Derleme
BibTex RIS Kaynak Göster

Carbon Based Material Reinforced Titanium Composites and New Trends on Graphene

Yıl 2019, Cilt: 60 Sayı: 695, 101 - 118, 12.06.2019

Öz

In this review, the studies on titanium matrix composites reinforced with carbon black, graphite, carbon nanotube and graphene are summarized. Especially, the importance of graphene reinforcement has been emphasized, and new trends for titanium composites will be addressed in the future. Furthermore, the effects of the reinforcements on the composite mechanics are explained by strengthening mechanisms. Graphene is one of the carbon-based materials which has one atomic thickness. It was first synthesized in 2004 and started to be used in metal matrix composite fabrication from 2008. Graphene is also preferred in the production of titanium matrix composite in recent years. When graphene is compared with other carbon based reinforcing materials, titanium composites with graphene addition have high hardness, high corrosion resistance, greater yield and tensile strength. In the literature, the effect of the amount of graphene, sintering temperature and time, processes of powder metallurgy method and secondary processes on the mechanical properties of the titanium composites have not been sufficiently revealed.  Therefore, the use of graphene in titanium based materials will continue to be used in the near future. Because of these considerations, new generation titanium composites, especially with graphene additives, will be used in implant, automotive, defense industry, aerospace and space applications in the near future due to their lightness, high strength, high wear and corrosion resistance.

