Derleme
BibTex RIS Kaynak Göster

Kuş Çarpmaları ve Uçaklara Etkileri Üzerine Bir Gözden Geçirme Çalışması

Yıl 2019, Cilt: 60 Sayı: 696, 192 - 220, 30.10.2019

Öz

Kuş çarpmaları havacılık emniyetine ciddi bir tehdittir. Uçaklardaki yabancı madde hasarlarının % 90’ı kuş çarpmaları kaynaklıdır. Çoğu kuş çarpması, uçak düşük irtifada iken, uçağın kalkış ve inişi sırasında meydana gelir. Uçuş emniyetini sağlamak için, havacılık yönetmelikleri kritik parçalar için (burun, ön cam, motor alığı, kanat veya kuyruk hücum kenarları gibi rüzgaraltı parçalar) kuş çarpmasına karşı belli bir seviyede dayanım isterler. Bu kriterleri sağlayabilmek için hem kuş çarpması testleri yapılır, hem de, testlerin pahalı olmasından dolayı, bilgisayar ortamında numerik simulasyona dayalı analizler yapılır. Testlerde ve analizlerde kullanılacak uygun parametrelerin seçimi, gerçek bir kuş çarpması sonucu uçakta oluşacak hasarın önceden tespit edilebilmesi ve ilgili uçak parçalarının tasarımının buna göre yapılabilmesi açısından büyük önem arz eder. Bu çalışmada, kuş çarpması problemi ile alakalı teorik arka plan, sonlu eleman analizleri (model kuş malzemeleri, kuş modelleme metotları, kuş geometrisi) ve ilgili testlerden bahsedilecektir.

