Derleme
BibTex RIS Kaynak Göster

Grafen Oksit Nanoparçacıkları İçeren Nanoakışkanın Taşınım Isı Transferi ve Basınç Düşüşü Artışı Üzerindeki Etkisinin Düz Bir Boruda Deneysel Olarak Araştırılması

Yıl 2018, Cilt: 59 Sayı: 690, 45 - 67, 21.03.2018

Öz

Bu çalışmada, grafen oksit (GO)-su nanoakışkanının taşınım ısı transferi üniform duvar ısı akılı dairesel bir bakır
boru boyunca laminer akış için deneysel ve sayısal olarak incelenmiştir. Deneysel çalışmada, grafen oksit-su nanoakışkanının ısı transferi artışı ve basınç düşüşü özellikleri değerlendirilirken, sayısal çalışmada korunum denklemleri üç boyutlu olarak sonlu hacim yöntemi olan CFD paket programının (ANSYS 15.0-FLUENT) kullanılmasıyla
tek fazlı akışkan kabulüyle çözülmüştür. Taban akışkanı olarak kullanılan saf suyun ısı transfer katsayısı ve basınç
düşüşü ölçülmüş ve ilgili bağıntıdan elde edilen sonuçlarla karşılaştırılmıştır. Sayısal çalışmada elde edilen boru
yüzey sıcaklık değerleri nanoakışkan için deneysel sonuçlarla karşılaştırıldığında ortalama %2 hata ile birbiriyle
uyumlu olduğu görülmüştür. Çalışmada, %0,01 ve %0,02 hacimsel konsantrasyonlu GO-su nanoakışkanının ısı
transferi artışında ısı akısının, nanoparçacık hacimsel konsantrasyonunun ve hacimsel debinin etkileri sunulmuştur. %0,02’lik konsantrasyonda GO-su nanoakışkanının ısı taşınım katsayısı artışı değeri (hnf /hbf), 1,5 l/dk’lık debi
(Re=2023) ve 2536.62 W/m2
(350 W) ısı akısı değerinde %13,9 olmaktadır. Bununla birlikte, yük kaybı (hK) ve
sürtünme faktörü için en yüksek artışlar %0,02 GO ve 1,5 l/dk’lık debide sırasıyla %8,37 ve %7,95’tir. Sonuçlar,
GO nanoakışkanının ısı transferi uygulamalarında geleneksel çalışma akışkanlarına iyi bir alternatif olarak kullanılabileceğini göstermektedir

Destekleyen Kurum

Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP)

Proje Numarası

M-505

Teşekkür

Bu çalışma Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) birimi tarafından M-505 proje numarası ile desteklenmiştir. Ayrıca, nanoparçacık sentezi ve nanoakışkanın hazırlanması aşamasında desteğini esirgemeyen Cumhuriyet Üniversitesi Nanoteknoloji Araştırma Merkezi’nin araştırma ekibindeki lisansüstü eğitimlerini gören değerli çalışma arkadaşlarımıza katkılarından dolayı teşekkür ederiz.