Kaynakça

  • Korçak M. 2005. “Seramik Takviyeli Çinko Metal Matrisli Kompozit Malzeme Üretimi ve Karakterizasyonu,” Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Ürkmez, N. 2004. “AlMg3/SiCp Kompozitlerinin Üretimi ve Mekanik Özelliklerdeki Değişimlerin İncelenmesi,” Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Kurt, H. 2010. “Alüminyum-Alümina Kompozit Malzeme Üretiminde Karıştırma Tekniğinin Kompozitin Aşınma Davranışı Üzerine Etkilerinin Araştırılması,” Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Eskizeybek, Z. 2006. “Paslanmaz Çelik Elyaf Takviyeli Alüminyum Kompozitlerde Yorulma Çatlak İlerlemesi,” Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Zhai, W., Shi, X., Wang, M., Xu, Z., Yao, J., Song, S., Wang, Y. 2014. “Grain Refinement: A Mechanism for Graphene Nanoplatelets to Reduce Friction and Wear of Ni3Al Matrix Self-Lubricating Composites,” Wear, vol. 310, p. 33-40.
  • Zhai, W., Shi, X., Yao, J., İbrahim, A. M. M., Xu, Z., Zhu, Q., Xiao, Y., Chen, L., Zhang, Q. 2015. “Investigation of Mechanical and Tribological Behaviors of Multilayer Graphene Reinforced Ni3Al Matrix Composites,” Composites: Part B, vol.70, p. 149-155.
  • Lutjerıng, G., Williams, J. C. 2007. Titanium, Engineering Materials and Processes, Springer.
  • Karaduman, B., Meydanoğlu, O., Kayalı, E. S., Çimenoğlu, H. 2009. “Production of Titanium Carbide Reinforced Titanium Matrix Composites via Conventional Powder Metallurgy Method,” 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye.
  • Kotan, G. 2006. “Production and Characterization of Porous Titanium and Ti-6Al-4V Alloy,” Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Ankara.
  • ASM Metals Handbook, (8th ed.), Atlas of Microstructures of Industrial Alloy, Microstructure of Titanium and Titanium Alloys, 321.
  • Barıl, E., Lefebvre, L. P., Thomas Y. 2010. “Interstitials Sources and Control in Titanium P/M Processes,” European Powder Metalurgy Association Powder Metallurgy Congress.
  • Şenel, M., Gürbüz, M., Koç, E. 2015. “Grafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler,” Mühendis ve Makina, 669, 36-47.
  • Ersoy, M. 2005. “Lif Takviyeli Polimerik Kompozit Malzeme Tasarımı,” Yüksek Lisans Tezi, Sütçü İmam Üniversitesi, Kahramanmaraş.
  • Brian James, W. ASM Handbook, Powder Metallurgy, Powder Metallurgy Methods and Applications, 7, p. 9-19.
  • Tunçer, N. 2011. “Gözenekli Titanyumda Yapı-Özellik İlişkisi,” Doktora Tezi, Anadolu Üniversitesi, Eskişehir.
  • AMES Sintered Components Manufacturer, https://www.ames-sintering.com/basic-manufacturing-process, son erişim tarihi: 16.11.2017.
  • Dasari, B. L, Morshed, M., Nouri, J. M., Brabazon, D., Naher, S. 2018. “Mechanical Properties of Graphene Oxide Reinforced Aluminium Matrix Composites,” Composites Part B: Engineering, 145, p. 136-144.
  • Yang, W., Zhao, Q., Xin, L., Qiao, J., Zou, J., Shao, P., Wu, G. 2018. “Microstructure and Mechanical Properties of Graphene Nanoplates Reinforced Pure Al Matrix Composites Prepared by Pressure Infiltration Method,” Journal of Alloys and Compounds, 732, p. 748-758.
  • Gürbüz, M,. Can Şenel, M., Koç, E. 2017. “The Effect of Sintering Time, Temperature, and Graphene Addition on the Hardness and Microstructure of Aluminum Composites,” Journal of Composite Materials, 52(4) 431–447.
  • Rashad, M., Pan, F., Tang, A., Lu, Y., Asif, M., Hussain, S., Mao, J. 2013. “Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys,” Journal of Magnesium and Alloys, 1(3): p. 242-248.
  • Rashad, M., Pan, F., Hu, H., Asif, M., Hussain, S., She, J. 2015. “Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets,” Materials Science and Engineering: A, 630: p. 36-44
  • Pan, F., Asif, Mb, Tang, A. 2014. “Powder Metallurgy of Mg–1% Al–1% Sn Rashad Alloy Reinforced with Low Content of Graphene Nanoplatelets (GNPs),” Journal of Industrial and Engineering Chemistry, 20(6): p. 4250-4255
  • Turan, M. E, Sun, Y., Akgul, Y., Turen, Y., Ahlatci, H. 2017. “The Effect of GNPs on Wear and Corrosion Behaviors of Pure Magnesium,” Journal of Alloys and Compounds, 724, p. 14-23.
  • Cao, M., Xiong, D. B., Tan, Z., Ji, G., Amin-Ahmadi, B., Guo, Q., Fan, G., Guo, C., Li, Z., Zhang, D. 2017. “Aligning Graphene in Bulk Copper: Nacre-inspired Nanolaminated Architecture Coupled with in-situ Processing for Enhanced Mechanical Properties and High Electrical Conductivity,” Carbon, 117, p. 65-74.
