Derleme
BibTex RIS Kaynak Göster

Today, Tomorrow, and the Future of Energy Storage Materials for Solar Energy

Yıl 2021, Cilt: 62 Sayı: 702, 70 - 90, 11.03.2021
https://doi.org/10.46399/muhendismakina.797433

Öz

Increasing global energy demand and environmental concerns due to the emissions of greenhouse gases as by-products of fossil fuel consumption have led to the exploration of the potential of renewable energy sources such as solar, biofuel, hydrothermal energy etc. Among these, solar thermal energy is becoming highly desirable source of renewable energy because of the widespread availability of solar radiations and the progress achieved in its efficiency and effectiveness. Different forms of thermal storage especially thermochemical storage (TCS), latent heat storage (LHS), and sensible heat storage (SHS) have been reported so far. Likewise, there are studies in the literature which also focus on the main mechanical energy storage systems. In addition, electrochemical energy storage devices like batteries are increasingly gaining popularity. Recently investigated materials for various solar storage forms show great potential as the future storage materials since theoretical limits are not reached yet; however, they are still in experimental stage and this paper presents glimpse of those potential studies.

Destekleyen Kurum

Erciyes Üniversitesi

Proje Numarası

FKB-2019-9134 and FHD-2019-9132

Teşekkür

The authors would like to thank the Scientific Research Projects Unit of Erciyes University for funding and supporting.

