Derleme
BibTex RIS Kaynak Göster

Explosive Compaction of Metal and Ceramic Powders: A Review of the Application of the Technique

Yıl 2019, Cilt: 60 Sayı: 694, 77 - 90, 19.03.2019

Öz

Explosive compaction of metal and ceramic powders is based on the fact of using high shock wave presssure formed in a few microseconds after the explosion of the detonator in the compaction of powders. Explosive compaction technique is the only method, especially for materials like tungsten (W), for improving some physical and mechanical properties. In this study, detail information about explosive compaction method will be given and studies done in literature will be investigated

Kaynakça

  • Tomoshige, R., Goto, T., Matsushita, T., Imamura, K., Chiba, A., Fujita, M. 1999. “High-temperature-shock compaction of ceramics:silicide composites produced by combustion synthesis,” Journal of Materials Processing Technology, vol. 85, p. 100–104.
  • Mamalis, A.G., Vottea, I.N., Manolakos, D.E. 2001. “On the modelling of the compaction mechanism of shock compacted powders,” Journal of Materials Processing Technology, vol. 108, p. 165-178.
  • Hegazy, A.A. 2000. “Bonding and properties of explosively compacted copper powder and polypropylene granules,” Current Advances in Mechanical Design and Production, Seventh Cairo University International MDP Conference, Cairo, February 15-17, p. 415-421.
  • Zohoor, M., Mehdipoor, A. 2009. “Explosive compaction of tungsten powder using a converging underwater shock wave,” Journal of Materials Processing Technology, vol. 209, p. 4201–4206.
  • Zheng, Z., Xiao-jie, L., Gang, T., Chang-xing, D. 2009. “CuCr bulk alloy produced by mechanical alloying and explosive compaction,” Transactions of Nonferrous Metals Society of China, vol. 19, p. 626-629.
  • Gourdin, W.F. 1984. “Energy deposition and microstructural modification in dynamically consolidated metal powders,” Journal of Applied Physics, vol. 55, p. 172.
  • Kasiraj, P., Vreeland, T., Schwarz, R.B., Ahrens, J. 1984. “Shock consolidation of a rapidly solidified steel powder,” Acta Metallurgica, vol. 32, no. 8, p. 1235-1241.
  • Prümmer, R. 1988. “Explosive compaction of metallic glass powders,” Materials Science and Engineering, vol. 98, p. 461-463.
  • Berg, S., Häggblad, H.A., Jonsén, P. 2011. “High-pressure compaction modelling of calcite (CaCO3) powder compact,” Powder Technology, vol. 206, p. 259–268.
  • Häggblad, H.A., Hockauf, M., Eriksson, M., Berggren, C. 2005. “Simulation of high velocity compaction of powder in a rubber mould with characterization of silicone rubber and titanium powder using a modified split Hopkinson set-up,” Powder Technology, vol. 154, p. 33–42.
  • Skoglund P. 2001. “High density P/M components by high velocity compaction,” International conference on power transmission components, Ypsilanti, MI (USA), October 16–17.
  • Cambronero, L.E.G., Gordo, E., Torralba, J.M., Ruiz-Prieto, J.M. 1996. “Comparative study of high speed steels obtained through explosive compaction and hot isostatic pressing,” Materials Science and Engineering A, vol. 207, p. 36-45.
  • Ando, S., Mine, Y., Takashima, K., Itoh, S., Tonda, H. 1999. “Explosive compaction of Nd-Fe-B powder,” Journal of Materials Processing Technology, vol. 85, p. 142–147.
  • Chiba, A., Nishida, M., Yamaguchi, T., Tosaka, J. 1988. “Explosive consolidation of titanium powder with a pressure medium,” Scripta Metallurgica, vol. 22, p. 213-217.
  • Schwarz, R.B., Kasiraj, P., Vreeland, T., Ahrens, J. 1984. “A theory for the shock-wave consolidatıon of powders,” Acta Metallurgica, vol. 32, no. 8, p. 1243-1252.