  • Jiang, R., Zhou, X., Fang, Q., Liu, Z. 2016. “Copper–Graphene Bulk Composites with Homogeneous Graphene Dispersion and Enhanced Mechanical Properties,” Materials Science & Engineering A 654, p. 124–130.
  • Gao, X., Yue, H., Guo, E., Zhang, H., Wang, B. 2016. “Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites,” Powder Technology, 301, p. 601-607.
  • Thotsaphon, T., Katsuyoshi, K., Hisashi, I., Junko, U., Bunshi, F. 2008. “Microstructures and Mechanical Properties of Powder Matallurgy Pure Ti Composite Reinforced With Carbon Nanotubes,” Transaction of JWRI, vol. 37, no.1, p. 57-61.
  • Kondoh, K., Threrujırapapong, T., Imai, H., Umeda, J., Fugetsu, B. 2009. “Characteristic of Powder Metallurgy Pure Titanium Matrix Composite Reinforced with Multi-Wall Carbon Nanotubes,” Composites Science and Technology, 69, p. 1077-1081.
  • Threrujirapapong, T., Kondoh, K., Imai, H., Umeda, J., Fugetsu, B. 2009. “Mechanical Properties of a Titanium Matrix Composite Reinforced with Low Cost Carbon Black via Powder Metallurgy Processing,” Materials Transactions, 50, 12, p. 2757-2762.
  • Li, S., Sun, B., Imai, H., Mimoto, T., Kondoh, K. 2013. “Powder Metallurgy Titanium Metal Matrix Composites Reinforced with Carbon Nanotubes and Graphite,” Composites: Part A, 48, p. 57–66.
  • Wang, F. C., Zhang, Z. H., Sun, Y. J., Hu, Z. Y., Wang, H., Korznikova, E., Liu, Z. F. 2015. “Rapid and Low Temperature Spark Plasma Sintering Synthesis of Novel Carbon Nanotube Reinforced Titanium Matrix Composites,” Carbon, 95, 396-407.
  • Mu, X. N., Zhang, H. M., Cai, H. N., Fan, Q. B., Zhang, Z. H., Wu, Y., Fu, Z. J., Yu, D. H., 2017. “Microstructure Evolution and Superior Tensile Properties of Low Content Graphene Nanoplatelets Reinforced Pure Ti Matrix Composites,” Materials Science& Engineering A, 697, 164-174.
  • Zhen, C., Wang ,X., Li, J., Wu, Y., Zhang, H., Guo, J., Wang, S., 2017. “Reinforcement with Graphene Nanoflakes in Titanium Matrix Composites,” Journal of Alloys and Compounds, 696, 498-502.
  • Munir, K. S., Li, Y., Liang, D., Qian, M., Xu, W., Wen, C., 2015. “Effect of Dispersion Method on The Deterioration, Interfacial Interactions and Reagglomeration of Carbon Nanotubes in Titanium Metal Matrix Composites,” Materials & Design, 88, 138–148.
  • Brush Wellman Inc., 2010. Technical Tidbits, Grain Size and Material Strength, Issue No. 15.
  • Rashad, M., Pan, F., Tang, A., Lu, Y., Asif, M., Hussain S., She, J., Gou, J., Mao, J. 2013. “Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys,” Journal of Magnesium and Alloys, 242-248.
  • Hu, Z., Tong, G., Nian, Q., Xu, R., Saei, M., Chen. F., Chen, C., Zhang, M., Guo, H., Xu, J. 2016. “Laser Sintered Single Layer Graphene Oxide Reinforced Titanium Matrix Nanocomposites,” Composites Part B, 93, p. 352-359.
  • Mu, X. N., Zhang, H. M., Cai, H. N., Fan, Q. B., Wu, Y., Fu, Z. J., Wang, Q. X. 2017. “Hot Pressing Titanium Metal Matrix Composites Reinforced with Graphene Nanoplatelets Through an In-Situ Reactive Method,” AIP Conference Proceedings, 1846 (1).
  • Song, Y., Chen Y., Liu, W., Li, W. L., Wang, Y. G., Zhao, D., Liu, X., Song, Y., Chen, Y. 2016. “Microscopic Mechanical Properties of Titanium Composites Containing Multi-Layer Graphene Nanofillers,” Materials and Design, 109, p. 256–263.
  • Gürbüz, M., Mutuk, T. 2018. “Effect of Process Parameters on Hardness and Microstructure of Graphene Reinforced Titanium Composites,” Journal of Composite Materials, 52(4), p. 543-551.
  • Cui, S., Cui, C., Xie, J., Liu, S., Shi J. 2018. “Carbon Fibers Coated with Graphene Reinforced TiAl Alloy Composite with High Strength and Toughness,” Scientific Reports, 8, no. 2364, p. 1-8.
  • Liu, J., Wu, M., Yang, Y., Yang, G., Yan, H., Jiang, K. (Baskıda) 2018. “Preparation and Mechanical Performance of Graphene Platelet Reinforced Titanium Nanocomposites for High Temperature Applications,” Journal of Alloys and Compounds, 10.1016/j.jallcom.2018.06.148.
  • Liu, Y., Huang, J., Li, H. 2013. “Synthesis of Hydroxyapatite–Reduced Graphite Oxide Nanocomposites for Biomedical Applications: Oriented Nucleation and Epitaxial Growth of Hydroxyapatite,” Journal of Materials Chemistry B, p. 1826-1834.