Kaynakça

  • 1. Maxwell, J. C. 1904. A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge.
  • 2. Gupte, S. K., Advani, S. G., Huq, P. 1995. “Role of Micro-Convection Due to NonAffine Motion of Particles in a Mono-Disperse Suspension,” Int. J. Heat Mass Trans., vol. 38, no. 16, p. 2945-2958.
  • 3. Kim, S. J., Bang, I. J., Buongiorno, J., Hu, L. W. 2007. “Surface Wettability Change During Pool Boiling of Nanofluids and its Effect on Critical Heat Flux,” Int. J. Heat Mass Trans., vol. 50, no. 133, p. 4105-4116.
  • 4. Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., You, S. M. 2010. “Pool Boiling Characteristics of Low Concentration Nanofluids,” Int. J. Heat Mass Trans., vol. 53, no. 5-6, p. 972-981.
  • 5. Hong, K. S., Hong, T. K., Yang, H. S. 2006. “Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles,” Applied Physics Letters, vol. 88, no.3, p. 636-664.
  • 6. Hwan, L., Hwang, K., Janga, S., Lee, B., Kim, J., Choi, S. U. S., Choi, C. 2008. “Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles,” Int. Journal of Heat and Mass Trans., vol. 51, no. 11-12, p. 2651-2656.
  • 7. Jang, S. P., Choi, S. U. S. 2007. “Effects of Various Parameters on Nanofluid Thermal Conductivity,” Journal of Heat Transfer, vol. 129, no. 5, p. 617-623.
  • 8. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. 2001. “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Applied Physics Letters, vol. 78, no. 6, p.718-720.
  • 9. Li, C. H., Peterson, G. P. 2007. “The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nanofluids,” Journal of Applied Physics, vol. 101, no. 4, p. 044312-1–044312-5.
  • 10. Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S. N., Sadeghinezhad, E., Zubir, N. 2014. “An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes,” Nanoscale Res. Lett., vol. 9, no. 1, p.151.
  • 11. Wang, X., Xu, X., Choi, S. U. S. 1999. “Thermal Conductivity of Nanoparticle-Fluid Mixture,” Journal of Thermophysics and Heat Transfer, vol. 13, no. 4, p. 474-480.
  • 12. Yu, W., Xie, H., Wang, X. 2011. “Significant Thermal Conductivity Enhancement for Nanofluids Containing Graphene Nanosheets,” Phys. Lett. A, vol. 375, p. 1323-1328.
  • 13. Zheng, R., Gao, J., Wang, J., Feng, S. P., Ohtanı, H., Wang, J., Chen, G. 2011. “Thermal Percolation in Stable Graphite Suspensions,” Nano Lett., vol. 9, no. 1, p. 188-192.
  • 14. Xie, H., Lee, H., Youn, W., Choi, M. 2003. “Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities”, J. Appl. Phys., vol. 94, no. 8, p. 4967-4971.
  • 15. Ding, Y., Alias, H., Wen, D., Williams, R. A. 2006. “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids),” Int. J. Heat Mass Transf., vol. 49, no. 1, p. 240-250.
  • 16. Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., Yine, Y. 2007. “Preparation and Thermal Conductivity of Suspensions of Graphite Nanoparticles,” Carbon, vol. 45, no. 1, ,p. 226-228.
  • 17. Xie, H., Yu, W., Li, Y. 2009. “Thermal Performance Enhancement in Nanofluids Containing Diamond Nanoparticles,” J. Phys. D. Appl. Phys., vol. 42, no. 9, p. 1-5.
  • 18. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S., Seal, S. 2011. “Graphene Based Materials: Past, Present and Future,” Progress in Materials Science, vol. 56, p. 1178-1271.
  • 19. Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. K. I., Dubonos, S., Firsov, A. 2005. “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, vol. 438, no. 7065, p. 197-200.
  • 20. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. 2008. “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., vol. 8, no. 3, p. 902-907.
  • 21. Yu, W., Xie, H., Chen, L., Li, Y. 2010. “Enhancement of Thermal Conductivity of Kerosene-Based Fe3O4 Nanofluids Prepared via Phase-Transfer Method,” Colloids and Surfaces A, vol. 355, no. 1-3, p. 109-113.
  • 22. Yarmand, H., Gharehkhani, S., Kazi, S. N., Sadeghinezhad, E., Safaei, M. R. 2014. “Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid,” Sci. World J., vol. 2014, Article ID 3695939, p. 9.
  • 23. Shanbedi, M., Heris, S. Z., Baniadam, M., Amiri, A., Maghrebi, M. 2012. “Investigation of Heat Transfer Characterization of EDA-MWCNT/DI-Water Nanofluid in a Two Phase Closed Thermosyphon,” Ind. Eng. Chem. Res., vol. 51, no. 3, p. 1423-1428.
