Derleme
BibTex RIS Kaynak Göster

THE USE OF MICROCELLULAR FOAMING TECHNOLOGY IN THE PRODUCTION OF THERMOPLASTIC PARTS

Yıl 2016, Cilt: 57 Sayı: 678, 53 - 59, 16.08.2016

Öz

In recent years it has been seen that developments in injection molding technology has increased in
terms of capacity in the production of thermoplastic parts and has contributed to innovative product
design. Microcellular foaming technology (MuCell), particularly with regard to injection molding,
offers advantages in the quality improvement and production costs of plastic parts. It also offers freedom of design and therefore is an innovative production technology that is starting to be more widely used in various fields including the automotive, food, medical, and white goods sectors. In the
MuCell injection method, pore formation is initiated by injecting the gases in the supercritical phase
to the molten thermoplastic material in the plasticisation unit. The dispersion of microcellular (1-100
μm) pores in the plastic part is fairly homogenous. When the MuCell injection process is compared
with the conventional injection process, it can be seen that, in the plastic parts produced with MuCell
technology, there are no distortion and sink marks and due to low polymer viscosity, the production
of plastic parts with thin walls can be carried out smoothly and, as a result, the weight of the parts is
reduced and the cycle time is shortened. The objective of this study is to present MuCell technology,
examine its application in the industrial field, and examine sample researches.

Kaynakça

  • 1. Hyde, L. J., Kishbaugh, L. A. 2003. “The Mucell Injection Molding Process: A Strategic Cost Savings Technology for Electronic Connectors,” International Institute of Connector and Interconnection Technology, Inc. (IICIT), Annual Symposium, 18-19 September 2003, Orlando, USA.
  • 2. Guanghong, Hu., Yue, W. 2012. “Microcellular Foam Injection Molding Process,” http://www.intechopen.com/books/some-critical-issues-for-injection-molding, son erişim tarihi: 24.05.2016.
  • 3. Endlweber, R., Markut, R., Giessauf, J., Steinbichler, G. 2013. “Das MuCell-Schaumspritzgießen,” Kunststoffe, vol. 11, p. 36-40.
  • 4. Suh, N. P. 2003. “Impact of Microcellular Plastics on Industrial Practice and Academic Researc,” Macromol Symposia, 20 October 2003, Boston, USA.
  • 5. Johannaber, F., Michaeli, W. 2002. Handbuch Spritzgießen, Carl Hanser Verlag, München, Wien.
  • 6. Cha, S. V., Yoon, J. D. 2005. “The Relationship of Mold Temperatures and Swirl Marks on the Surface of Microcellular Plastics,” Polymer-Plastics Technology and Engineering, vol. 44, p. 795–803.
  • 7. Wentao, Z., Jian, Y., Jiasong, H. 2009. “Research Progresses in Preparation of Microcellular Polymers by Supercritical Fluid Technique,” Chinese Polymer Bulletin, no. 3, p. 1- 10.
  • 8. Kisbaugh, L., Kolshorn, U. 2009. “Implementation of the MuCell Process in Commercial Applications,” http://www.trexel.com/injection-molding solutions/pdfs/RAPRA_ May_2009_Advanced_Microcellular_Applications.pdf, son erişim tarihi: 24.05.2016.
  • 9. Çınga, A. O. 2015. “Baloncuk Kullanımı ile Daha İyi Plastik Enjeksiyon,” http://www.makinatek.com.tr/arsiv/yazi/ baloncuk-kullanymy-ile-daha-yyi-plastik-enjeksiyon, son erişim tarihi: 24.05.2016.
  • 10. Sun, X., Kharbas, H., Peng, J., Turng, L. S. 2015. “A Novel Method of Producing Lightweight Microcellular İnjection Molded Parts with İmproved Ductility and Toughness,” Polymer , vol. 56, p. 102-110.
  • 11. Bürkle, E., Wobbe, H. 2014. “Die Bessere Alternative zum Kompaktspritzgießen,” Kunststoffe, no. 2, p. 44-46.
  • 12. Trexel. “MuCell Microcellular Injection Molding Processing Technology,” http://www.cpm-toyo.com/ Brochure/MuCell.pdf, son erişim tarihi: 24.05.2016.
  • 13. Pollman. 2014. “Physical Foaming of Thermop- Lastics at Pollmann International,” http://www.pollmann.at/ fileadmin/downloads/fertigung/en/Physikalisches_Schaeu- men_von_Thermolasten_Pollmann_engl_2014.pdf, son erişim tarihi: 24.05.2016.
  • 14. Chien, R. D., Chen, H. L., Chen, S. C. 2008. “Using Thermally Insulated Polymer Film for Mold Temperature Control to Improve Surface Quality of Microcellular Injection Molded Parts,” International Communications in Heat and Mass Transfer, vol. 35, p. 991–994.
  • 15. Hayashi, H., Mori, T., Okamoto, M., Yamasaki, S., Hayami, H. 2010. “Polyethylene Ionomer-Based Nano-Composite Foams Prepared by a Batch Process and Mucell Injection Molding,” Materials Science and Engineering, vol. 30, p. 62- 70.
  • 16. Chen, S. C., Liao, W. H., Chien R. D. 2012. “Structure and Mechanical Properties of Polystyrene Foams Made Through Microcellular Injection Molding Via Control Mechanisms of Gas Counter Pressure and Mold Temperature,” International Communications in Heat and Mass Transfer, vol. 39, p. 1125–1131.
  • 17. Altstädt, V., Mantey, A. 2010. Thermoplast-SchaumSpritzgießen, Carl Hanser Verlag, München.
  • 18. Kirschling, G. 2009. “Mikroschäume aus Polycarbonat Herstellung-Struktur-Eigenschaften,” Doctoral Dissertation, University of Kassel.
  • 19 Habibi-Naini, S. 2004. “Neue Verfahren für das Thermoplastspritzgießen,” Doctoral Dissertation, RWTH Aachen.
  • 20. Heitkamp, H. Betsche, M. 2014. “Mehr als nur Schaumblaschen,” Kunststoffe, no. 12, p. 25-29.