Kaynakça

  • Abrate, S. 2016. “Soft Impacts on Aerospace Structures”, Progress in Aerospace Sciences, vol. 81, p. 1–17.
  • Hedayati, R., Sadighi, M. 2015. Bird strike, an experimental, theorethical and numerical investigation, ISBN: 9780081001134, Woodhead Publishing, UK.
  • FAA Wildlife Strike Database, http://wildlife.faa.gov, 03.07.2018
  • Anderson, A., Carpenter, D. S., Begier, M. J., Blackwell, B. F., DeVault, T. L., Shwiff, S. A. 2015. “Modeling the Cost of Bird Strikes to US Civil Aircraft”, Transportation Research Part D, vol. 38, p. 49–58.
  • Khan, A. I., Kapania, R. K., Johnson, E. R. 2010. “A Review of Soft Body Impact on Composite Structure”, 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, April 12–15, Orlando, FL, USA.
  • Ugrčić, M., Maksimović, S. M., Stamenković, D. P., Maksimović, K. S., Nabil, K. 2015. “Finite Element Modeling of Wing Bird Strike”, FME Transactions, vol. 43, p. 82-87.
  • Heimbs, S. 2011. “Computational Methods for Bird Strike Simulations: A Review”, Computers and Structures, vol. 89, p. 2093–2112.
  • Wilbeck, J. S. 1978. Impact Behavior of Low Strength Projectiles, Technical Report AFML-TR-77-134, Air Force Materials Lab., Wright-Patterson Air Force Base, OH, USA.
  • Wilbeck, J. S., Barber, J. P. 1978. “Bird Impact Loading”, The Shock and Vibration Bulletin, vol. 48, p. 115-122.
  • Barber, J. P., Taylor, H. R., Wilbeck, J. S. 1978. Bird Impact Forces and Pressures on Rigid and Compliant Targets, Technical report AFFDL-TR-77-60, Air Force Flight Dynamics Laboratory, OH, USA.
  • Allaeys, F., Luyckx, G., Paepegem, W. V., Degrieck, J. 2017. “Numerical and Experimental Investigation of the Shock and Steady State Pressures in the Bird Material During Bird Strike”, International Journal of Impact Engineering, vol. 107, p. 12-22.
  • Hedayati, R., Sadighi, M., Aghdam, M. M. 2014. “On the Difference of Pressure Readings From the Numerical, Experimental and Theoretical Results in Different Bird Strike Studies”, Aerospace Science and Technology, vol. 32, p. 260-266
  • Banks, R.B., Chandrasekhara, D.V. 1963. “Experimental Investigation of the Penetration of a High-Velocity Gas Jet Through a Liquid Surface”, Journal of Fluid Mechanics, vol. 15, p. 13-34.
  • Leach, S. J., Walker, G. L., Smith, A. V., Farmer, I. W., Taylor, G. 1966. “Some Aspects of Rock Cutting By High Speed Water Jets [and Discussion]”, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, vol. 260, no. 1110, p. 295-310.
  • Cerquaglia, M. L., Deliege, G., Boman, R., Ponthot, J.P. 2017. “Preliminary Assessment of the Possibilities of the Particle Finite Element Method in the Numerical Simulation of Bird Impact on Aeronautical Structures”, Procedia Engineering, vol. 173, p. 101-108.
  • Riccio, A., Cristiano, R., Saputo, S., Sellitto, A. 2018. “Numerical Methodologies for Simulating Bird-Strike on Composite Wings”, Composite Structures, https://doi.org/10.1016/j.compstruct.2018.03.018
  • Niering E. 1990. “Simulation of Bird Strikes on Turbine Engines”. Journal of Engineering for Gas Turbines and Power, vol. 112, no. 4, p. 573-578.
  • Airoldi, A., Cacchione, B. 2006. “Modelling of Impact Forces and Pressures in Lagrangian Bird Strike Analyses”, International Journal of Impact Engineering, vol. 32, p. 1651-1677.
  • Hanssen, A.G., Girard, Y., Olovsson, L., Berstad, T., Langseth, M. 2006. “A Numerical Model for Bird Strike of Aluminium Foam-Based Sandwich Panels”, International Journal of Impact Engineering, vol. 32, p. 1127-1144.
  • Lucy, L. B. 1977. “A Numerical Approach to the Testing of Fusion Process”, Astronomical Journal, vol. 82, p. 1013-1024.
  • Gingold, R. A., Monaghan, J. J. 1977. “Smoothed Particle Hydrodynamics: Theory and Application to non-spherical Stars”, MNRAS, vol. 181, no. 3, p. 375-389.
  • Audic, S., Berthillier, M., Bonini, J., Bung, H., Combescure, A. 2000. “Prediction of Bird Impact in Hollow Fan Blade”, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 16–19 July, Huntsville, Alabama, USA.
  • Kavitha, M.S., Stanley, C.S. 2012. “Target Parametric Studies on Bird Impact Behaviour of Aircraft Leading Edge”, International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 11, p. 421-428.
  • Zakir, S.M., Li, Y. 2012. “Dynamic Response of the Leading Edge Wing Under Soft Body Impact”, Internation Journal of Crashworthiness, vol. 17, no. 4, p. 357-376.
  • Liu, J., Li, Y.L., Gao, X.S., Yu, X.C. 2014. “A Numerical Model for Bird Strike on the Sidewall Structure of an Aircraft Nose”, Chinese Journal of Aeronautics, vol. 27, no. 3, p. 542-549.
  • Ubels, R., Johnson, A. F., Gallard, J. P., Sunaric, M. 2003. “Design and Testing of a Composite Birdstrike Resistant Leading Edge”, SAMPE Europe Conference & Exhibition, April, Paris, France.
  • McCarthy, M. A., Xiao, J. R., Petrinic, N., Kamoulakos, A., Melito, V. 2005. “Modelling Bird Impacts on an Aircraft Wing – Part 1: Material Modelling of the Fibre Metal Aminate Leading Edge Material With Continuum Damage Mechanics”, International Journal of Crashworthiness, vol. 10, no. 1, p. 41-49.
  • McCarthy, M. A., Xiao, J. R., McCarthy, C. T., Kamoulakos, A., Ramos, J., Gallard, J. P., Melito, V. 2005. “Modelling Bird Impacts on an Aircraft Wing – Part 2: Modelling the Impact with an SPH Bird Model”, International Journal of Crashworthiness, vol. 10, no. 1, p. 51-59.
  • Kermanidis, T., Labeas, G., Sunaric, M., Johnson, A. F., Holzapfel, M. 2006. “Bird Strike Simulation on a Novel Composite Leading Edge Design”, International Journal of Crashworthiness, vol. 11, no. 3, p. 189-202.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N. 2008. “Application of the SPH Method for Simulation of Aerospace Structures Under Impact Loading”, 10th International LS-DYNA Users Conference, p. 35-42.
  • Lavoie, M. A., Gakwaya, A., Richard, M. J., Nandlall, D., Ensan, M. N., Zimcik, D. G. 2010. “Numerical and Experimental Modeling for Bird and Hail Impacts on Aircraft Structure”, Proceedings of the IMAC-XXVIII, February 1-4, Jacksonville, Florida, USA.
  • Georgiadis, S., Gunnion, A. J., Thomson, R. S., Cartwright, B. K. 2008. “Bird-Strike Simulation for Certification of the Boeing 787 Composite Moveable Trailing Edge”, Composite Structures, vol. 86, p. 258-268.
  • Liu, J., Li, Y., Gao, X. 2014. “Bird Strike on a Flat Plate: Experiments and Numerical Simulations”, International Journal of Impact Engineering, vol. 70, p. 21-37.
  • Jun, L., Yulong, L., Xiaosheng, G., Xiancheng, Y. 2014. “A Numerical Model for Bird Strike on Sidewall Structure of an Aircraft Nose”, Chinese Journal of Aeronautics, vol. 27, no. 3, p. 542–549.
  • Hu, D., Song, B., Wang, D., Chen, Z. 2016. “Experiment and Numerical Simulation of a Full-Scale Helicopter Composite Cockpit Structure Subject to a Bird Strike”, Composite Structures, vol. 149, p. 385-397.
  • Heimbs, S., Fischer, U., Theiler, W., Steenbergen, F. 2017. “Numerical Analysis of Bird Strike Resistance of Helicopter Searchlight”, Procedia Structural Integrity, vol. 5, p. 689-696.