Kaynakça

  • [1] Mofijur M, Masjuki HH, Kalam M, Atabani AE, Fattah IR, Mobarak H. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial crops and products. 2014;53:78-84.
  • [2] Mofijur M, Masjuki H, Kalam M, Hazrat M, Liaquat A, Shahabuddin M, et al. Prospects of biodiesel from Jatropha in Malaysia. Renewable and Sustainable Energy Reviews. 2012;16:5007-20.
  • [3] Mofijur M, Masjuki H, Kalam M, Atabani A. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy. 2013;55:879-87.
  • [4] Neagu O, Teodoru MC. The relationship between economic complexity, energy consumption structure and greenhouse gas emission: Heterogeneous panel evidence from the EU countries. Sustainability. 2019;11:497.
  • [5] Goh BHH, Ong HC, Cheah MY, Chen W-H, Yu KL, Mahlia TMI. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renewable and Sustainable Energy Reviews. 2019;107:59-74.
  • [6] Prasad DR, Senthilkumar R, Lakshmanarao G, Krishnan S, Prasad BN. A critical review on thermal energy storage materials and systems for solar applications. AIMS Energy. 2019;7:507.
  • [7] Martinopoulos G. Life Cycle Assessment of solar energy conversion systems in energetic retrofitted buildings. Journal of Building Engineering. 2018;20:256-63.
  • [8] H Abedin A, A Rosen M. A critical review of thermochemical energy storage systems. The open renewable energy journal. 2011;4.
  • [9] Dharma S, Masjuki H, Ong HC, Sebayang A, Silitonga A, Kusumo F, et al. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology. Energy Conversion and Management. 2016;115:178-90.
  • [10] Silitonga A, Atabani A, Mahlia T, Masjuki H, Badruddin IA, Mekhilef S. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews. 2011;15:3733-56.
  • [11] Ong HC, Masjuki H, Mahlia T, Silitonga A, Chong W, Leong K. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Conversion and Management. 2014;81:30-40.
  • [12] Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Applied Energy. 2015;160:286-307.
  • [13] Shivashankar S, Mekhilef S, Mokhlis H, Karimi M. Mitigating methods of power fluctuation of photovoltaic (PV) sources–A review. Renewable and Sustainable Energy Reviews. 2016;59:1170-84.
  • [14] DeWinter F. Solar collectors, energy storage, and materials: MIT press; 1990.
  • [15] Silitonga AS, Masjuki HH, Ong HC, Sebayang AH, Dharma S, Kusumo F, et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy. 2018;159:1075-87.
  • [16] Martinopoulos G, Tsalikis G. Diffusion and adoption of solar energy conversion systems–The case of Greece. Energy. 2018;144:800-7.
  • [17] Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power. Solar energy materials and solar cells. 2011;95:2703-25.
  • [18] Powell KM, Edgar TF. Control of a large scale solar thermal energy storage system. Proceedings of the 2011 American control conference: IEEE; 2011. p. 1530-5.
  • [19] Zhao C, Wu Z. Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Solar Energy Materials and Solar Cells. 2011;95:3341-6.
  • [20] Cabeza LF. Advances in thermal energy storage systems: Methods and applications: Elsevier; 2014.
  • [21] Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews. 2010;14:31-55.
  • [22] Hasnain S. Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy conversion and management. 1998;39:1127-38.
  • [23] Kousksou T, Bruel P, Jamil A, El Rhafiki T, Zeraouli Y. Energy storage: Applications and challenges. Solar Energy Materials and Solar Cells. 2014;120:59-80.
  • [24] Badran AA, Jubran BA. Fuel oil heating by a trickle solar collector. Energy conversion and management. 2001;42:1637-45.
  • [25] Marchã J, Osório T, Pereira MC, Horta P. Development and test results of a calorimetric technique for solar thermal testing loops, enabling mass flow and Cp measurements independent from fluid properties of the HTF used. Energy Procedia. 2014;49:2125-34.
  • [26] Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renewable and Sustainable Energy Reviews. 2012;16:2118-32.
  • [27] Wang T, Mantha D, Reddy RG. Novel low melting point quaternary eutectic system for solar thermal energy storage. Applied energy. 2013;102:1422-9.
  • [28] Cárdenas B, León N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and sustainable energy reviews. 2013;27:724-37.
  • [29] Hänchen M, Brückner S, Steinfeld A. High-temperature thermal storage using a packed bed of rocks–heat transfer analysis and experimental validation. Applied Thermal Engineering. 2011;31:1798-806.
  • [30] Martins M, Villalobos U, Delclos T, Armstrong P, Bergan PG, Calvet N. New concentrating solar power facility for testing high temperature concrete thermal energy storage. Energy Procedia. 2015;75:2144-9.
  • [31] Schlipf D, Schicktanz P, Maier H, Schneider G. Using sand and other small grained materials as heat storage medium in a packed bed HTTESS. Energy Procedia. 2015;69:1029-38.
  • [32] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy conversion and management. 2004;45:1597-615.
  • [33] Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P. A review on high temperature thermochemical heat energy storage. Renewable and Sustainable Energy Reviews. 2014;32:591-610.
  • [34] Silakhori M, Jafarian M, Arjomandi M, Nathan GJ. Comparing the thermodynamic potential of alternative liquid metal oxides for the storage of solar thermal energy. Solar Energy. 2017;157:251-8.
  • [35] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Solar energy. 1983;30:313-32.
  • [36] Fallahi A, Guldentops G, Tao M, Granados-Focil S, Van Dessel S. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Applied Thermal Engineering. 2017;127:1427-41.
  • [37] Sharma R, Ganesan P, Tyagi V, Metselaar H, Sandaran S. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management. 2015;95:193-228.
  • [38] Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Progress in materials science. 2014;65:67-123.
  • [39] Buschle J, Steinmann W-D, Tamme R. Latent heat storage for process heat applications. Proceedings of the 10th International Conference on Thermal Energy Storage ECOSTOCK, Atlantic City, NJ, USA2006.
  • [40] Li Y, Wang J, Tang J, Liu Y, He Y. Conductive performances of solid polymer electrolyte films based on PVB/LiClO4 plasticized by PEG200, PEG400 and PEG600. Journal of Power Sources. 2009;187:305-11.
  • [41] Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochimica Acta. 2012;540:7-60.
  • [42] N’Tsoukpoe KE, Schmidt T, Rammelberg HU, Watts BA, Ruck WK. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Applied Energy. 2014;124:1-16.
  • [43] González-Roubaud E, Pérez-Osorio D, Prieto C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renewable and sustainable energy reviews. 2017;80:133-48.