TERMOPLASTİK PARÇA ÜRETİMİNDE MİKROHÜCRESEL KÖPÜK TEKNOLOJİSİNİN KULLANIMI

Yıl 2016, Cilt: 57 Sayı: 678, 53 - 59, 16.08.2016

Öz

Son yıllarda enjeksiyon kalıplama teknolojisindeki gelişmelerin, termoplastik parça üretiminde kapasite artışını hızlandırdığı ve yenilikçi ürün tasarımına katkı sağladığı görülmektedir. Özellikle enjeksiyon kalıplama teknolojileri arasında mikrohücresel köpük teknolojisi (MuCell), plastik parça kalitesinde iyileşme ve üretim maliyetlerinde sağlamış olduğu avantajların yanı sıra, tasarımda sağlamış
olduğu serbestlik sayesinde otomotivden gıdaya, medikalden beyaz eşya sektörlerine kadar farklı
alanlarda giderek yaygınlaşan yenilikçi bir üretim teknolojisidir. MuCell enjeksiyon yönteminde, süper kritik fazdaki gazların plastikleşme ünitesindeki eriyik haldeki termoplastik malzeme içine enjekte
edilmesi ile gözenek oluşumu başlatılır. Mikrohücresel (1-100μm) boyutlarda oluşan gözeneklerin
plastik parça içindeki dağılımı oldukça homojendir. MuCell enjeksiyon prosesi konvensiyonel enjeksiyon prosesi ile karşılaştırıldığında; MuCell teknolojisi ile üretilen plastik parçalarda, çarpılma ve
çökme izlerinin tamamen ortadan kalktığı, düşük polimer viskozitesi sayesinde ince duvar kalınlığına
sahip plastik parça üretimlerinin sorunsuz bir şekilde gerçekleştiği ve bunun sonucu olarak da parça
ağırlığının azaldığı ve çevirim süresinin kısaldığı görülmektedir. Bu çalışmada, MuCell teknolojisinin
tanıtımı ve endüstriyel alanda yapılan uygulama ve araştırma örneklerinin incelenmesi amaçlanmıştır. 