  • Orlando, S., Marulo, F., Guida M., Timbrato, F. 2018. “Bird Strike Assessment for a Composite Wing Flap”, International Journal of Crashworthiness, vol. 23, no. 2, p. 219-235.
  • Oenate, E., Idelsohn, S.R., Del Pin, F. Aubry, R. 2004. “The Particle Finite Element Method. An Overview”, International Journal of Computational Methods, vol. 1, no. 2, p. 267-307.
  • Idelsohn, S.R., Oenate, E., Del Pin, F. 2004. “The Particle Finite Element Method: A Powerful Tool to Solve Incompressible Flows With Free-Surfaces and Breaking Waves”, International Journal of Numerical Methods in Engineering, vol. 61, p. 964–989.
  • Cerquaglia, M. L., Deliege, G., Roman, R., Papeleux, L., Ponthot, J. P. 2017. “The Particle Finite Element Method for the Numerical Simulation of Bird Strike”, International Journal of Impact Engineering, vol. 109, p. 1-13.
  • Langrand, B., Bayart , A. S., Chauveau, Y., Deletombe, E. 2002. “Assessment of Multi Physics FE Methods for Bird Strike Modelling-Application to a Metallic Riveted Airframe”, International Journal of Crashworthiness, vol. 7, no. 4, p. 415-428.
  • Jenq, S.T., Hsiao, F.B., Lin, I.C., Zimcik, D. G., Ensan, M. N. 2007. “Simulation of a Rigid Plate Hit by a Cylindrical Hemi-Spherical Tip-Ended Soft Impactor” Computational Materials Science, vol. 39, no. 3, p. 518-526.
  • Guida, M., Marulo, F., Meo, M., Riccio, M. 2008. “Evaluation and Validation of Multiphysics FE Methods to Simulate Bird Strike on a Wing Leading Edge”, 13th European conference on composite materials, June 2–5, Stockholm, Sweden.
  • Smojver, I., Ivancevic, D. 2010. “Coupled Euler Lagrangian Approach Using Abaqus/Explicit in the Bird Strike Aircraft Damage Analysis”, SIMULIA customer conference, May 25–27, Providence, RI.
  • Smojver, I., Ivancevic, D. 2011. “Bird Strike Damage Analysis in Aircraft Structures Using Abaqus/Explicit and Coupled Eulerian Lagrangian Approach”, Composites Science and Technology, vol. 71, p. 489-498.
  • Smojver, I., Ivancevic, D. 2012. “Advanced Modelling of Bird Strike on High Lift Devices Using Hybrid Eulerian-Lagrangian Formulation”, Aerospace Science and Technology, vol. 23, p. 224-232
  • Shmotin, Y. N., Chupin, P. V., Gabov, D. V., Ryabov, A. A., Romanov, V. I., Kukanov, S. S. 2009. “Bird Strike Analysis of Aircraft Engine Fan”, 7th European LS-DYNA users conference, May 14–15, Salzburg, Austria.
  • Guida, M., Marulo, F., Meo, M., Grimaldi, A., Olivares, G. 2011. “SPH – Lagrangian Study of Bird Impact on Leading Edge Wing”, Composite Structures, vol. 93, p. 1060-1071.
  • McCallum, S.C., Constantinou, C. 2005. “The Influence of Bird-Shape in Bird-Strike Analysis”, 5th Europian LS-DYNA Users’ Conference, 25-26 May, Bristol, UK.
  • Frischbier, J., Kraus, A. 2005. “Multiple Stage Turbofan Bird Ingestion Analysis With ALE and SPH Methods”, 17th International symposium on air breathing engines, September 4–9, Munich, Germany.
  • Tho, C. H., Smith, M. R. 2008. “Accurate Bird Strike Simulation Methodology for BA609 Tiltrotor” American Helicopter Society 64th Annual Forum, April 29-May 1, Montréal, Canada.
  • Hachenberg, D., Graf, O., Leopold, T. 2003. “Comparison of Different Approaches for Bird Strike Simulation”, 2nd EADS workshop on crash and impact simulation, December 11, Ottobrunn, Germany.
  • Anghileri, M., Castelletti, L. M. L., Mazza, V. 2005. “Birdstrike: Approaches to the Analysis of Impacts With Penetration”, Impact loading of lightweight structures, ed. Alves, M., Jones, N., ISBN: 978-1-84564-159-7, WIT Press, p. 63-74.
  • Castelletti, L. M. L., Anghileri, M. 2003. “Multiple Birdstrike Analysis – a Survey of Feasible Techniques”, 30th European rotorcraft forum, September 14–16, Marseilles, France, p. 495–505.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N., Zimcik, D. G. 2007. “Validation of Available Approaches for Numerical Bird Strike Modeling Tools”, International Review of Mechanical Engineering, vol. 1, no. 4, p. 380-389.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N., Zimcik, D. G. 2007. “Review of Existing Numerical Methods and Validation Procedure Available for Bird Strike Modeling”, International Conference on Computational & Experimental Engineering and Sciences , vol. 2, no. 4, p. 111-118.
  • Ryabov, A. A., Romanov, V. I., Kukanov, S. S., Shmotin, Y. N., Chupin, P. V. 2007. “Fan Blade Bird Strike Analysis Using Lagrangian, SPH and ALE Approaches”, 6th European LS-DYNA users conference, May 29–30, Gothenburg, Sweden.
  • Ortecho, C. A. H. 2010. Robust birdstrike modeling using Ls-Dyna, Lagrangian, Arbitrary Lagrange Eulerian and Smooth Particle Hydrodynamics models, ISBN: 9783639313062, VDM Verlag, Germany.
  • Zammit, A., Kim, M., Bayandor, J. 2010. “Bird-Strike Damage Tolerance Analysis of Composite Turbofan Engines”, 27th congress of the international council of the aeronautical sciences, September 19–24, Nice, France.
  • Salehi, H., Ziaei-Rad, S., Vaziri-Zanjani, M. A. 2010. “Bird Impact Effects on Different Types of Aircraft Bubble Windows Using Numerical and Experimental Methods”, International Journal of Crashworthiness, vol. 15, no. 1, p. 93-106.
  • Chandra, C., Wong, T. Y., Bayandor, J. 2010. “Crashworthiness Assessment in Aircraft Ditching Incidents”, 27th congress of the international council of the aeronautical sciences, September 19–24, Nice, France.
  • Goyal, V. K., Huertas, C.A., Vasko, T. J. 2013. “Bird-Strike Modeling Based on the Lagrangian Formulation Using LS-DYNA”, American Transactions on Engineering and Applied Sciences, vol. 2, no. 2, p. 57-81.
  • Goyal, V. K., Huertas, C.A., Vasko, T. J. 2013. “Smooth Particle Hydrodynamic Approach for Bird-Strike Analysis Using LS-DYNA”, American Transactions on Engineering and Applied Sciences, vol. 2, no. 2, p. 83-107.
  • Goyal, V. K., Huertas, C.A., Vasko, T. J. 2013. “Arbitrary Lagrange Eulerian Approach for Bird-Strike Analysis Using LS-DYNA”, American Transactions on Engineering and Applied Sciences, vol. 2, no. 2, p. 109-132.
  • Hedayati, R., Ziaei-Rad, S. 2013. “A New Bird Model and the Effect of Bird Geometry in Impacts From Various Orientations”, Aerospace Science and Technology, vol. 28, p. 9–20.
  • Budgey, R. 2000. “The Development of a Substitute Artificial Bird by the International Birdstrike Research Group for Use in Aircraft Component Testing”, 25th Annual Meeting of the International Bird Strike Committee, Amsterdam, p. 17–21.
  • Frischbier J. 1997. “Bird Strike Capability of a Transonic Fan Blisk”, ASME Turboexpo, 2–5 June, Orlando, FL, USA.
  • Brockman, R. A., Held, T. W. 1991. Explicit finite element method for transparency impact analysis, Technical report WL-TR-91-3006, University of Dayton Research Institute, Dayton, OH, USA.
  • Johnson, A. F., Holzapfel, M. 2003. “Modelling Soft Body Impact on Composite Structures”, Composite Structures, vol. 63, p. 103-113.
  • Nizampatnam, L.S., Horn, W. J. 2008. “Investigation of Equation of State Models for Predicting Bird Impact Loads”, 46th AIAA Aerospace Sciences Meeting and Exhibition, June, p. 7–10.