  • 24. Memari, M., Golmakani, A., Dehkordi, A. M. 2011. “Mixed-Convection Flow of Nanofluids and Regular Fluids in Vertical Porous Media with Viscous Heating,” Ind. Eng. Chem. Res, vol. 50, no. 15, p. 9403-9414.
  • 25. Wang, J., Zhu, J., Zhang, X., Chen, Y. 2013. “Heat Transfer and Pressure Drop of Nanofluids Containing Carbon Nanotubes in Laminar Flows,” Experimental Thermal and Fluid Science, vol. 44, p. 716-721.
  • 26. Abreu, B., Lamas, B., Fonseca, A., Martins, N., Oliveira, M. S. A. 2014. “Experimental Characterization of Convective Heat Transfer with MWCNT Based Nanofluids under Laminar Flow Conditions,” Heat and Mass Transfer, vol. 50, no. 1, p. 65-74.
  • 27. Karabulut, K., Yapıcı, K., Buyruk, E., Kılınç, F. 2015. “Karbon Nanotüp İçeren Nanoakışkanın Isı Transferi Artışı ve Basınç Düşüşü Performansının Deneysel ve Sayısal Olarak İncelenmesi,” 20. Ulusal Isı Bilimi ve Tekniği Kongresi, 2-5 Eylül 2015, Balıkesir.
  • 28. Baby, T. T., Ramapraphu, S. 2011. “Enhanced Convective Heat Transfer Using Graphene Dispersed Nanofluids,” Nanoscale Res. Lett., vol. 6, no. 289, doi:10.1186/1556-276X-6-289.
  • 29. Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Ahadi, M., Sharif, F. 2014. “Turbulent Convective Heat Transfer and Pressure Drop of Graphene-Water Nanofluid Flowing Inside a Horizontal Circular Tube,” J. Dispers. Sci. Technol., vol. 35, no. 9, p. 1230-1240.
  • 30. Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Sharif, F., Ahadi, M. 2016. “Experimental Investigation of Laminar Forced Convective Heat Transfer of Graphene-Water Nanofluid Inside a Circular Tube,” Int. J. Thermal Sci., vol. 100, p. 316-323.
  • 31. Mirzaei, M., Azimi, A. 2016. “Heat Transfer and Pressure Drop Characteristics of Graphene Oxide/Water Nanofluid in a Circular Tube Fitted with Wire Coil Insert,” Exp. Heat Trans., vol. 29, no. 2, p. 173-187.
  • 32. Hajjar, Z., Rashidi, A., Ghozatloo, A. 2014. “Enhanced Thermal Conductivities of Graphene Oxide Nanofluids,” Int. Comm. In Heat and Mass Transfer, vol. 57, p. 128- 131.
  • 33. Hummers, W. S., Offeman, R. E. 1958. “Preparation of Graphitic Oxide,” Am. Chem.Soc., vol. 80, no. 6, p. 1339.
  • 34. Karabulut, K. 2015. “Isı Değiştiricilerde Isı Aktarımının Nanoakışkanlar Kullanılarak Arttırılması,” Doktora Tezi, Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas.
  • 35. Ghozatloo, A., Rashidi, A., Shariaty-Niassar, A. 2014. “Convective Heat Transfer Enhancement of Graphene Nanofluids in Shell and Tube Heat Exchanger,” Exp. Thermal Fluid Sci., vol. 53, no. 2014, p. 136-141.
  • 36. Pak, B. C., Cho, Y. I. 1998. “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,” Exp. Heat Trans., vol. 11, no. 2, p. 151-170.
  • 37. Shah, R. K. 1975. “Thermal Entry Length Solutions for the Circular Tube and Parallel Plates,” In. Proceedings of the 3rd National Heat Mass Transfer Conference, 11-13 December 1975, Bombai-India
  • 38. Buongiorno, J. 2006. “Convective Transport in Nanofluid,” J. Heat Transfer, vol. 128, no. 3, p. 240-250.
  • 39. Awad, M. M., Muzychka, Y. S. 2008. “Effective Property Models for Homogeneous Two Phase Flows,” Exp. Therm. Fluid Sci., vol. 33, no. 1, p. 106-113.
  • 40. Bianco, V., Chiacchio, F., Manca, O., Nardini, S. 2009. “Numerical Investigation of Nanofluids Forced Convection in Circular Tubes,” Appl. Therm. Eng., vol. 29, no. 17-18, p. 3632-3642.
  • 41. Ebrahimnia-Bajestan, E., Niazmand, H., Duangthongsuk, W., Wongwises, S. 2011. “Numerical Investigation of Effective Parameters in Convective Heat Transfer of Nanofluids Flowing under a Laminar Flow Regime,” Int. J. Heat Mass Transfer, vol. 54, no.19-20, p. 4376-4388.
  • 42. Rea, U., Mckrell, T., Hu, L. W., Buongiorno, J. 2009. “Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids,” Int. J. Heat Mass Transfer, vol. 52, no. 7-8, p. 2042-2048.
  • 43. Williams, W., Buongiorno, J., Hu, L. W. 2008. “Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes,” J. Heat Transfer, vol. 130, no.4, p. 412-419.
  • 44. Escher, W., Brunschwiler, T., Shalkeich, N., Shalkevich, A., Burgi, T., Michel, B., Oulikakos, D. 2011. “On the Cooling of Electronics with Nanofluids,” J. Heat Transfer, vol. 133, no. 5, p. 1-11.
  • 45. Izadi, M., Behzadmehr, A., Jalali-Vahid, D. 2009. “Numerical Study of Developing Laminar Forced Convection of a Nanofluid in an Annulus,” Int J. Therm. Sci., vol. 48, p.2119-2129.
  • 46. FLUENT User’s Guide. 2003. Fluent Inc., Lebanon, NH.