Karbon Esaslı Malzeme Takviyeli Titanyum Kompozitler ve Grafen Üzerine Yeni Eğilimler

Yıl 2019, Cilt: 60 Sayı: 695, 101 - 118, 12.06.2019

Öz

Bu derlemede karbon siyahı, grafit, karbon nanotüp ve grafen takviyeli titanyum matrisli kompozit üretimi üzerine yapılan çalışmalar özetlenmiştir. Özellikle grafen takviyesinin önemi vurgulanmış ve gelecekte titanyum kompozitler için yeni eğilimlerin ne olacağı ortaya konulmuştur. Ayrıca, yapılan takviyelerin kompozit mekaniği üzerine olan etkileri mukavemet artırıcı mekanizmalarla açıklanmıştır. Karbon esaslı malzemelerden biri olan grafen bir atom kalınlığında olup, ilk kez 2004 yılında sentezlenmiş ve 2008 yılından itibaren metal matrisli kompozit üretiminde kullanılmaya başlanmıştır. Son yıllarda titanyum matrisli kompozit üretiminde de tercih edilmektedir. Grafen ve diğer karbon esaslı takviye malzemeleri kıyaslandığında, grafen takviyesi ile daha yüksek sertlik, akma ve çekme dayanımı elde edilmiştir. Literatürde grafen miktarının, sinterleme sıcaklığı ve zamanının, toz metalürjisi süreçlerinin ve ikincil işlemlerin kompozitin mekanik özelliklerine etkisi yeterince ortaya konulmamıştır. Bu durum titanyum esaslı malzemelerde grafen kullanımına yakın gelecekte de devam edileceğini göstermektedir. Bu nedenlerle, özellikle grafen takviyeli yeni nesil titanyum kompozitler sahip olduğu hafiflik, yüksek mukavemet, yüksek aşınma ve korozyon daynımından dolayı yakın gelecekte implant, otomotiv, savunma sanayi, havacılık  ve uzay uygulamalarında kullanım alanı bulacaktır. 