  • Liu, J., Li, Y. L. 2013. “Numerical Simulation of a Rotary Engine Primary Compressor Impacted by Bird”, Chinese Journal of Aeronautics, vol. 26, no. 4, p. 926-934.
  • Mao, R. H., Meguid, S.A., Ng, T. Y. 2008. “Transient Three Dimensional Finite Element Analysis of a Bird Striking a Fan Blade”, International Journal of Mechanics and Materials in Design, vol. 4, no. 1, p. 79-96.
  • Smojver, I., Ivancevic, D. 2010. “Numerical Simulation of Bird Strike Damage Prediction in Airplane Flap Structure”, Composite Structures, vol. 92, p. 2016-2026.
  • Pahange, H., Abolbashari, M. H. 2016. “Mass and Performance Optimization of an Airplane Wing Leading Edge Structure Against Bird Strike Using Taguchi-Based Grey Relational Analysis”, Chinese Journal of Aeronautics, vol. 29, no. 4, p. 934-944.
  • Guida, M., Marulo, F., Meo, M., Riccio, M. 2008. “Analysis of Bird Impact on a Composite Tailplane Leading Edge”, Applied Composite Materials, vol. 15, no. 4-6, p. 242-257.
  • Guida, M., Marulo, F., Polito, T., Meo, M., Riccio, M. 2009. “Design and Testing of a Fiber Metal Laminate Bird Strike Resistant Leading Edge”, Journal of Aircraft, vol. 46, no. 6, p. 2121-2129.
  • Guida, M., Marulo, F., Meo, M., Russo, S. 2013. “Certification by Birdstrike Analysis on C27J Fullscale Ribless Composite Leading Edge”, International Journal of Impact Engineering, vol. 54, p. 105-113.
  • Zhang, D., Fei, Q. 2016. “Effect of Bird Geometry and Impact Orientation in Bird Striking on a Rotary Jet-Engine Fan Analysis Using SPH Method”, Aerospace Science and Technology, vol. 54, p. 320-329.
  • Jin, Y. 2018. “A Review of Research on Bird Impacting on Jet Engines”, IOP Conference Series: Materials Science and Engineering, p. 326. doi:10.1088/1757-899X/326/1/012014.
  • Vignjevic, R., Orlowski, M., Vuyst, T. D., Campbell, J. C. 2013. “A Parametric Study of Bird Strike on Engine Blades”, International Journal of Impact Engineering, vol. 60, p. 44-57.
  • Anghileri, M., Sala, G. 1996. “Theoretical Assessment, Numerical Simulation and Comparison With Tests of Birdstrike on Deformable Structures”, 20th ICAS congress, September 8–13, Sorrento, Italy, p. 665-674.
  • Kari, S., Gabrys, J., Lincks, D. 1998. “Birdstrike Analysis of Radome and Wing Leading Edge Using LS-DYNA”, 5th International LS-DYNA users conference, September 21–22, Southfield, MI.
  • Zhu, S., Tong, M. 2008. “Study on Bird Shape Sensitivity to Dynamic Response of Bird Strike on Aircraft Windshield”, J Nanjing Univ Aeron Astronaut, vol. 40, no. 4, p. 551-555.
  • Zhu, S., Tong, M., Wang, Y. 2008. “Dynamic Analysis of Bird Impact on Aircraft Windshield and Bird Shape Sensitivity Study”, 1st international conference on modeling and simulation, August 5–7, Nanjing, China, p. 137–142.
  • Meguid, S. A., Mao, R. H., Ng, T. Y. 2008. “FE Analysis of Geometry Effects of an Artificial Bird Striking an Aeroengine Fan Blade”, International Journal of Impact Engineering, vol. 35, p. 487-498
  • Kalam, S. A., Kumar, R. V., Janardhana, G. R. 2017. “SPH High Velocity Impact Analysis-Influence of Bird Shape on Rigid Flat Plate”, Materials Today: Proceedings, vol. 4, p. 2564-2572.
  • Nishikawa, M., Hemmi, K., Takeda, N. 2011. “Finite-Element Simulation for Modeling Composite Plates Subjected to Soft-Body, High-Velocity Impact for Application to Bird-Strike Problem of Composite Fan Blades”, Composite Structures, vol. 93, p. 1416-1423.
  • Ivancevic, D., Smojver, I. 2011. “Hybrid Approach in Bird Strike Damage Prediction on Aeronautical Composite Structures”, Composite Structures, vol. 94, p. 15-23.
  • Guo, Y., Jia, P., Hong, G. 2012. “Research on Bird Strike Simulation of Composite Leading Edge”, AASRI Procedia, vol. 3, p. 674-679.
  • Hedayati, R., Ziaei-Rad, S., Eyvazian, A., Hamouda, A. M. 2014. “Bird Strike Analysis on a Typical Helicopter Windshield With Different Lay-Ups”, Journal of Mechanical Science and Technology, vol. 28, no. 4, p. 1381-1392.
  • Mao, R. H., Meguid, S. A., Ng, T. Y. 2009. “Effects of Incidence Angle in Bird Strike on Integrity of Aero-Engine Fan Blade”, International Journal of Crashworthiness, vol. 14, no. 4, p. 295-308.
  • Grimaldi, A., Sollo, A., Guida, M., Marulo, F. 2013. “Parametric Study of a SPH High Velocity Impact Analysis – A birdstrike windshield application”, Composite Structures, vol. 96, p. 616-630.
  • Hedayati, R., Ziaei-Rad, S. 2012. “Effect of Bird Geometry and Orientation on Bird-Target Impact Analysis Using SPH Method”, International Journal of Crashworthiness, vol. 17, no. 4, p. 445-459.
  • Liu, B., Xu, T., Xu, X., Wang, Y., Sun, Y., Li, Y. 2016. “Energy Absorption Mechanism of Polyvinyl Butyral Laminated Windshield Subjected to Head Impact: Experiment and Numerical Simulations”, International Journal of Impact Engineering, vol. 90, p. 26-36.
  • Leski, A., Baraniecki, R., Malachowski, J. 2002. “Numerical Simulation to Study the Influence of the Thickness of Canopy at a Bird Strike”, International Design Conference - Design 2002, May 14-17, Dubrovnik, p. 667-672. Liu, J., Li, Y., Yu, X., Gao, X., Liu. Z. 2018. “Design of Aircraft Structures Against Threat of Bird Strikes”, Chinese Journal of Aeronautics, https://doi.org/10.1016/j.cja.2018.05.004 Barber, J. P., Taylor, H. R., Wilbeck, J. S. 1975. Characterization of bird impacts on a rigid plate: Part I, Technical Report AFFDLTR-75-5, University of Dayton Research Institute, Dayton, OH, USA.
  • Wang, F. S., Yue, Z. F. 2010. “Numerical Simulation of Damage and Failure in Aircraft Windshield Structure Against Bird Strike”, Materials and Design, vol. 31, p. 687-695.
  • Zhu, S., Tong, M., Wang, Y. 2009. “Experiment and Numerical Simulation of a Full-Scale Aircraft Windshield Subjected to Bird Impact”, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-7 May, Palm Springs, California, USA.
  • Richard, B. 2000. “The Development of a Substitute Artificial Bird by the International Bird Strike Research Group for Use in Aircraft Component Testing”, International Bird Strike Committee ISBC25/WP-IE3, Amsterdam.
  • Allaeys, F., Luyckx, G., Paepegem, W. V., Degrieck, J. 2017. “Characterization of Real and Substitute Birds Through Experimental and Numerical Analysis of Momentum, Average Impact Force and Residual Energy in Bird Strike on Three Rigid Targets: A Flat Plate, a Wedge and a Splitter”, International Journal of Impact Engineering, vol. 99, p. 1-13.
  • Liu, J., Li, Y., Yu, X., Tang, Z., Gao, X., Lv, J., Zhang, Z. 2017. “A Novel Design for Reinforcing the Aircraft Tail Leading Edge Structure Against Bird Strike”, International Journal of Impact Engineering, vol. 105, p. 89-101.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N., Zimcik, D. G., Nandlall, D. 2009. “Bird’s Substitute Tests Results and Evaluation of Available Numerical Methods”, International Journal of Impact Engineering, vol. 36, p. 1276-1287.
  • Nagraj, R. G., Venkatesha, C. S., Jain, R. 2014. “Investigation of Bird Strike Phenomena on Shape Memory Alloy”, Procedia Materials Science, vol. 5, p. 50-59.