  • Tomoshige, R., Kakoki, Y., Imamura, K., Chiba, A. 1999. “Effect on addition of titanium diboride to titanium carbide produced by the SHS: shock consolidation method,” Journal of Materials Processing Technology, vol. 85, p. 105–108.
  • Wang, S., Sun, C., Guo, W., Yan, Q., Zhou, Z., Zhang, Y., Shen, W., Ge, C. 2014. “Review on the explosive consolidation methods to fabricate tungsten based PFMs,” Journal of Nuclear Materials, vol. 455, p. 174–179.
  • Li, J. P., Meng, S. H., Han, J. C., Wang, B. L. 2008. “Energy and deformation during explosive compaction of ZrB2-SiC ultrahigh temperature ceramics,” Scholarly Research Exchange, doi:10.3814/2008/754838.
  • Sivakumar, K., Balakrishna Bhat, T., Ramakrishnan, P. 1998. “Effect of process parameters on the densification of 2124 Al–20vol.% SiCp composites fabricated by explosive compaction,” Journal of Materials Processing Technology, vol. 73, p. 268–275.
  • Zheng, Z., Xiao-jie, L., Gang, T. 2009. “Manufacturing nano-alumina particle-reinforced copper alloy by explosive compaction,” Journal of Alloys and Compounds, vol. 478, p. 237–239.
  • Karimi, Y., Mehdipoor, A., Alizadeh, A. 2016. “Consolidation of bulk TiB2 by underwater explosive compaction,” Ceramics International, vol. 42, p. 11543–11547.
  • Kim, Y., Ueda, T., Hokamoto, K., Itoh, S. 2009. “Electric and microstructural characteristics of bulk ZnO fabricated by underwater shock compaction,” Ceramics International, vol. 35, p. 3247–3252.
  • Farinha, A.R., Mendes, R., Baranda, J., Calinas, R., Vieira, M.T. 2009. “Behavior of explosive compacted/consolidated of nanometric copper powders,” Journal of Alloys and Compounds, vol. 483, p. 235–238.
  • Mamalis, A.G., Gioftsidis, G.N. 1990. “A consolidation mechanism for the compaction of copper powder at high pressures,” Journal of Materials Processing Technology, vol. 23, p. 333-345.
  • Godibadze, B. A., Chagelishvili, E. Sh., Peikrishvili, A. B., Tsiklauri, M. V., Dgebaudze, A.A. 2015. “Explosive fabrication of Cu-C and Cu-W materials,” Procedia Earth and Planetary Science, vol. 15, p. 448-453.
  • Zhou, Q., Chen, P. 2015. “Characterization of fine-grained W–10 wt.% Cu composite fabricated by hot-shock consolidation,” International Journal of Refractory Metals and Hard Materials, vol. 52, p. 137-142.
  • Zhou, Q., Chen, P. 2016. “Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders,” Journal of Alloys and Compounds, vol. 657, p. 215-223.
  • Cline, C.F., Hopper, R.W. 1977. “Explosive fabrication of rapidly quenched materials,” Scripta Metallurgica, vol. 11, p. 1137- 1138.
  • Morris, D. G. 1980. “Compaction and mechanical properties of metallic glass,” Materials Science and Technology, vol. 14, no. 6, p. 215-220.
  • Kasiraj, P., Kostka, O., Vreeland, T., Ahrens, J. 1984. “Shock wave consolidation of an amorphous alloy,” Journal of Non-Crystalline Solids, vol. 61-62, p. 967-972.
  • Murr, L.E., Shankar, S., Hare, A.W., Staudhammer, K.P. 1983. “Explosive consolidation of an amorphous iron-base powder,” Scripta Metallurgica, vol. 17, p. 1353-1357.
  • Shao, B., Liu, Z., Zhang, X. 1999. “Explosive consolidation of amorphous cobalt-based alloys,” Journal of Materials Processing Technology, vol. 85, p.121–124.
  • Chiba, A., Hokamoto, K., Sugimoto, S., Kozuka, T., Mori, A., Kakimoto, E. 2007. “Explosive consolidation of Sm–Fe–N and Sm–Fe–N/(Ni, Co) magnetic powders,” Journal of Magnetism and Magnetic Materials, vol. 310, p. 881–883.