Kaynakça

  • Korçak M. 2005. “Seramik Takviyeli Çinko Metal Matrisli Kompozit Malzeme Üretimi ve Karakterizasyonu,” Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Ürkmez, N. 2004. “AlMg3/SiCp Kompozitlerinin Üretimi ve Mekanik Özelliklerdeki Değişimlerin İncelenmesi,” Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Kurt, H. 2010. “Alüminyum-Alümina Kompozit Malzeme Üretiminde Karıştırma Tekniğinin Kompozitin Aşınma Davranışı Üzerine Etkilerinin Araştırılması,” Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Eskizeybek, Z. 2006. “Paslanmaz Çelik Elyaf Takviyeli Alüminyum Kompozitlerde Yorulma Çatlak İlerlemesi,” Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Zhai, W., Shi, X., Wang, M., Xu, Z., Yao, J., Song, S., Wang, Y. 2014. “Grain Refinement: A Mechanism for Graphene Nanoplatelets to Reduce Friction and Wear of Ni3Al Matrix Self-Lubricating Composites,” Wear, vol. 310, p. 33-40.
  • Zhai, W., Shi, X., Yao, J., İbrahim, A. M. M., Xu, Z., Zhu, Q., Xiao, Y., Chen, L., Zhang, Q. 2015. “Investigation of Mechanical and Tribological Behaviors of Multilayer Graphene Reinforced Ni3Al Matrix Composites,” Composites: Part B, vol.70, p. 149-155.
  • Lutjerıng, G., Williams, J. C. 2007. Titanium, Engineering Materials and Processes, Springer.
  • Karaduman, B., Meydanoğlu, O., Kayalı, E. S., Çimenoğlu, H. 2009. “Production of Titanium Carbide Reinforced Titanium Matrix Composites via Conventional Powder Metallurgy Method,” 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye.
  • Kotan, G. 2006. “Production and Characterization of Porous Titanium and Ti-6Al-4V Alloy,” Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Ankara.
  • ASM Metals Handbook, (8th ed.), Atlas of Microstructures of Industrial Alloy, Microstructure of Titanium and Titanium Alloys, 321.
  • Barıl, E., Lefebvre, L. P., Thomas Y. 2010. “Interstitials Sources and Control in Titanium P/M Processes,” European Powder Metalurgy Association Powder Metallurgy Congress.
  • Şenel, M., Gürbüz, M., Koç, E. 2015. “Grafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler,” Mühendis ve Makina, 669, 36-47.
  • Ersoy, M. 2005. “Lif Takviyeli Polimerik Kompozit Malzeme Tasarımı,” Yüksek Lisans Tezi, Sütçü İmam Üniversitesi, Kahramanmaraş.
  • Brian James, W. ASM Handbook, Powder Metallurgy, Powder Metallurgy Methods and Applications, 7, p. 9-19.
  • Tunçer, N. 2011. “Gözenekli Titanyumda Yapı-Özellik İlişkisi,” Doktora Tezi, Anadolu Üniversitesi, Eskişehir.
  • AMES Sintered Components Manufacturer, https://www.ames-sintering.com/basic-manufacturing-process, son erişim tarihi: 16.11.2017.
  • Dasari, B. L, Morshed, M., Nouri, J. M., Brabazon, D., Naher, S. 2018. “Mechanical Properties of Graphene Oxide Reinforced Aluminium Matrix Composites,” Composites Part B: Engineering, 145, p. 136-144.
  • Yang, W., Zhao, Q., Xin, L., Qiao, J., Zou, J., Shao, P., Wu, G. 2018. “Microstructure and Mechanical Properties of Graphene Nanoplates Reinforced Pure Al Matrix Composites Prepared by Pressure Infiltration Method,” Journal of Alloys and Compounds, 732, p. 748-758.
  • Gürbüz, M,. Can Şenel, M., Koç, E. 2017. “The Effect of Sintering Time, Temperature, and Graphene Addition on the Hardness and Microstructure of Aluminum Composites,” Journal of Composite Materials, 52(4) 431–447.
  • Rashad, M., Pan, F., Tang, A., Lu, Y., Asif, M., Hussain, S., Mao, J. 2013. “Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys,” Journal of Magnesium and Alloys, 1(3): p. 242-248.
  • Rashad, M., Pan, F., Hu, H., Asif, M., Hussain, S., She, J. 2015. “Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets,” Materials Science and Engineering: A, 630: p. 36-44
  • Pan, F., Asif, Mb, Tang, A. 2014. “Powder Metallurgy of Mg–1% Al–1% Sn Rashad Alloy Reinforced with Low Content of Graphene Nanoplatelets (GNPs),” Journal of Industrial and Engineering Chemistry, 20(6): p. 4250-4255
  • Turan, M. E, Sun, Y., Akgul, Y., Turen, Y., Ahlatci, H. 2017. “The Effect of GNPs on Wear and Corrosion Behaviors of Pure Magnesium,” Journal of Alloys and Compounds, 724, p. 14-23.
  • Cao, M., Xiong, D. B., Tan, Z., Ji, G., Amin-Ahmadi, B., Guo, Q., Fan, G., Guo, C., Li, Z., Zhang, D. 2017. “Aligning Graphene in Bulk Copper: Nacre-inspired Nanolaminated Architecture Coupled with in-situ Processing for Enhanced Mechanical Properties and High Electrical Conductivity,” Carbon, 117, p. 65-74.
  • Jiang, R., Zhou, X., Fang, Q., Liu, Z. 2016. “Copper–Graphene Bulk Composites with Homogeneous Graphene Dispersion and Enhanced Mechanical Properties,” Materials Science & Engineering A 654, p. 124–130.