A Review on Bird Strike and its Effect on Aircrafts

Yıl 2019, Cilt: 60 Sayı: 696, 192 - 220, 30.10.2019

Öz

Bird strike is a significant threat to aviation safety. Of all foreign object damages to aircraft, 90 % can be attributed to the bird strikes. Most bird strikes are occurred when an aircraft is at a low altitude during take-off and landing phases of a flight. To ensure flight safety, aviation regulations require a certain level of bird strike resistance for critical components (windward components such as nose, windshield, motor engine inlet, wing or tail leading edges). To meet these regulations, both bird strike tests are conducted experimentally and also analyses based on numerical simulation are made in computer environment due to expensiveness of these tests. Choosing the proper parameters in the tests and the analyses is very important in order to be able to pre-determine the damage following a real bird strike event and to design related components in accordance with these parameters. This paper reviews theoretical background, the finite element analyses (based on substitute bird materials, bird modelling methods, bird geometry) and related tests about bird strike problem.

Kaynakça

  • Abrate, S. 2016. “Soft Impacts on Aerospace Structures”, Progress in Aerospace Sciences, vol. 81, p. 1–17.
  • Hedayati, R., Sadighi, M. 2015. Bird strike, an experimental, theorethical and numerical investigation, ISBN: 9780081001134, Woodhead Publishing, UK.
  • FAA Wildlife Strike Database, http://wildlife.faa.gov, 03.07.2018
  • Anderson, A., Carpenter, D. S., Begier, M. J., Blackwell, B. F., DeVault, T. L., Shwiff, S. A. 2015. “Modeling the Cost of Bird Strikes to US Civil Aircraft”, Transportation Research Part D, vol. 38, p. 49–58.
  • Khan, A. I., Kapania, R. K., Johnson, E. R. 2010. “A Review of Soft Body Impact on Composite Structure”, 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, April 12–15, Orlando, FL, USA.
  • Ugrčić, M., Maksimović, S. M., Stamenković, D. P., Maksimović, K. S., Nabil, K. 2015. “Finite Element Modeling of Wing Bird Strike”, FME Transactions, vol. 43, p. 82-87.
  • Heimbs, S. 2011. “Computational Methods for Bird Strike Simulations: A Review”, Computers and Structures, vol. 89, p. 2093–2112.
  • Wilbeck, J. S. 1978. Impact Behavior of Low Strength Projectiles, Technical Report AFML-TR-77-134, Air Force Materials Lab., Wright-Patterson Air Force Base, OH, USA.
  • Wilbeck, J. S., Barber, J. P. 1978. “Bird Impact Loading”, The Shock and Vibration Bulletin, vol. 48, p. 115-122.
  • Barber, J. P., Taylor, H. R., Wilbeck, J. S. 1978. Bird Impact Forces and Pressures on Rigid and Compliant Targets, Technical report AFFDL-TR-77-60, Air Force Flight Dynamics Laboratory, OH, USA.
  • Allaeys, F., Luyckx, G., Paepegem, W. V., Degrieck, J. 2017. “Numerical and Experimental Investigation of the Shock and Steady State Pressures in the Bird Material During Bird Strike”, International Journal of Impact Engineering, vol. 107, p. 12-22.
  • Hedayati, R., Sadighi, M., Aghdam, M. M. 2014. “On the Difference of Pressure Readings From the Numerical, Experimental and Theoretical Results in Different Bird Strike Studies”, Aerospace Science and Technology, vol. 32, p. 260-266
  • Banks, R.B., Chandrasekhara, D.V. 1963. “Experimental Investigation of the Penetration of a High-Velocity Gas Jet Through a Liquid Surface”, Journal of Fluid Mechanics, vol. 15, p. 13-34.
  • Leach, S. J., Walker, G. L., Smith, A. V., Farmer, I. W., Taylor, G. 1966. “Some Aspects of Rock Cutting By High Speed Water Jets [and Discussion]”, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, vol. 260, no. 1110, p. 295-310.
  • Cerquaglia, M. L., Deliege, G., Boman, R., Ponthot, J.P. 2017. “Preliminary Assessment of the Possibilities of the Particle Finite Element Method in the Numerical Simulation of Bird Impact on Aeronautical Structures”, Procedia Engineering, vol. 173, p. 101-108.
  • Riccio, A., Cristiano, R., Saputo, S., Sellitto, A. 2018. “Numerical Methodologies for Simulating Bird-Strike on Composite Wings”, Composite Structures, https://doi.org/10.1016/j.compstruct.2018.03.018
  • Niering E. 1990. “Simulation of Bird Strikes on Turbine Engines”. Journal of Engineering for Gas Turbines and Power, vol. 112, no. 4, p. 573-578.
  • Airoldi, A., Cacchione, B. 2006. “Modelling of Impact Forces and Pressures in Lagrangian Bird Strike Analyses”, International Journal of Impact Engineering, vol. 32, p. 1651-1677.
  • Hanssen, A.G., Girard, Y., Olovsson, L., Berstad, T., Langseth, M. 2006. “A Numerical Model for Bird Strike of Aluminium Foam-Based Sandwich Panels”, International Journal of Impact Engineering, vol. 32, p. 1127-1144.
  • Lucy, L. B. 1977. “A Numerical Approach to the Testing of Fusion Process”, Astronomical Journal, vol. 82, p. 1013-1024.
  • Gingold, R. A., Monaghan, J. J. 1977. “Smoothed Particle Hydrodynamics: Theory and Application to non-spherical Stars”, MNRAS, vol. 181, no. 3, p. 375-389.
  • Audic, S., Berthillier, M., Bonini, J., Bung, H., Combescure, A. 2000. “Prediction of Bird Impact in Hollow Fan Blade”, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 16–19 July, Huntsville, Alabama, USA.
  • Kavitha, M.S., Stanley, C.S. 2012. “Target Parametric Studies on Bird Impact Behaviour of Aircraft Leading Edge”, International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 11, p. 421-428.
  • Zakir, S.M., Li, Y. 2012. “Dynamic Response of the Leading Edge Wing Under Soft Body Impact”, Internation Journal of Crashworthiness, vol. 17, no. 4, p. 357-376.
  • Liu, J., Li, Y.L., Gao, X.S., Yu, X.C. 2014. “A Numerical Model for Bird Strike on the Sidewall Structure of an Aircraft Nose”, Chinese Journal of Aeronautics, vol. 27, no. 3, p. 542-549.
