Derleme
BibTex RIS Kaynak Göster

Investigation and Evaluation of the Battery Cooling Systems Used In Electric Vehicles

Yıl 2018, Cilt: 59 Sayı: 692, 35 - 47, 31.10.2018

Öz

Environmentally-friendly and high energy efficiency with the use of electric vehicles are becoming increasingly nowadays. Limited battery capacity, long charge times and low battery life the biggest obstacle in the spread of electric vehicles sortable. Negative impact on battery life of temperature was found from research and that’s why has necessitated the need for a thermal management system for electric vehicles. In this article, short information will giving about electric vehicle and battery issue in electric vehicles. After that, investigated and evaluated of the cooling systems commonly used in electric vehicles. Results show that, absolutely thermal management system in electric vehicles should be designed. It can use an air cooling system has high efficiency in electric vehicles thermal management system, even can be increased system efficiency using with heatsink, heat pipe or fan but this cooling systems not enough to cool an electric vehicle has high voltage battery pack. Therefore, absolutely should be designed liquid cooling system or vapor compression refrigeration system  for high voltage electric vehicles.


Kaynakça

  • Chau KT, Wong YS. 2002. Overview of Power Management in Hybrid Electric Vehicles. Energ Convers Manage, vol. 43, Issue 15, p. 1953-1968.
  • Utlu Z., Yenigün M. 2016. Elektrikli Araçlarda Kullanılan Soğutma Sistemlerinin Enerji Ve Ekserji Verimliliği Açısından İncelenmesi. Yüksek Lisans Tezi, İ.A.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Pesaran, AA., Swan, D., Olson, J., Guerin, J. T., Burch, S., Rehn, R., Skelenger, G. 2002. Thermal Analysis and Performance of a Battery Pack for A Hybrid Electric Vehicle. In: Proceedings of the Electric Vehicle Symposium EVS 15. Brüksel.
  • Mohammedian, S. K., Zhang, Y. 2015. Thermal Management Optimization of an Air-Cooled Li-İon Battery Module Using Pin-Fin Heat Sinks for Hybrid Electric Vehicles. Journal of Power Sources 273, p. 431-439.
  • Fleckenstein, M., Bohlen, O., Roscher, M. A., Bakerc, Bernard. 2002. Current Density And State of Charge İnhomogeneities İn Li-İon Battery Cells With LiFePO4 as Cathode Material Due to Temperature Gradients. J. Power Sources, vol.196, Issue 10, p. 4769-4778.
  • Troxler, Y., Wu, B., Marinescu, M., Yufit, V., Patel, Y., Marquis, A. J., Brandon, N. P., Offer, G. J. 2014. The Effect of Thermal Gradients on the Performance of Lithium-Ion Batteries. J. Power Sources, vol. 247, p. 1018–1025
  • Pesaran, A. A. 2001. Battery Thermal Management in EVs and HEVs : Issues and Solutions. Advanced Automotive Battery Conference, p. 10. Nevada.
  • http://energyskeptic.com/2015/electric-vehicle-overview/, son erişim tarihi: 18:06.2015.
  • Valeo, 2010. Battery Thermal Management for HEV & EV – Technology overview.
  • Zou, H., Jiang, B., Wang, Q., Tian, C. and Yan, Y. 2014. Performance Analysis of a Heat Pump Air Conditioning System Coupling with Battery Cooling for Electric Vehicles. Energy Procedia vol. 61, p. 891-894.
  • Ataur, R., Helmi, A. and Hwalader, 2014. Noble Evaporative Battery Thermal Management System for EVs/HEVs. International Conference on Industrial Engineering and Operations Management, Bali.
  • Tran, T. H., Harmand, S., Desmet, B., Filandi, S. 2014. Experimental Investigation on the Feasibility of Heat Pipe Cooling for HEV/EV Lithium-Ion Battery. Applied Thermal Engineering, vol. 2, Issue 63, p. 551-558.
  • Li, J., Zhu, Z. 2014. Battery Thermal Management Systems of Electric Vehicles. Master’s Thesis in Automotive Engineering, Chalmers University of Technology, Göteborg.
  • Sabbah, R., Kizilel, R., Selman, J. R. & Al-Hallaj, S. 2008. Active (air-cooled) vs. Passive (phase change material) Thermal Management of High Power Lithium-Ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution. Journal of Power Sources, vol. 182, Issue 2, p. 630-638.
  • Keyser, M. A., Pesaran, A., Mihalic, M., Yu, J. S., Kim, S.Y., Alagmir, M., Rivers, D., 2003. Thermal Characterization of Advanced Lithium-Ion Polymer Cells. Third Advanced Automotive Battery Conference, Nice.
  • Kizilel, R., Sabbah, R., Selman, J. Robert & Al-hallaj, S. 2009. An Alternative Cooling System to Enhance The Safety of Li-İon Battery Packs. Journal of Power Sources, vol. 194, Issue 2, p. 1105-1112.