Experimental Investigation of the Effect of Nanofluid Including Graphene-Oxide Nanoparticles on Convective Heat Transfer and Pressure Drop Enhancement in a Straight Pipe

Yıl 2018, Cilt: 59 Sayı: 690, 45 - 67, 21.03.2018

Öz

In this paper, convective heat transfer of graphene oxide-water (Graphene oxide) nanofluid in a laminar flow
through a circular copper pipe with uniform wall heat flux is investigated experimentally and numerically. In
experimental investigation, it is evaluated the heat transfer characteristics and the pressure drop of the graphene
oxide (GO)-water nanofluid when in numerical study, the finite volume method (ANSYS 15.0-FLUENT) is
employed to solve the conservation equations (continuity, momentum and energy equations) in three dimensional
domains by assuming single phase flow. The heat transfer coefficient and pressure drop of the DI (distilled)-water
used as base fluid is measured and compared with the corresponding data from the correlation. The datas of
nanofluid for surface temperature of the tube is satisfied within a 2% error for the numerical work compared with
experimental results. The effects of the heat flux, volumetric concentration and flow rate on the enhancement of
the heat transfer of GO-water nanofluid with volumetric concentrations of 0,01% and 0,02% are presented in the
study. The value of convective heat transfer coefficient enhancement (hnf /hbf) of the GO with 0,02% volumetric
concentration and flow rate of 1,5 l/min (Re=2023) is 13,9% for the heat flux value of 2536.62 W/m2
(350 W).
However, the max. increases in head loss and friction factor with 0,02% GO and 1,5 l/min are 8,37% and 7,95%
respectively. Finally, the results reveals that the GO-water nanofluid can be used as a good alternative conventional
working fluids in heat transfer applications. 