  • Ubels, R., Johnson, A. F., Gallard, J. P., Sunaric, M. 2003. “Design and Testing of a Composite Birdstrike Resistant Leading Edge”, SAMPE Europe Conference & Exhibition, April, Paris, France.
  • McCarthy, M. A., Xiao, J. R., Petrinic, N., Kamoulakos, A., Melito, V. 2005. “Modelling Bird Impacts on an Aircraft Wing – Part 1: Material Modelling of the Fibre Metal Aminate Leading Edge Material With Continuum Damage Mechanics”, International Journal of Crashworthiness, vol. 10, no. 1, p. 41-49.
  • McCarthy, M. A., Xiao, J. R., McCarthy, C. T., Kamoulakos, A., Ramos, J., Gallard, J. P., Melito, V. 2005. “Modelling Bird Impacts on an Aircraft Wing – Part 2: Modelling the Impact with an SPH Bird Model”, International Journal of Crashworthiness, vol. 10, no. 1, p. 51-59.
  • Kermanidis, T., Labeas, G., Sunaric, M., Johnson, A. F., Holzapfel, M. 2006. “Bird Strike Simulation on a Novel Composite Leading Edge Design”, International Journal of Crashworthiness, vol. 11, no. 3, p. 189-202.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N. 2008. “Application of the SPH Method for Simulation of Aerospace Structures Under Impact Loading”, 10th International LS-DYNA Users Conference, p. 35-42.
  • Lavoie, M. A., Gakwaya, A., Richard, M. J., Nandlall, D., Ensan, M. N., Zimcik, D. G. 2010. “Numerical and Experimental Modeling for Bird and Hail Impacts on Aircraft Structure”, Proceedings of the IMAC-XXVIII, February 1-4, Jacksonville, Florida, USA.
  • Georgiadis, S., Gunnion, A. J., Thomson, R. S., Cartwright, B. K. 2008. “Bird-Strike Simulation for Certification of the Boeing 787 Composite Moveable Trailing Edge”, Composite Structures, vol. 86, p. 258-268.
  • Liu, J., Li, Y., Gao, X. 2014. “Bird Strike on a Flat Plate: Experiments and Numerical Simulations”, International Journal of Impact Engineering, vol. 70, p. 21-37.
  • Jun, L., Yulong, L., Xiaosheng, G., Xiancheng, Y. 2014. “A Numerical Model for Bird Strike on Sidewall Structure of an Aircraft Nose”, Chinese Journal of Aeronautics, vol. 27, no. 3, p. 542–549.
  • Hu, D., Song, B., Wang, D., Chen, Z. 2016. “Experiment and Numerical Simulation of a Full-Scale Helicopter Composite Cockpit Structure Subject to a Bird Strike”, Composite Structures, vol. 149, p. 385-397.
  • Heimbs, S., Fischer, U., Theiler, W., Steenbergen, F. 2017. “Numerical Analysis of Bird Strike Resistance of Helicopter Searchlight”, Procedia Structural Integrity, vol. 5, p. 689-696.
  • Orlando, S., Marulo, F., Guida M., Timbrato, F. 2018. “Bird Strike Assessment for a Composite Wing Flap”, International Journal of Crashworthiness, vol. 23, no. 2, p. 219-235.
  • Oenate, E., Idelsohn, S.R., Del Pin, F. Aubry, R. 2004. “The Particle Finite Element Method. An Overview”, International Journal of Computational Methods, vol. 1, no. 2, p. 267-307.
  • Idelsohn, S.R., Oenate, E., Del Pin, F. 2004. “The Particle Finite Element Method: A Powerful Tool to Solve Incompressible Flows With Free-Surfaces and Breaking Waves”, International Journal of Numerical Methods in Engineering, vol. 61, p. 964–989.
  • Cerquaglia, M. L., Deliege, G., Roman, R., Papeleux, L., Ponthot, J. P. 2017. “The Particle Finite Element Method for the Numerical Simulation of Bird Strike”, International Journal of Impact Engineering, vol. 109, p. 1-13.
  • Langrand, B., Bayart , A. S., Chauveau, Y., Deletombe, E. 2002. “Assessment of Multi Physics FE Methods for Bird Strike Modelling-Application to a Metallic Riveted Airframe”, International Journal of Crashworthiness, vol. 7, no. 4, p. 415-428.
  • Jenq, S.T., Hsiao, F.B., Lin, I.C., Zimcik, D. G., Ensan, M. N. 2007. “Simulation of a Rigid Plate Hit by a Cylindrical Hemi-Spherical Tip-Ended Soft Impactor” Computational Materials Science, vol. 39, no. 3, p. 518-526.
  • Guida, M., Marulo, F., Meo, M., Riccio, M. 2008. “Evaluation and Validation of Multiphysics FE Methods to Simulate Bird Strike on a Wing Leading Edge”, 13th European conference on composite materials, June 2–5, Stockholm, Sweden.
  • Smojver, I., Ivancevic, D. 2010. “Coupled Euler Lagrangian Approach Using Abaqus/Explicit in the Bird Strike Aircraft Damage Analysis”, SIMULIA customer conference, May 25–27, Providence, RI.
  • Smojver, I., Ivancevic, D. 2011. “Bird Strike Damage Analysis in Aircraft Structures Using Abaqus/Explicit and Coupled Eulerian Lagrangian Approach”, Composites Science and Technology, vol. 71, p. 489-498.
  • Smojver, I., Ivancevic, D. 2012. “Advanced Modelling of Bird Strike on High Lift Devices Using Hybrid Eulerian-Lagrangian Formulation”, Aerospace Science and Technology, vol. 23, p. 224-232
  • Shmotin, Y. N., Chupin, P. V., Gabov, D. V., Ryabov, A. A., Romanov, V. I., Kukanov, S. S. 2009. “Bird Strike Analysis of Aircraft Engine Fan”, 7th European LS-DYNA users conference, May 14–15, Salzburg, Austria.
  • Guida, M., Marulo, F., Meo, M., Grimaldi, A., Olivares, G. 2011. “SPH – Lagrangian Study of Bird Impact on Leading Edge Wing”, Composite Structures, vol. 93, p. 1060-1071.
  • McCallum, S.C., Constantinou, C. 2005. “The Influence of Bird-Shape in Bird-Strike Analysis”, 5th Europian LS-DYNA Users’ Conference, 25-26 May, Bristol, UK.
  • Frischbier, J., Kraus, A. 2005. “Multiple Stage Turbofan Bird Ingestion Analysis With ALE and SPH Methods”, 17th International symposium on air breathing engines, September 4–9, Munich, Germany.
  • Tho, C. H., Smith, M. R. 2008. “Accurate Bird Strike Simulation Methodology for BA609 Tiltrotor” American Helicopter Society 64th Annual Forum, April 29-May 1, Montréal, Canada.