Kaynakça

  • 1. Hyde, L. J., Kishbaugh, L. A. 2003. “The Mucell Injection Molding Process: A Strategic Cost Savings Technology for Electronic Connectors,” International Institute of Connector and Interconnection Technology, Inc. (IICIT), Annual Symposium, 18-19 September 2003, Orlando, USA.
  • 2. Guanghong, Hu., Yue, W. 2012. “Microcellular Foam Injection Molding Process,” http://www.intechopen.com/books/some-critical-issues-for-injection-molding, son erişim tarihi: 24.05.2016.
  • 3. Endlweber, R., Markut, R., Giessauf, J., Steinbichler, G. 2013. “Das MuCell-Schaumspritzgießen,” Kunststoffe, vol. 11, p. 36-40.
  • 4. Suh, N. P. 2003. “Impact of Microcellular Plastics on Industrial Practice and Academic Researc,” Macromol Symposia, 20 October 2003, Boston, USA.
  • 5. Johannaber, F., Michaeli, W. 2002. Handbuch Spritzgießen, Carl Hanser Verlag, München, Wien.
  • 6. Cha, S. V., Yoon, J. D. 2005. “The Relationship of Mold Temperatures and Swirl Marks on the Surface of Microcellular Plastics,” Polymer-Plastics Technology and Engineering, vol. 44, p. 795–803.
  • 7. Wentao, Z., Jian, Y., Jiasong, H. 2009. “Research Progresses in Preparation of Microcellular Polymers by Supercritical Fluid Technique,” Chinese Polymer Bulletin, no. 3, p. 1- 10.
  • 8. Kisbaugh, L., Kolshorn, U. 2009. “Implementation of the MuCell Process in Commercial Applications,” http://www.trexel.com/injection-molding solutions/pdfs/RAPRA_ May_2009_Advanced_Microcellular_Applications.pdf, son erişim tarihi: 24.05.2016.
  • 9. Çınga, A. O. 2015. “Baloncuk Kullanımı ile Daha İyi Plastik Enjeksiyon,” http://www.makinatek.com.tr/arsiv/yazi/ baloncuk-kullanymy-ile-daha-yyi-plastik-enjeksiyon, son erişim tarihi: 24.05.2016.
  • 10. Sun, X., Kharbas, H., Peng, J., Turng, L. S. 2015. “A Novel Method of Producing Lightweight Microcellular İnjection Molded Parts with İmproved Ductility and Toughness,” Polymer , vol. 56, p. 102-110.
  • 11. Bürkle, E., Wobbe, H. 2014. “Die Bessere Alternative zum Kompaktspritzgießen,” Kunststoffe, no. 2, p. 44-46.
  • 12. Trexel. “MuCell Microcellular Injection Molding Processing Technology,” http://www.cpm-toyo.com/ Brochure/MuCell.pdf, son erişim tarihi: 24.05.2016.
  • 13. Pollman. 2014. “Physical Foaming of Thermop- Lastics at Pollmann International,” http://www.pollmann.at/ fileadmin/downloads/fertigung/en/Physikalisches_Schaeu- men_von_Thermolasten_Pollmann_engl_2014.pdf, son erişim tarihi: 24.05.2016.
  • 14. Chien, R. D., Chen, H. L., Chen, S. C. 2008. “Using Thermally Insulated Polymer Film for Mold Temperature Control to Improve Surface Quality of Microcellular Injection Molded Parts,” International Communications in Heat and Mass Transfer, vol. 35, p. 991–994.
  • 15. Hayashi, H., Mori, T., Okamoto, M., Yamasaki, S., Hayami, H. 2010. “Polyethylene Ionomer-Based Nano-Composite Foams Prepared by a Batch Process and Mucell Injection Molding,” Materials Science and Engineering, vol. 30, p. 62- 70.
  • 16. Chen, S. C., Liao, W. H., Chien R. D. 2012. “Structure and Mechanical Properties of Polystyrene Foams Made Through Microcellular Injection Molding Via Control Mechanisms of Gas Counter Pressure and Mold Temperature,” International Communications in Heat and Mass Transfer, vol. 39, p. 1125–1131.
  • 17. Altstädt, V., Mantey, A. 2010. Thermoplast-SchaumSpritzgießen, Carl Hanser Verlag, München.
  • 18. Kirschling, G. 2009. “Mikroschäume aus Polycarbonat Herstellung-Struktur-Eigenschaften,” Doctoral Dissertation, University of Kassel.
  • 19 Habibi-Naini, S. 2004. “Neue Verfahren für das Thermoplastspritzgießen,” Doctoral Dissertation, RWTH Aachen.
  • 20. Heitkamp, H. Betsche, M. 2014. “Mehr als nur Schaumblaschen,” Kunststoffe, no. 12, p. 25-29.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm icindekiler-sunuş
Yazarlar

Sami Sayer

Arzu Yalçın Melikoğlu

Yayımlanma Tarihi 16 Ağustos 2016
Gönderilme Tarihi 3 Haziran 2016
Kabul Tarihi 11 Temmuz 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 57 Sayı: 678

Kaynak Göster

APA Sayer, S., & Yalçın Melikoğlu, A. (2016). TERMOPLASTİK PARÇA ÜRETİMİNDE MİKROHÜCRESEL KÖPÜK TEKNOLOJİSİNİN KULLANIMI. Mühendis Ve Makina, 57(678), 53-59.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520