  • Emelchenko, G.A., Naumenko, I.G., Veretennikov, V.A., Gordopolov, Y.A. 2009. “Shock consolidation of nanopowdered Ni,” Materials Science and Engineering A, vol. 503, p. 55–57.
  • Hokamoto, K., Fujita, M., Tanaka, S., Kodama, T., Ujimoto, Y. 1998. “High-temperature shock consolidatıon of diamond powders using converging underwater shock wave,” Scripta Metallurgica, vol. 39, no.10, p. 1383–1388.
  • Yücel, O., Tekin, A. 1997. “The fabrication of boron carbide-aluminium composites by explosive consolidation,” Ceramics International, vol. 23, p. 149-152.
  • Szewczak, E., Paszula, J., Leonov, A.V., Matyja, H. 1997. “Explosive consolidation of mechanically alloyed Ti-Al alloys,” Materials Science and Engineering A, vol. 226-228, p. 115-118.
  • Chiba, A., Kimura, S., Raghukandan, K., Morizono, Y. 2003. “Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction,” Materials Science and Engineering A, vol. 350, p. 179-183.
  • Chiba, A., Nishida, M., Imamiira, K., Ogura, H., Morizono, Y. 1996. “Fabrication of ZrO2/Ni and ZrO2/Al2O3 functionally graded materials by explosive powder consolidation technique,” Functionally Graded Materials, p. 191-195.
  • Hokamoto, K., Tanaka, S., Fujita, M. 2000. “Optimization of the experimental conditions for high-temperature shock consolidation,” International Journal of Impact Engineering, vol. 24, p. 631-640.
  • Mamalis, A.G., Gioftsidis, G.N. 1992. “On the extrusion of silver-sheathed superconducting billets fabricated by explosive compaction of YBa2Cu3O7 powder,” Journal of Materials Processing Technology, vol. 30, p. 297-313.
  • Mamalis, A.G., Gioftsidis, G.N., Szalay, A., Boday, O. 1989. “The shock wave compaction of high temperature superconducting powders into cylindrical components,” Annals of the CIRP, vol. 38, no. 1, p. 297-301.
  • Raming, T.P., Zyl, W.E., Carton, E.P., Verweij, H. 2004. “Sintering, sinterforging and explosive compaction to densify the dual phase nanocomposite system Y2O3-doped ZrO2 and RuO2,” Ceramics International, vol. 30, p. 629–634.
  • Kim, Y., Mitsugi, F., Tomoaki, I., Hokamotoa, K., Itoh, S. 2011. “Shock-consolidated TiO2 bulk with pure anatase phases fabricated by explosive compaction using underwater shockwave,” Journal of the European Ceramic Society, vol. 31, p. 1033–1039.
  • Fredenburg, D.A., Thadhani, N.N., Vogler, T.J. 2010. “Shock consolidation of nanocrystalline 6061-T6 aluminum powders,” Materials Science and Engineering A, vol. 527, p. 3349–3357.
  • Alba-Baena, N.G., Salas, W., Murr, L.E. 2008. “Characterization of micro and nano two-phase regimes created by explosive shock-wave consolidation of powder mixtures,” Materials Characterization, vol. 59, p. 1152-1160.
  • Nieh, T.G., Luo, P., Nellis, W., Lesuer, D., Benson, D. 1996. “Dynamic compaction of aluminum nanocrystals,” Acta Materialia, vol. 44, p. 3781–3788.
  • Wang, B., Xie, F., Li, Z., Zhang, H. 2016. “Explosive compaction of Al2O3 nano powders,” Ceramics International, vol. 42, p. 8460–8466.
  • Yu, L.H., Meyers, M.A., Peng, T.C. 1991. “Shock consolidation of A1-Li alloy powders,” Materials Science and Engineering A, vol. 132, p. 257-265.
  • Zhang, L., Elwazri, A.M., Zimmerly, T., Brochu, M. 2008. “Fabrication of bulk nanostructured silver material from nanopowders using shockwave consolidation technique,” Materials Science and Engineering A, vol. 487, p. 219–227.
  • Khan, D. F., Yin, H., Li, H., Asadullah, Z. A., Qu, X., Ellahi, M. 2014. “Effect of impact force on Ti–10Mo alloy powder compaction by high velocity compaction technique,” Materials and Design, vol. 54, p. 149-153.