  • Hachenberg, D., Graf, O., Leopold, T. 2003. “Comparison of Different Approaches for Bird Strike Simulation”, 2nd EADS workshop on crash and impact simulation, December 11, Ottobrunn, Germany.
  • Anghileri, M., Castelletti, L. M. L., Mazza, V. 2005. “Birdstrike: Approaches to the Analysis of Impacts With Penetration”, Impact loading of lightweight structures, ed. Alves, M., Jones, N., ISBN: 978-1-84564-159-7, WIT Press, p. 63-74.
  • Castelletti, L. M. L., Anghileri, M. 2003. “Multiple Birdstrike Analysis – a Survey of Feasible Techniques”, 30th European rotorcraft forum, September 14–16, Marseilles, France, p. 495–505.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N., Zimcik, D. G. 2007. “Validation of Available Approaches for Numerical Bird Strike Modeling Tools”, International Review of Mechanical Engineering, vol. 1, no. 4, p. 380-389.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N., Zimcik, D. G. 2007. “Review of Existing Numerical Methods and Validation Procedure Available for Bird Strike Modeling”, International Conference on Computational & Experimental Engineering and Sciences , vol. 2, no. 4, p. 111-118.
  • Ryabov, A. A., Romanov, V. I., Kukanov, S. S., Shmotin, Y. N., Chupin, P. V. 2007. “Fan Blade Bird Strike Analysis Using Lagrangian, SPH and ALE Approaches”, 6th European LS-DYNA users conference, May 29–30, Gothenburg, Sweden.
  • Ortecho, C. A. H. 2010. Robust birdstrike modeling using Ls-Dyna, Lagrangian, Arbitrary Lagrange Eulerian and Smooth Particle Hydrodynamics models, ISBN: 9783639313062, VDM Verlag, Germany.
  • Zammit, A., Kim, M., Bayandor, J. 2010. “Bird-Strike Damage Tolerance Analysis of Composite Turbofan Engines”, 27th congress of the international council of the aeronautical sciences, September 19–24, Nice, France.
  • Salehi, H., Ziaei-Rad, S., Vaziri-Zanjani, M. A. 2010. “Bird Impact Effects on Different Types of Aircraft Bubble Windows Using Numerical and Experimental Methods”, International Journal of Crashworthiness, vol. 15, no. 1, p. 93-106.
  • Chandra, C., Wong, T. Y., Bayandor, J. 2010. “Crashworthiness Assessment in Aircraft Ditching Incidents”, 27th congress of the international council of the aeronautical sciences, September 19–24, Nice, France.
  • Goyal, V. K., Huertas, C.A., Vasko, T. J. 2013. “Bird-Strike Modeling Based on the Lagrangian Formulation Using LS-DYNA”, American Transactions on Engineering and Applied Sciences, vol. 2, no. 2, p. 57-81.
  • Goyal, V. K., Huertas, C.A., Vasko, T. J. 2013. “Smooth Particle Hydrodynamic Approach for Bird-Strike Analysis Using LS-DYNA”, American Transactions on Engineering and Applied Sciences, vol. 2, no. 2, p. 83-107.
  • Goyal, V. K., Huertas, C.A., Vasko, T. J. 2013. “Arbitrary Lagrange Eulerian Approach for Bird-Strike Analysis Using LS-DYNA”, American Transactions on Engineering and Applied Sciences, vol. 2, no. 2, p. 109-132.
  • Hedayati, R., Ziaei-Rad, S. 2013. “A New Bird Model and the Effect of Bird Geometry in Impacts From Various Orientations”, Aerospace Science and Technology, vol. 28, p. 9–20.
  • Budgey, R. 2000. “The Development of a Substitute Artificial Bird by the International Birdstrike Research Group for Use in Aircraft Component Testing”, 25th Annual Meeting of the International Bird Strike Committee, Amsterdam, p. 17–21.
  • Frischbier J. 1997. “Bird Strike Capability of a Transonic Fan Blisk”, ASME Turboexpo, 2–5 June, Orlando, FL, USA.
  • Brockman, R. A., Held, T. W. 1991. Explicit finite element method for transparency impact analysis, Technical report WL-TR-91-3006, University of Dayton Research Institute, Dayton, OH, USA.
  • Johnson, A. F., Holzapfel, M. 2003. “Modelling Soft Body Impact on Composite Structures”, Composite Structures, vol. 63, p. 103-113.
  • Nizampatnam, L.S., Horn, W. J. 2008. “Investigation of Equation of State Models for Predicting Bird Impact Loads”, 46th AIAA Aerospace Sciences Meeting and Exhibition, June, p. 7–10.
  • Liu, J., Li, Y. L. 2013. “Numerical Simulation of a Rotary Engine Primary Compressor Impacted by Bird”, Chinese Journal of Aeronautics, vol. 26, no. 4, p. 926-934.
  • Mao, R. H., Meguid, S.A., Ng, T. Y. 2008. “Transient Three Dimensional Finite Element Analysis of a Bird Striking a Fan Blade”, International Journal of Mechanics and Materials in Design, vol. 4, no. 1, p. 79-96.
  • Smojver, I., Ivancevic, D. 2010. “Numerical Simulation of Bird Strike Damage Prediction in Airplane Flap Structure”, Composite Structures, vol. 92, p. 2016-2026.
  • Pahange, H., Abolbashari, M. H. 2016. “Mass and Performance Optimization of an Airplane Wing Leading Edge Structure Against Bird Strike Using Taguchi-Based Grey Relational Analysis”, Chinese Journal of Aeronautics, vol. 29, no. 4, p. 934-944.
  • Guida, M., Marulo, F., Meo, M., Riccio, M. 2008. “Analysis of Bird Impact on a Composite Tailplane Leading Edge”, Applied Composite Materials, vol. 15, no. 4-6, p. 242-257.
  • Guida, M., Marulo, F., Polito, T., Meo, M., Riccio, M. 2009. “Design and Testing of a Fiber Metal Laminate Bird Strike Resistant Leading Edge”, Journal of Aircraft, vol. 46, no. 6, p. 2121-2129.
  • Guida, M., Marulo, F., Meo, M., Russo, S. 2013. “Certification by Birdstrike Analysis on C27J Fullscale Ribless Composite Leading Edge”, International Journal of Impact Engineering, vol. 54, p. 105-113.
  • Zhang, D., Fei, Q. 2016. “Effect of Bird Geometry and Impact Orientation in Bird Striking on a Rotary Jet-Engine Fan Analysis Using SPH Method”, Aerospace Science and Technology, vol. 54, p. 320-329.
  • Jin, Y. 2018. “A Review of Research on Bird Impacting on Jet Engines”, IOP Conference Series: Materials Science and Engineering, p. 326. doi:10.1088/1757-899X/326/1/012014.