Elektrikli Araçlarda Kullanılan Batarya Soğutma Sistemlerinin İncelenmesi ve Değerlendirilmesi

Yıl 2018, Cilt: 59 Sayı: 692, 35 - 47, 31.10.2018

Öz

Çevreci ve yüksek enerji verimliliğine sahip elektrikli araçların kullanımı günümüzde giderek cazip hale gelmektedir. Sınırlı batarya kapasitesi, uzun şarj süreleri ve düşük batarya ömürleri elektrikli araçlarının yaygınlaşmasındaki en büyük engeller arasında sıralanabilir. Sıcaklığın batarya ömrü üzerindeki olumsuz etkisi araştırmalar sonucunda bulunmuş ve bu da elektrikli araçlarda termal yönetim sisteminin gerekliliğini zorunlu kılmıştır. Bu makalede, elektrikli ve hibrit elektrikli araçlar (HEA)’larda batarya sorunlarına değinilerek batarya yönetim sistemleri açıklanacaktır. Ardından elektrikli ve HEA’larda yaygın olarak kullanılan soğutma sistemleri incelenip değerlendirilecektir. Bu çalışma sonucunda elektrikli araçlarda mutlak suretle termal yönetim sistemi tasarlanması gerektiği belirlenmiştir. Elektrikli araç termal yönetim sisteminde yüksek verimliliğe sahip hava soğutmalı sistem kullanılabilir hatta ısı emicisi, ısı borusu veya zorlamalı hava akışı ile sistem verimliliği daha da artırılabilir fakat yüksek voltajlı bataryaya sahip elektrikli araçlarda   hava soğutmalı sistemin yetersiz kalacağı belirlenmiştir. Bu sebeple yüksek voltajlı bataryaya sahip elektrikli araçlarda mutlak suretle sıvı soğutmalı veya gaz sıkıştırmalı soğutma sistemi tasarlanması gerekmektedir.

Kaynakça

  • Chau KT, Wong YS. 2002. Overview of Power Management in Hybrid Electric Vehicles. Energ Convers Manage, vol. 43, Issue 15, p. 1953-1968.
  • Utlu Z., Yenigün M. 2016. Elektrikli Araçlarda Kullanılan Soğutma Sistemlerinin Enerji Ve Ekserji Verimliliği Açısından İncelenmesi. Yüksek Lisans Tezi, İ.A.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Pesaran, AA., Swan, D., Olson, J., Guerin, J. T., Burch, S., Rehn, R., Skelenger, G. 2002. Thermal Analysis and Performance of a Battery Pack for A Hybrid Electric Vehicle. In: Proceedings of the Electric Vehicle Symposium EVS 15. Brüksel.
  • Mohammedian, S. K., Zhang, Y. 2015. Thermal Management Optimization of an Air-Cooled Li-İon Battery Module Using Pin-Fin Heat Sinks for Hybrid Electric Vehicles. Journal of Power Sources 273, p. 431-439.
  • Fleckenstein, M., Bohlen, O., Roscher, M. A., Bakerc, Bernard. 2002. Current Density And State of Charge İnhomogeneities İn Li-İon Battery Cells With LiFePO4 as Cathode Material Due to Temperature Gradients. J. Power Sources, vol.196, Issue 10, p. 4769-4778.
  • Troxler, Y., Wu, B., Marinescu, M., Yufit, V., Patel, Y., Marquis, A. J., Brandon, N. P., Offer, G. J. 2014. The Effect of Thermal Gradients on the Performance of Lithium-Ion Batteries. J. Power Sources, vol. 247, p. 1018–1025
  • Pesaran, A. A. 2001. Battery Thermal Management in EVs and HEVs : Issues and Solutions. Advanced Automotive Battery Conference, p. 10. Nevada.
  • http://energyskeptic.com/2015/electric-vehicle-overview/, son erişim tarihi: 18:06.2015.
  • Valeo, 2010. Battery Thermal Management for HEV & EV – Technology overview.
  • Zou, H., Jiang, B., Wang, Q., Tian, C. and Yan, Y. 2014. Performance Analysis of a Heat Pump Air Conditioning System Coupling with Battery Cooling for Electric Vehicles. Energy Procedia vol. 61, p. 891-894.
  • Ataur, R., Helmi, A. and Hwalader, 2014. Noble Evaporative Battery Thermal Management System for EVs/HEVs. International Conference on Industrial Engineering and Operations Management, Bali.
  • Tran, T. H., Harmand, S., Desmet, B., Filandi, S. 2014. Experimental Investigation on the Feasibility of Heat Pipe Cooling for HEV/EV Lithium-Ion Battery. Applied Thermal Engineering, vol. 2, Issue 63, p. 551-558.
  • Li, J., Zhu, Z. 2014. Battery Thermal Management Systems of Electric Vehicles. Master’s Thesis in Automotive Engineering, Chalmers University of Technology, Göteborg.
  • Sabbah, R., Kizilel, R., Selman, J. R. & Al-Hallaj, S. 2008. Active (air-cooled) vs. Passive (phase change material) Thermal Management of High Power Lithium-Ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution. Journal of Power Sources, vol. 182, Issue 2, p. 630-638.
  • Keyser, M. A., Pesaran, A., Mihalic, M., Yu, J. S., Kim, S.Y., Alagmir, M., Rivers, D., 2003. Thermal Characterization of Advanced Lithium-Ion Polymer Cells. Third Advanced Automotive Battery Conference, Nice.
  • Kizilel, R., Sabbah, R., Selman, J. Robert & Al-hallaj, S. 2009. An Alternative Cooling System to Enhance The Safety of Li-İon Battery Packs. Journal of Power Sources, vol. 194, Issue 2, p. 1105-1112.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm icindekiler-sunuş
Yazarlar

Mesut Yenigün Bu kişi benim

Zafer Utlu Bu kişi benim

Yayımlanma Tarihi 31 Ekim 2018
Gönderilme Tarihi 18 Ağustos 2017
Kabul Tarihi 13 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 59 Sayı: 692

Kaynak Göster

APA Yenigün, M., & Utlu, Z. (2018). Elektrikli Araçlarda Kullanılan Batarya Soğutma Sistemlerinin İncelenmesi ve Değerlendirilmesi. Mühendis Ve Makina, 59(692), 35-47.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520