Metal ve Seramik Tozlarının Patlayıcı Yardımıyla Sıkıştırılması: Tekniğin Uygulamalarına Genel Bir Bakış

Yıl 2019, Cilt: 60 Sayı: 694, 77 - 90, 19.03.2019

Öz

Metal ve seramik tozlarının patlayıcı yardımıyla sıkıştırılması tekniği, patlayıcının patlatılması neticesinde, birkaç mikrosaniye içinde oluşan yüksek şok dalgası basıncının, tozların sıkıştırılmasında kullanılması esasına dayanır. Patlayıcı yardımıyla sıkıştırma tekniği, özellikle tungsten (W) gibi malzemeler için, bazı fiziksel ve mekanik özelliklerin iyileştirilmesinde kullanılabilecek tek yöntemdir. Bu çalışmada, patlayıcı yardımıyla sıkıştırma yöntemi hakkında detaylı bilgiler verilecek olup, literatürde yapılan çalışmalar incelenecektir.

Kaynakça

  • Tomoshige, R., Goto, T., Matsushita, T., Imamura, K., Chiba, A., Fujita, M. 1999. “High-temperature-shock compaction of ceramics:silicide composites produced by combustion synthesis,” Journal of Materials Processing Technology, vol. 85, p. 100–104.
  • Mamalis, A.G., Vottea, I.N., Manolakos, D.E. 2001. “On the modelling of the compaction mechanism of shock compacted powders,” Journal of Materials Processing Technology, vol. 108, p. 165-178.
  • Hegazy, A.A. 2000. “Bonding and properties of explosively compacted copper powder and polypropylene granules,” Current Advances in Mechanical Design and Production, Seventh Cairo University International MDP Conference, Cairo, February 15-17, p. 415-421.
  • Zohoor, M., Mehdipoor, A. 2009. “Explosive compaction of tungsten powder using a converging underwater shock wave,” Journal of Materials Processing Technology, vol. 209, p. 4201–4206.
  • Zheng, Z., Xiao-jie, L., Gang, T., Chang-xing, D. 2009. “CuCr bulk alloy produced by mechanical alloying and explosive compaction,” Transactions of Nonferrous Metals Society of China, vol. 19, p. 626-629.
  • Gourdin, W.F. 1984. “Energy deposition and microstructural modification in dynamically consolidated metal powders,” Journal of Applied Physics, vol. 55, p. 172.
  • Kasiraj, P., Vreeland, T., Schwarz, R.B., Ahrens, J. 1984. “Shock consolidation of a rapidly solidified steel powder,” Acta Metallurgica, vol. 32, no. 8, p. 1235-1241.
  • Prümmer, R. 1988. “Explosive compaction of metallic glass powders,” Materials Science and Engineering, vol. 98, p. 461-463.
  • Berg, S., Häggblad, H.A., Jonsén, P. 2011. “High-pressure compaction modelling of calcite (CaCO3) powder compact,” Powder Technology, vol. 206, p. 259–268.
  • Häggblad, H.A., Hockauf, M., Eriksson, M., Berggren, C. 2005. “Simulation of high velocity compaction of powder in a rubber mould with characterization of silicone rubber and titanium powder using a modified split Hopkinson set-up,” Powder Technology, vol. 154, p. 33–42.
  • Skoglund P. 2001. “High density P/M components by high velocity compaction,” International conference on power transmission components, Ypsilanti, MI (USA), October 16–17.
  • Cambronero, L.E.G., Gordo, E., Torralba, J.M., Ruiz-Prieto, J.M. 1996. “Comparative study of high speed steels obtained through explosive compaction and hot isostatic pressing,” Materials Science and Engineering A, vol. 207, p. 36-45.
  • Ando, S., Mine, Y., Takashima, K., Itoh, S., Tonda, H. 1999. “Explosive compaction of Nd-Fe-B powder,” Journal of Materials Processing Technology, vol. 85, p. 142–147.
  • Chiba, A., Nishida, M., Yamaguchi, T., Tosaka, J. 1988. “Explosive consolidation of titanium powder with a pressure medium,” Scripta Metallurgica, vol. 22, p. 213-217.
  • Schwarz, R.B., Kasiraj, P., Vreeland, T., Ahrens, J. 1984. “A theory for the shock-wave consolidatıon of powders,” Acta Metallurgica, vol. 32, no. 8, p. 1243-1252.