  • Vignjevic, R., Orlowski, M., Vuyst, T. D., Campbell, J. C. 2013. “A Parametric Study of Bird Strike on Engine Blades”, International Journal of Impact Engineering, vol. 60, p. 44-57.
  • Anghileri, M., Sala, G. 1996. “Theoretical Assessment, Numerical Simulation and Comparison With Tests of Birdstrike on Deformable Structures”, 20th ICAS congress, September 8–13, Sorrento, Italy, p. 665-674.
  • Kari, S., Gabrys, J., Lincks, D. 1998. “Birdstrike Analysis of Radome and Wing Leading Edge Using LS-DYNA”, 5th International LS-DYNA users conference, September 21–22, Southfield, MI.
  • Zhu, S., Tong, M. 2008. “Study on Bird Shape Sensitivity to Dynamic Response of Bird Strike on Aircraft Windshield”, J Nanjing Univ Aeron Astronaut, vol. 40, no. 4, p. 551-555.
  • Zhu, S., Tong, M., Wang, Y. 2008. “Dynamic Analysis of Bird Impact on Aircraft Windshield and Bird Shape Sensitivity Study”, 1st international conference on modeling and simulation, August 5–7, Nanjing, China, p. 137–142.
  • Meguid, S. A., Mao, R. H., Ng, T. Y. 2008. “FE Analysis of Geometry Effects of an Artificial Bird Striking an Aeroengine Fan Blade”, International Journal of Impact Engineering, vol. 35, p. 487-498
  • Kalam, S. A., Kumar, R. V., Janardhana, G. R. 2017. “SPH High Velocity Impact Analysis-Influence of Bird Shape on Rigid Flat Plate”, Materials Today: Proceedings, vol. 4, p. 2564-2572.
  • Nishikawa, M., Hemmi, K., Takeda, N. 2011. “Finite-Element Simulation for Modeling Composite Plates Subjected to Soft-Body, High-Velocity Impact for Application to Bird-Strike Problem of Composite Fan Blades”, Composite Structures, vol. 93, p. 1416-1423.
  • Ivancevic, D., Smojver, I. 2011. “Hybrid Approach in Bird Strike Damage Prediction on Aeronautical Composite Structures”, Composite Structures, vol. 94, p. 15-23.
  • Guo, Y., Jia, P., Hong, G. 2012. “Research on Bird Strike Simulation of Composite Leading Edge”, AASRI Procedia, vol. 3, p. 674-679.
  • Hedayati, R., Ziaei-Rad, S., Eyvazian, A., Hamouda, A. M. 2014. “Bird Strike Analysis on a Typical Helicopter Windshield With Different Lay-Ups”, Journal of Mechanical Science and Technology, vol. 28, no. 4, p. 1381-1392.
  • Mao, R. H., Meguid, S. A., Ng, T. Y. 2009. “Effects of Incidence Angle in Bird Strike on Integrity of Aero-Engine Fan Blade”, International Journal of Crashworthiness, vol. 14, no. 4, p. 295-308.
  • Grimaldi, A., Sollo, A., Guida, M., Marulo, F. 2013. “Parametric Study of a SPH High Velocity Impact Analysis – A birdstrike windshield application”, Composite Structures, vol. 96, p. 616-630.
  • Hedayati, R., Ziaei-Rad, S. 2012. “Effect of Bird Geometry and Orientation on Bird-Target Impact Analysis Using SPH Method”, International Journal of Crashworthiness, vol. 17, no. 4, p. 445-459.
  • Liu, B., Xu, T., Xu, X., Wang, Y., Sun, Y., Li, Y. 2016. “Energy Absorption Mechanism of Polyvinyl Butyral Laminated Windshield Subjected to Head Impact: Experiment and Numerical Simulations”, International Journal of Impact Engineering, vol. 90, p. 26-36.
  • Leski, A., Baraniecki, R., Malachowski, J. 2002. “Numerical Simulation to Study the Influence of the Thickness of Canopy at a Bird Strike”, International Design Conference - Design 2002, May 14-17, Dubrovnik, p. 667-672. Liu, J., Li, Y., Yu, X., Gao, X., Liu. Z. 2018. “Design of Aircraft Structures Against Threat of Bird Strikes”, Chinese Journal of Aeronautics, https://doi.org/10.1016/j.cja.2018.05.004 Barber, J. P., Taylor, H. R., Wilbeck, J. S. 1975. Characterization of bird impacts on a rigid plate: Part I, Technical Report AFFDLTR-75-5, University of Dayton Research Institute, Dayton, OH, USA.
  • Wang, F. S., Yue, Z. F. 2010. “Numerical Simulation of Damage and Failure in Aircraft Windshield Structure Against Bird Strike”, Materials and Design, vol. 31, p. 687-695.
  • Zhu, S., Tong, M., Wang, Y. 2009. “Experiment and Numerical Simulation of a Full-Scale Aircraft Windshield Subjected to Bird Impact”, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-7 May, Palm Springs, California, USA.
  • Richard, B. 2000. “The Development of a Substitute Artificial Bird by the International Bird Strike Research Group for Use in Aircraft Component Testing”, International Bird Strike Committee ISBC25/WP-IE3, Amsterdam.
  • Allaeys, F., Luyckx, G., Paepegem, W. V., Degrieck, J. 2017. “Characterization of Real and Substitute Birds Through Experimental and Numerical Analysis of Momentum, Average Impact Force and Residual Energy in Bird Strike on Three Rigid Targets: A Flat Plate, a Wedge and a Splitter”, International Journal of Impact Engineering, vol. 99, p. 1-13.
  • Liu, J., Li, Y., Yu, X., Tang, Z., Gao, X., Lv, J., Zhang, Z. 2017. “A Novel Design for Reinforcing the Aircraft Tail Leading Edge Structure Against Bird Strike”, International Journal of Impact Engineering, vol. 105, p. 89-101.
  • Lavoie, M. A., Gakwaya, A., Ensan, M. N., Zimcik, D. G., Nandlall, D. 2009. “Bird’s Substitute Tests Results and Evaluation of Available Numerical Methods”, International Journal of Impact Engineering, vol. 36, p. 1276-1287.
  • Nagraj, R. G., Venkatesha, C. S., Jain, R. 2014. “Investigation of Bird Strike Phenomena on Shape Memory Alloy”, Procedia Materials Science, vol. 5, p. 50-59.
Toplam 102 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm icindekiler-sunuş
Yazarlar

Orhan Gülcan 0000-0002-6688-2662

Yayımlanma Tarihi 30 Ekim 2019
Gönderilme Tarihi 3 Temmuz 2018
Kabul Tarihi 11 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 60 Sayı: 696

Kaynak Göster

APA Gülcan, O. (2019). Kuş Çarpmaları ve Uçaklara Etkileri Üzerine Bir Gözden Geçirme Çalışması. Mühendis Ve Makina, 60(696), 192-220.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520