Proje Numarası

M-505

Kaynakça

  • 1. Maxwell, J. C. 1904. A Treatise on Electricity and Magnetism, Oxford University Press, Cambridge.
  • 2. Gupte, S. K., Advani, S. G., Huq, P. 1995. “Role of Micro-Convection Due to NonAffine Motion of Particles in a Mono-Disperse Suspension,” Int. J. Heat Mass Trans., vol. 38, no. 16, p. 2945-2958.
  • 3. Kim, S. J., Bang, I. J., Buongiorno, J., Hu, L. W. 2007. “Surface Wettability Change During Pool Boiling of Nanofluids and its Effect on Critical Heat Flux,” Int. J. Heat Mass Trans., vol. 50, no. 133, p. 4105-4116.
  • 4. Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., You, S. M. 2010. “Pool Boiling Characteristics of Low Concentration Nanofluids,” Int. J. Heat Mass Trans., vol. 53, no. 5-6, p. 972-981.
  • 5. Hong, K. S., Hong, T. K., Yang, H. S. 2006. “Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles,” Applied Physics Letters, vol. 88, no.3, p. 636-664.
  • 6. Hwan, L., Hwang, K., Janga, S., Lee, B., Kim, J., Choi, S. U. S., Choi, C. 2008. “Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles,” Int. Journal of Heat and Mass Trans., vol. 51, no. 11-12, p. 2651-2656.
  • 7. Jang, S. P., Choi, S. U. S. 2007. “Effects of Various Parameters on Nanofluid Thermal Conductivity,” Journal of Heat Transfer, vol. 129, no. 5, p. 617-623.
  • 8. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. 2001. “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Applied Physics Letters, vol. 78, no. 6, p.718-720.
  • 9. Li, C. H., Peterson, G. P. 2007. “The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nanofluids,” Journal of Applied Physics, vol. 101, no. 4, p. 044312-1–044312-5.
  • 10. Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S. N., Sadeghinezhad, E., Zubir, N. 2014. “An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes,” Nanoscale Res. Lett., vol. 9, no. 1, p.151.
  • 11. Wang, X., Xu, X., Choi, S. U. S. 1999. “Thermal Conductivity of Nanoparticle-Fluid Mixture,” Journal of Thermophysics and Heat Transfer, vol. 13, no. 4, p. 474-480.
  • 12. Yu, W., Xie, H., Wang, X. 2011. “Significant Thermal Conductivity Enhancement for Nanofluids Containing Graphene Nanosheets,” Phys. Lett. A, vol. 375, p. 1323-1328.
  • 13. Zheng, R., Gao, J., Wang, J., Feng, S. P., Ohtanı, H., Wang, J., Chen, G. 2011. “Thermal Percolation in Stable Graphite Suspensions,” Nano Lett., vol. 9, no. 1, p. 188-192.
  • 14. Xie, H., Lee, H., Youn, W., Choi, M. 2003. “Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities”, J. Appl. Phys., vol. 94, no. 8, p. 4967-4971.
  • 15. Ding, Y., Alias, H., Wen, D., Williams, R. A. 2006. “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids),” Int. J. Heat Mass Transf., vol. 49, no. 1, p. 240-250.
  • 16. Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., Yine, Y. 2007. “Preparation and Thermal Conductivity of Suspensions of Graphite Nanoparticles,” Carbon, vol. 45, no. 1, ,p. 226-228.
  • 17. Xie, H., Yu, W., Li, Y. 2009. “Thermal Performance Enhancement in Nanofluids Containing Diamond Nanoparticles,” J. Phys. D. Appl. Phys., vol. 42, no. 9, p. 1-5.
  • 18. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S., Seal, S. 2011. “Graphene Based Materials: Past, Present and Future,” Progress in Materials Science, vol. 56, p. 1178-1271.
  • 19. Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. K. I., Dubonos, S., Firsov, A. 2005. “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, vol. 438, no. 7065, p. 197-200.
  • 20. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. 2008. “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., vol. 8, no. 3, p. 902-907.
  • 21. Yu, W., Xie, H., Chen, L., Li, Y. 2010. “Enhancement of Thermal Conductivity of Kerosene-Based Fe3O4 Nanofluids Prepared via Phase-Transfer Method,” Colloids and Surfaces A, vol. 355, no. 1-3, p. 109-113.
  • 22. Yarmand, H., Gharehkhani, S., Kazi, S. N., Sadeghinezhad, E., Safaei, M. R. 2014. “Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid,” Sci. World J., vol. 2014, Article ID 3695939, p. 9.
  • 23. Shanbedi, M., Heris, S. Z., Baniadam, M., Amiri, A., Maghrebi, M. 2012. “Investigation of Heat Transfer Characterization of EDA-MWCNT/DI-Water Nanofluid in a Two Phase Closed Thermosyphon,” Ind. Eng. Chem. Res., vol. 51, no. 3, p. 1423-1428.
  • 24. Memari, M., Golmakani, A., Dehkordi, A. M. 2011. “Mixed-Convection Flow of Nanofluids and Regular Fluids in Vertical Porous Media with Viscous Heating,” Ind. Eng. Chem. Res, vol. 50, no. 15, p. 9403-9414.
  • 25. Wang, J., Zhu, J., Zhang, X., Chen, Y. 2013. “Heat Transfer and Pressure Drop of Nanofluids Containing Carbon Nanotubes in Laminar Flows,” Experimental Thermal and Fluid Science, vol. 44, p. 716-721.