  • Tomoshige, R., Kakoki, Y., Imamura, K., Chiba, A. 1999. “Effect on addition of titanium diboride to titanium carbide produced by the SHS: shock consolidation method,” Journal of Materials Processing Technology, vol. 85, p. 105–108.
  • Wang, S., Sun, C., Guo, W., Yan, Q., Zhou, Z., Zhang, Y., Shen, W., Ge, C. 2014. “Review on the explosive consolidation methods to fabricate tungsten based PFMs,” Journal of Nuclear Materials, vol. 455, p. 174–179.
  • Li, J. P., Meng, S. H., Han, J. C., Wang, B. L. 2008. “Energy and deformation during explosive compaction of ZrB2-SiC ultrahigh temperature ceramics,” Scholarly Research Exchange, doi:10.3814/2008/754838.
  • Sivakumar, K., Balakrishna Bhat, T., Ramakrishnan, P. 1998. “Effect of process parameters on the densification of 2124 Al–20vol.% SiCp composites fabricated by explosive compaction,” Journal of Materials Processing Technology, vol. 73, p. 268–275.
  • Zheng, Z., Xiao-jie, L., Gang, T. 2009. “Manufacturing nano-alumina particle-reinforced copper alloy by explosive compaction,” Journal of Alloys and Compounds, vol. 478, p. 237–239.
  • Karimi, Y., Mehdipoor, A., Alizadeh, A. 2016. “Consolidation of bulk TiB2 by underwater explosive compaction,” Ceramics International, vol. 42, p. 11543–11547.
  • Kim, Y., Ueda, T., Hokamoto, K., Itoh, S. 2009. “Electric and microstructural characteristics of bulk ZnO fabricated by underwater shock compaction,” Ceramics International, vol. 35, p. 3247–3252.
  • Farinha, A.R., Mendes, R., Baranda, J., Calinas, R., Vieira, M.T. 2009. “Behavior of explosive compacted/consolidated of nanometric copper powders,” Journal of Alloys and Compounds, vol. 483, p. 235–238.
  • Mamalis, A.G., Gioftsidis, G.N. 1990. “A consolidation mechanism for the compaction of copper powder at high pressures,” Journal of Materials Processing Technology, vol. 23, p. 333-345.
  • Godibadze, B. A., Chagelishvili, E. Sh., Peikrishvili, A. B., Tsiklauri, M. V., Dgebaudze, A.A. 2015. “Explosive fabrication of Cu-C and Cu-W materials,” Procedia Earth and Planetary Science, vol. 15, p. 448-453.
  • Zhou, Q., Chen, P. 2015. “Characterization of fine-grained W–10 wt.% Cu composite fabricated by hot-shock consolidation,” International Journal of Refractory Metals and Hard Materials, vol. 52, p. 137-142.
  • Zhou, Q., Chen, P. 2016. “Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders,” Journal of Alloys and Compounds, vol. 657, p. 215-223.
  • Cline, C.F., Hopper, R.W. 1977. “Explosive fabrication of rapidly quenched materials,” Scripta Metallurgica, vol. 11, p. 1137- 1138.
  • Morris, D. G. 1980. “Compaction and mechanical properties of metallic glass,” Materials Science and Technology, vol. 14, no. 6, p. 215-220.
  • Kasiraj, P., Kostka, O., Vreeland, T., Ahrens, J. 1984. “Shock wave consolidation of an amorphous alloy,” Journal of Non-Crystalline Solids, vol. 61-62, p. 967-972.
  • Murr, L.E., Shankar, S., Hare, A.W., Staudhammer, K.P. 1983. “Explosive consolidation of an amorphous iron-base powder,” Scripta Metallurgica, vol. 17, p. 1353-1357.
  • Shao, B., Liu, Z., Zhang, X. 1999. “Explosive consolidation of amorphous cobalt-based alloys,” Journal of Materials Processing Technology, vol. 85, p.121–124.
  • Chiba, A., Hokamoto, K., Sugimoto, S., Kozuka, T., Mori, A., Kakimoto, E. 2007. “Explosive consolidation of Sm–Fe–N and Sm–Fe–N/(Ni, Co) magnetic powders,” Journal of Magnetism and Magnetic Materials, vol. 310, p. 881–883.
  • Emelchenko, G.A., Naumenko, I.G., Veretennikov, V.A., Gordopolov, Y.A. 2009. “Shock consolidation of nanopowdered Ni,” Materials Science and Engineering A, vol. 503, p. 55–57.
  • Hokamoto, K., Fujita, M., Tanaka, S., Kodama, T., Ujimoto, Y. 1998. “High-temperature shock consolidatıon of diamond powders using converging underwater shock wave,” Scripta Metallurgica, vol. 39, no.10, p. 1383–1388.
