Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process”, J. Mater. Process. Technol., vol. 265, pp. 201-209.
  • Baufeld, B. 2012. “Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD) ”, JMEP, vol. 21 (7), pp. 1416-1421.
  • Xu, F.J., Lv, Y.H., Liu, Y.X., et al. 2013. “Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process”, J Mater Sci Technol, vol. 29, pp. 480-488.
  • Xu, F.J., Lv, Y.H., Liu, Y.X., et al. 2013. “Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition”, Mater Des, vol. 45, pp. 446-455.
  • Wang, J.F., Sun, Q.J., Wang, H., et al. 2016. “Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding”, Mater Sci Eng A, vol. 676, pp. 395-405.
  • Guo, J., Zhou, Y., Liu, C., et al. 2016. “Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency”, Materials; vol. 9, 823.
  • Han, S., Zielewski, M., Holguin, D.M., et al. 2018. “Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing”, Appl. Sci., vol. 8 (8), 1306.
  • Ding, D., Pan, Z., van Duin, S., Li, H., Shen, C. 2016. “Fabricating superior NiAl bronze components through wire arc additive manufacturing”, Materials, vol. 9, 652.
  • Shen, C., Pan, Z., Ding, D., et al. 2018. “The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process”, Addit. Manuf., vol. 23, pp. 411-421.
  • Shen, C., Pan, Z., Ma, Y., Cuiuri, D., Li, H. 2015. “Fabrication of iron-rich Fe-Al intermetallics using the wire-arc additive manufacturing process”, Addit Manuf, vol. 7, pp. 20-26.
  • Shen, C., Pan, Z., Cuiuri, D., Dong, B., Li, H. 2016. “In-depth study of the mechanical properties for Fe3Al based iron aluminide fabricated using the wire-arc additive manufacturing process”, Mater Sci Eng A, vol. 669, pp. 118-126.
  • Ma, Y., Cuiuri, D., Hoye, N., et al. 2014. “Characterization of in-situ alloyed and additively manufactured titanium aluminides”, Metall. Mater. Trans. B, vol. 45, pp. 2299-2303.
  • Ma, Y., et al. 2015. “Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding”, Addit Manuf, 2015; 8: 71-77.
  • Ma, Y., Cuiuri, D., Hoye, N., Li, H., Pan, Z. 2015. “The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding”, Mater. Sci. Eng. A, vol. 631, pp. 230-240.
  • Ma, Y., et al. 2016. “The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process”, Mater Sci Eng A, vol. 657, pp. 86-95.
  • Abe, T., Sasahara, H. 2016. “Dissimilar metal deposition with a stainless steel and nickel based alloy using wire and arc-based additive manufacturing”, Precis Eng, vol. 45, pp. 387-395. 148. Liu, L., et al. 2013. “Additive manufacturing of steel-bronze bimetal by shaped metal deposition: interface characteristics and tensile properties”, Int J Adv Manuf Technol, vol. 69, pp. 2131-2137.
  • Tammas-Williams, S., Todd, I. 2017. “Design for additive manufacturing with site-specific properties in metals and alloys”, Scr. Mater., vol. 135, pp. 105-110.
  • Oliveira, J.P., Cavaleiro, A.J., Schell, N., et al. 2018. “Effects of laser processing on the transformation characteristics of NiTi: A contribute to additive manufacturing”, Scr. Mater., vol. 152, pp. 122-126.
  • Qi, Z., Cong, B., Qi, B., et al. 2018. “Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys”, J. Mater. Process. Tech., vol. 255, pp. 347-353.
  • Wu, B., et al. 2017. “Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V”, J Mater Process Technol, vol. 250, pp. 304-312.
  • Masubuchi, K. 2013. “Analysis of welded structures: residual stresses, distortion, and their consequences”, Elsevier, Amsterdam.
  • Sames, W.J., List, F., Pannala, S., Dehoff, R.R., Babu, S.S. 2016. “The metallurgy and processing science of metal additive manufacturing”, Int Mater Rev, vol. 61, pp. 315-360.
  • Wang, H., Kovacevic, R. 2011. “Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy”, Proc Instn Mech Engrs, vol. 215, Part B, pp. 1519-1527.
  • Mukherjee, T., Zhang, W., DebRoy, T. 2017. “An improved prediction of residual stresses and distortion in additive manufacturing”, Comput Mater Sci, vol. 126, pp. 360-372.
  • Edwards, P., O’Conner, A., Ramulu, M. 2013. “Electron beam additive manufacturing of titanium components: properties and performance”, J Manuf Sci Eng, vol. 135, 061016.
  • Busachi, A., Erkoyuncu, J., Colegrove, P.A., Martina, F., Ding, J. 2015. “Designing a WAAM based manufacturing system for defence applications”, Procedia Cirp, vol. 37, pp. 48-53.
  • Sames, W.J., Medina, F., Peter, W.H., Babu, S.S., Dehoff, R.R. 2014. “Effect of process control andpowder quality on inconel 718 produced using electron beam melting”, 8th International Symposium on Superalloy 718 and Derivatives. John Wiley & Sons, Inc., pp. 409-423.
  • Devletian, J.H., Wood, W.E. 1983. “Factors affecting porosity in aluminum welds - a review”, Welding Research Council.
  • Bai, J., Ding, H., Gu, J., Wang, X., Qiu, H. 2107. “Porosity evolution in additively manufactured aluminium alloy during high temperature exposure”, IOP Conference Series: Materials Science and Engineering, vol. 167, 012045.
  • Colegrove, P.A., Donoghue, J., Martina, F., Gu, J., Prangnell, P., Hönnige, J. 2017. “Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components”, Scr. Mater., vol. 135, pp. 111-118.
  • Xie, Y., Zhang, H., Zhou, F. 2016. “Improvement in geometrical accuracy and mechanical property for arc-based additive manufacturing using metamorphic rolling mechanism”, J. Manuf. Sci. Eng., vol. 138, 111002.
  • Sames, W.J., et al. 2016. “The metallurgy and processing science of metal additive manufacturing”, Int Mater Rev, vol. 61, pp. 315-360.
  • Tian, Y., Ouyang, B., Gontcharov, A., et al. 2017. “Microstructure evolution of Inconel 625 with 0.4 wt% boron modification during gas tungsten arc deposition”, J Alloys Compd, vol. 694, pp. 429-438.
Toplam 162 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme
Yazarlar

Serkan Güler 0000-0002-1552-3432

Hüseyin Tarık Serindağ 0000-0003-3864-8147

Gürel Çam 0000-0003-0222-9274

Yayımlanma Tarihi 10 Aralık 2021
Gönderilme Tarihi 15 Eylül 2021
Kabul Tarihi 18 Ekim 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Güler, S., Serindağ, H. T., & Çam, G. (2021). Tel Ark Eklemeli İmalat: Son Gelişmeler ve Değerlendirmeler**. Mühendis Ve Makina, 63(706), 82-116. https://doi.org/10.46399/muhendismakina.995979

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520