  • Gao, X., Yue, H., Guo, E., Zhang, H., Wang, B. 2016. “Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites,” Powder Technology, 301, p. 601-607.
  • Thotsaphon, T., Katsuyoshi, K., Hisashi, I., Junko, U., Bunshi, F. 2008. “Microstructures and Mechanical Properties of Powder Matallurgy Pure Ti Composite Reinforced With Carbon Nanotubes,” Transaction of JWRI, vol. 37, no.1, p. 57-61.
  • Kondoh, K., Threrujırapapong, T., Imai, H., Umeda, J., Fugetsu, B. 2009. “Characteristic of Powder Metallurgy Pure Titanium Matrix Composite Reinforced with Multi-Wall Carbon Nanotubes,” Composites Science and Technology, 69, p. 1077-1081.
  • Threrujirapapong, T., Kondoh, K., Imai, H., Umeda, J., Fugetsu, B. 2009. “Mechanical Properties of a Titanium Matrix Composite Reinforced with Low Cost Carbon Black via Powder Metallurgy Processing,” Materials Transactions, 50, 12, p. 2757-2762.
  • Li, S., Sun, B., Imai, H., Mimoto, T., Kondoh, K. 2013. “Powder Metallurgy Titanium Metal Matrix Composites Reinforced with Carbon Nanotubes and Graphite,” Composites: Part A, 48, p. 57–66.
  • Wang, F. C., Zhang, Z. H., Sun, Y. J., Hu, Z. Y., Wang, H., Korznikova, E., Liu, Z. F. 2015. “Rapid and Low Temperature Spark Plasma Sintering Synthesis of Novel Carbon Nanotube Reinforced Titanium Matrix Composites,” Carbon, 95, 396-407.
  • Mu, X. N., Zhang, H. M., Cai, H. N., Fan, Q. B., Zhang, Z. H., Wu, Y., Fu, Z. J., Yu, D. H., 2017. “Microstructure Evolution and Superior Tensile Properties of Low Content Graphene Nanoplatelets Reinforced Pure Ti Matrix Composites,” Materials Science& Engineering A, 697, 164-174.
  • Zhen, C., Wang ,X., Li, J., Wu, Y., Zhang, H., Guo, J., Wang, S., 2017. “Reinforcement with Graphene Nanoflakes in Titanium Matrix Composites,” Journal of Alloys and Compounds, 696, 498-502.
  • Munir, K. S., Li, Y., Liang, D., Qian, M., Xu, W., Wen, C., 2015. “Effect of Dispersion Method on The Deterioration, Interfacial Interactions and Reagglomeration of Carbon Nanotubes in Titanium Metal Matrix Composites,” Materials & Design, 88, 138–148.
  • Brush Wellman Inc., 2010. Technical Tidbits, Grain Size and Material Strength, Issue No. 15.
  • Rashad, M., Pan, F., Tang, A., Lu, Y., Asif, M., Hussain S., She, J., Gou, J., Mao, J. 2013. “Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys,” Journal of Magnesium and Alloys, 242-248.
  • Hu, Z., Tong, G., Nian, Q., Xu, R., Saei, M., Chen. F., Chen, C., Zhang, M., Guo, H., Xu, J. 2016. “Laser Sintered Single Layer Graphene Oxide Reinforced Titanium Matrix Nanocomposites,” Composites Part B, 93, p. 352-359.
  • Mu, X. N., Zhang, H. M., Cai, H. N., Fan, Q. B., Wu, Y., Fu, Z. J., Wang, Q. X. 2017. “Hot Pressing Titanium Metal Matrix Composites Reinforced with Graphene Nanoplatelets Through an In-Situ Reactive Method,” AIP Conference Proceedings, 1846 (1).
  • Song, Y., Chen Y., Liu, W., Li, W. L., Wang, Y. G., Zhao, D., Liu, X., Song, Y., Chen, Y. 2016. “Microscopic Mechanical Properties of Titanium Composites Containing Multi-Layer Graphene Nanofillers,” Materials and Design, 109, p. 256–263.
  • Gürbüz, M., Mutuk, T. 2018. “Effect of Process Parameters on Hardness and Microstructure of Graphene Reinforced Titanium Composites,” Journal of Composite Materials, 52(4), p. 543-551.
  • Cui, S., Cui, C., Xie, J., Liu, S., Shi J. 2018. “Carbon Fibers Coated with Graphene Reinforced TiAl Alloy Composite with High Strength and Toughness,” Scientific Reports, 8, no. 2364, p. 1-8.
  • Liu, J., Wu, M., Yang, Y., Yang, G., Yan, H., Jiang, K. (Baskıda) 2018. “Preparation and Mechanical Performance of Graphene Platelet Reinforced Titanium Nanocomposites for High Temperature Applications,” Journal of Alloys and Compounds, 10.1016/j.jallcom.2018.06.148.
  • Liu, Y., Huang, J., Li, H. 2013. “Synthesis of Hydroxyapatite–Reduced Graphite Oxide Nanocomposites for Biomedical Applications: Oriented Nucleation and Epitaxial Growth of Hydroxyapatite,” Journal of Materials Chemistry B, p. 1826-1834.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm icindekiler-sunuş
Yazarlar

Mevlüt Gürbüz

Tuğba Mutuk

Yayımlanma Tarihi 12 Haziran 2019
Gönderilme Tarihi 20 Kasım 2017
Kabul Tarihi 21 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 60 Sayı: 695

Kaynak Göster

APA Gürbüz, M., & Mutuk, T. (2019). Karbon Esaslı Malzeme Takviyeli Titanyum Kompozitler ve Grafen Üzerine Yeni Eğilimler. Mühendis Ve Makina, 60(695), 101-118.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520