  • 26. Abreu, B., Lamas, B., Fonseca, A., Martins, N., Oliveira, M. S. A. 2014. “Experimental Characterization of Convective Heat Transfer with MWCNT Based Nanofluids under Laminar Flow Conditions,” Heat and Mass Transfer, vol. 50, no. 1, p. 65-74.
  • 27. Karabulut, K., Yapıcı, K., Buyruk, E., Kılınç, F. 2015. “Karbon Nanotüp İçeren Nanoakışkanın Isı Transferi Artışı ve Basınç Düşüşü Performansının Deneysel ve Sayısal Olarak İncelenmesi,” 20. Ulusal Isı Bilimi ve Tekniği Kongresi, 2-5 Eylül 2015, Balıkesir.
  • 28. Baby, T. T., Ramapraphu, S. 2011. “Enhanced Convective Heat Transfer Using Graphene Dispersed Nanofluids,” Nanoscale Res. Lett., vol. 6, no. 289, doi:10.1186/1556-276X-6-289.
  • 29. Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Ahadi, M., Sharif, F. 2014. “Turbulent Convective Heat Transfer and Pressure Drop of Graphene-Water Nanofluid Flowing Inside a Horizontal Circular Tube,” J. Dispers. Sci. Technol., vol. 35, no. 9, p. 1230-1240.
  • 30. Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Sharif, F., Ahadi, M. 2016. “Experimental Investigation of Laminar Forced Convective Heat Transfer of Graphene-Water Nanofluid Inside a Circular Tube,” Int. J. Thermal Sci., vol. 100, p. 316-323.
  • 31. Mirzaei, M., Azimi, A. 2016. “Heat Transfer and Pressure Drop Characteristics of Graphene Oxide/Water Nanofluid in a Circular Tube Fitted with Wire Coil Insert,” Exp. Heat Trans., vol. 29, no. 2, p. 173-187.
  • 32. Hajjar, Z., Rashidi, A., Ghozatloo, A. 2014. “Enhanced Thermal Conductivities of Graphene Oxide Nanofluids,” Int. Comm. In Heat and Mass Transfer, vol. 57, p. 128- 131.
  • 33. Hummers, W. S., Offeman, R. E. 1958. “Preparation of Graphitic Oxide,” Am. Chem.Soc., vol. 80, no. 6, p. 1339.
  • 34. Karabulut, K. 2015. “Isı Değiştiricilerde Isı Aktarımının Nanoakışkanlar Kullanılarak Arttırılması,” Doktora Tezi, Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas.
  • 35. Ghozatloo, A., Rashidi, A., Shariaty-Niassar, A. 2014. “Convective Heat Transfer Enhancement of Graphene Nanofluids in Shell and Tube Heat Exchanger,” Exp. Thermal Fluid Sci., vol. 53, no. 2014, p. 136-141.
  • 36. Pak, B. C., Cho, Y. I. 1998. “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,” Exp. Heat Trans., vol. 11, no. 2, p. 151-170.
  • 37. Shah, R. K. 1975. “Thermal Entry Length Solutions for the Circular Tube and Parallel Plates,” In. Proceedings of the 3rd National Heat Mass Transfer Conference, 11-13 December 1975, Bombai-India
  • 38. Buongiorno, J. 2006. “Convective Transport in Nanofluid,” J. Heat Transfer, vol. 128, no. 3, p. 240-250.
  • 39. Awad, M. M., Muzychka, Y. S. 2008. “Effective Property Models for Homogeneous Two Phase Flows,” Exp. Therm. Fluid Sci., vol. 33, no. 1, p. 106-113.
  • 40. Bianco, V., Chiacchio, F., Manca, O., Nardini, S. 2009. “Numerical Investigation of Nanofluids Forced Convection in Circular Tubes,” Appl. Therm. Eng., vol. 29, no. 17-18, p. 3632-3642.
  • 41. Ebrahimnia-Bajestan, E., Niazmand, H., Duangthongsuk, W., Wongwises, S. 2011. “Numerical Investigation of Effective Parameters in Convective Heat Transfer of Nanofluids Flowing under a Laminar Flow Regime,” Int. J. Heat Mass Transfer, vol. 54, no.19-20, p. 4376-4388.
  • 42. Rea, U., Mckrell, T., Hu, L. W., Buongiorno, J. 2009. “Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids,” Int. J. Heat Mass Transfer, vol. 52, no. 7-8, p. 2042-2048.
  • 43. Williams, W., Buongiorno, J., Hu, L. W. 2008. “Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes,” J. Heat Transfer, vol. 130, no.4, p. 412-419.
  • 44. Escher, W., Brunschwiler, T., Shalkeich, N., Shalkevich, A., Burgi, T., Michel, B., Oulikakos, D. 2011. “On the Cooling of Electronics with Nanofluids,” J. Heat Transfer, vol. 133, no. 5, p. 1-11.
  • 45. Izadi, M., Behzadmehr, A., Jalali-Vahid, D. 2009. “Numerical Study of Developing Laminar Forced Convection of a Nanofluid in an Annulus,” Int J. Therm. Sci., vol. 48, p.2119-2129.
  • 46. FLUENT User’s Guide. 2003. Fluent Inc., Lebanon, NH.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm icindekiler-sunuş
Yazarlar

Koray Karabulut

Ertan Buyruk Bu kişi benim

Ferhat Kılınç

Proje Numarası M-505
Yayımlanma Tarihi 21 Mart 2018
Gönderilme Tarihi 19 Mayıs 2017
Kabul Tarihi 16 Ekim 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 59 Sayı: 690

Kaynak Göster

APA Karabulut, K., Buyruk, E., & Kılınç, F. (2018). Grafen Oksit Nanoparçacıkları İçeren Nanoakışkanın Taşınım Isı Transferi ve Basınç Düşüşü Artışı Üzerindeki Etkisinin Düz Bir Boruda Deneysel Olarak Araştırılması. Mühendis Ve Makina, 59(690), 45-67.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520