  • Yücel, O., Tekin, A. 1997. “The fabrication of boron carbide-aluminium composites by explosive consolidation,” Ceramics International, vol. 23, p. 149-152.
  • Szewczak, E., Paszula, J., Leonov, A.V., Matyja, H. 1997. “Explosive consolidation of mechanically alloyed Ti-Al alloys,” Materials Science and Engineering A, vol. 226-228, p. 115-118.
  • Chiba, A., Kimura, S., Raghukandan, K., Morizono, Y. 2003. “Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction,” Materials Science and Engineering A, vol. 350, p. 179-183.
  • Chiba, A., Nishida, M., Imamiira, K., Ogura, H., Morizono, Y. 1996. “Fabrication of ZrO2/Ni and ZrO2/Al2O3 functionally graded materials by explosive powder consolidation technique,” Functionally Graded Materials, p. 191-195.
  • Hokamoto, K., Tanaka, S., Fujita, M. 2000. “Optimization of the experimental conditions for high-temperature shock consolidation,” International Journal of Impact Engineering, vol. 24, p. 631-640.
  • Mamalis, A.G., Gioftsidis, G.N. 1992. “On the extrusion of silver-sheathed superconducting billets fabricated by explosive compaction of YBa2Cu3O7 powder,” Journal of Materials Processing Technology, vol. 30, p. 297-313.
  • Mamalis, A.G., Gioftsidis, G.N., Szalay, A., Boday, O. 1989. “The shock wave compaction of high temperature superconducting powders into cylindrical components,” Annals of the CIRP, vol. 38, no. 1, p. 297-301.
  • Raming, T.P., Zyl, W.E., Carton, E.P., Verweij, H. 2004. “Sintering, sinterforging and explosive compaction to densify the dual phase nanocomposite system Y2O3-doped ZrO2 and RuO2,” Ceramics International, vol. 30, p. 629–634.
  • Kim, Y., Mitsugi, F., Tomoaki, I., Hokamotoa, K., Itoh, S. 2011. “Shock-consolidated TiO2 bulk with pure anatase phases fabricated by explosive compaction using underwater shockwave,” Journal of the European Ceramic Society, vol. 31, p. 1033–1039.
  • Fredenburg, D.A., Thadhani, N.N., Vogler, T.J. 2010. “Shock consolidation of nanocrystalline 6061-T6 aluminum powders,” Materials Science and Engineering A, vol. 527, p. 3349–3357.
  • Alba-Baena, N.G., Salas, W., Murr, L.E. 2008. “Characterization of micro and nano two-phase regimes created by explosive shock-wave consolidation of powder mixtures,” Materials Characterization, vol. 59, p. 1152-1160.
  • Nieh, T.G., Luo, P., Nellis, W., Lesuer, D., Benson, D. 1996. “Dynamic compaction of aluminum nanocrystals,” Acta Materialia, vol. 44, p. 3781–3788.
  • Wang, B., Xie, F., Li, Z., Zhang, H. 2016. “Explosive compaction of Al2O3 nano powders,” Ceramics International, vol. 42, p. 8460–8466.
  • Yu, L.H., Meyers, M.A., Peng, T.C. 1991. “Shock consolidation of A1-Li alloy powders,” Materials Science and Engineering A, vol. 132, p. 257-265.
  • Zhang, L., Elwazri, A.M., Zimmerly, T., Brochu, M. 2008. “Fabrication of bulk nanostructured silver material from nanopowders using shockwave consolidation technique,” Materials Science and Engineering A, vol. 487, p. 219–227.
  • Khan, D. F., Yin, H., Li, H., Asadullah, Z. A., Qu, X., Ellahi, M. 2014. “Effect of impact force on Ti–10Mo alloy powder compaction by high velocity compaction technique,” Materials and Design, vol. 54, p. 149-153.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm icindekiler-sunuş
Yazarlar

Orhan Gülcan

Yayımlanma Tarihi 19 Mart 2019
Gönderilme Tarihi 25 Aralık 2017
Kabul Tarihi 8 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 60 Sayı: 694

Kaynak Göster

APA Gülcan, O. (2019). Metal ve Seramik Tozlarının Patlayıcı Yardımıyla Sıkıştırılması: Tekniğin Uygulamalarına Genel Bir Bakış. Mühendis Ve Makina, 60(694), 77-90.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520