  • [44] Janz GJ, Allen CB, Bansal N, Murphy R, Tomkins R. Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. National Standard Reference Data System; 1979.
  • [45] Alnaimat F, Rashid Y. Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions. Energies. 2019;12:4164.
  • [46] Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy conversion and management. 2009;50:1172-9.
  • [47] Liu H, Jiang J. Flywheel energy storage—An upswing technology for energy sustainability. Energy and buildings. 2007;39:599-604.
  • [48] Krajačić G, Lončar D, Duić N, Zeljko M, Arántegui RL, Loisel R, et al. Analysis of financial mechanisms in support to new pumped hydropower storage projects in Croatia. Applied energy. 2013;101:161-71.
  • [49] Amiryar ME, Pullen KR. A review of flywheel energy storage system technologies and their applications. Applied Sciences. 2017;7:286.
  • [50] Wicki S, Hansen EG. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage. Journal of cleaner production. 2017;162:1118-34.
  • [51] Cheng H, Chen C, Wu S, Mirza ZA, Liu Z. Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. Journal of Cleaner Production. 2017;144:559-71.
  • [52] Sebastián R, Alzola RP. Flywheel energy storage systems: Review and simulation for an isolated wind power system. Renewable and Sustainable Energy Reviews. 2012;16:6803-13.
  • [53] Mahmoud M, Ramadan M, Olabi A-G, Pullen K, Naher S. A review of mechanical energy storage systems combined with wind and solar applications. Energy Conversion and Management. 2020;210:112670.
  • [54] Martin JE, Rohwer LE, Stupak Jr J. Elastic magnetic composites for energy storage flywheels. Composites Part B: Engineering. 2016;97:141-9.
  • [55] Shen P, Braham W, Yi Y, Eaton E. Rapid multi-objective optimization with multi-year future weather condition and decision-making support for building retrofit. Energy. 2019;172:892-912.
  • [56] Koko SP, Kusakana K, Vermaak HJ. Optimal power dispatch of a grid-interactive micro-hydrokinetic-pumped hydro storage system. Journal of Energy Storage. 2018;17:63-72.
  • [57] Kusakana K. Optimal operation scheduling of grid-connected PV with ground pumped hydro storage system for cost reduction in small farming activities. Journal of Energy Storage. 2018;16:133-8.
  • [58] Tan ST, Hashim H, Lim JS, Ho WS, Lee CT, Yan J. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Applied Energy. 2014;136:797-804.
  • [59] Cárdenas B, Hoskin A, Rouse J, Garvey SD. Wire-wound pressure vessels for small scale CAES. Journal of Energy Storage. 2019;26:100909.
  • [60] Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Advanced materials. 2010;22:E28-E62.
  • [61] Whittingham M. Electrochemical energy storage: Batteries and capacitors. Fundamentals of Materials for Energy and Environmental Sustainability: Cambridge Univ. Press; 2011. p. 608-23.
  • [62] Arani AK, Karami H, Gharehpetian G, Hejazi M. Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids. Renewable and Sustainable Energy Reviews. 2017;69:9-18.
  • [63] Guezgouz M, Jurasz J, Bekkouche B, Ma T, Javed MS, Kies A. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Conversion and Management. 2019;199:112046.
  • [64] He W, Wang J. Optimal selection of air expansion machine in Compressed Air Energy Storage: A review. Renewable and Sustainable Energy Reviews. 2018;87:77-95.
  • [65] Whittingham MS. Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Progress in Solid State Chemistry. 1978;12:41-99.
  • [66] Hauch A, Georg A, Krašovec UO, Orel B. Photovoltaically self-charging battery. Journal of the Electrochemical Society. 2002;149:A1208.
  • [67] Grätzel M. Photoelectrochemical cells. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific; 2011. p. 26-32.
  • [68] O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. nature. 1991;353:737-40.
  • [69] Saito Y, Uchida S, Kubo T, Segawa H. Energy-storable dye-sensitized solar cells with tungsten oxide charge-storage electrode. ECS Transactions. 2009;16:27.
  • [70] Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q. Redox flow batteries: a review. Journal of applied electrochemistry. 2011;41:1137.
  • [71] Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Advanced Functional Materials. 2013;23:970-86.
  • [72] Rychcik M, Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery. Journal of power sources. 1988;22:59-67.
  • [73] Joerissen L, Garche J, Fabjan C, Tomazic G. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. Journal of power sources. 2004;127:98-104.
  • [74] Wei Z, Liu D, Hsu C, Liu F. All-vanadium redox photoelectrochemical cell: An approach to store solar energy. Electrochemistry Communications. 2014;45:79-82.
  • [75] Wei Z, Shen Y, Liu D, Hsu C, Sajjad SD, Rajeshwar K, et al. Geometry-enhanced ultra-long TiO2 nanobelts in an all-vanadium photoelectrochemical cell for efficient storage of solar energy. Nano energy. 2016;26:200-7.
  • [76] Liu D, Zi W, Sajjad SD, Hsu C, Shen Y, Wei M, et al. Reversible electron storage in an all-vanadium photoelectrochemical storage cell: synergy between vanadium redox and hybrid photocatalyst. Acs Catalysis. 2015;5:2632-9.
  • [77] Hada H, Takaoka K, Saikawa M, Yonezawa Y. Energy Conversion and Storage in Solid-state Photogalvanic Cells. Bulletin of the Chemical Society of Japan. 1981;54:1640-4.
  • [78] Yu M, Ren X, Ma L, Wu Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging. Nature communications. 2014;5:5111.
  • [79] Liu Y, Li N, Wu S, Liao K, Zhu K, Yi J, et al. Reducing the charging voltage of a Li–O 2 battery to 1.9 V by incorporating a photocatalyst. Energy & Environmental Science. 2015;8:2664-7.
  • [80] Yu M, McCulloch WD, Beauchamp DR, Huang Z, Ren X, Wu Y. Aqueous lithium–iodine solar flow battery for the simultaneous conversion and storage of solar energy. Journal of the American Chemical Society. 2015;137:8332-5.
  • [81] Awad A, Burns A, Waleed M, Al-Yasiri M, Wen D. Latent and sensible energy storage enhancement of nano-nitrate molten salt. Solar Energy. 2018;172:191-7.
  • [82] Rea JE, Oshman CJ, Singh A, Alleman J, Parilla PA, Hardin CL, et al. Experimental demonstration of a dispatchable latent heat storage system with aluminum-silicon as a phase change material. Applied energy. 2018;230:1218-29.
  • [83] Zhang Z, Yuan Y, Alelyani S, Cao X, Phelan PE. Thermophysical properties enhancement of ternary carbonates with carbon materials for high-temperature thermal energy storage. Solar Energy. 2017;155:661-9.
  • [84] Bayon A, Bader R, Jafarian M, Fedunik-Hofman L, Sun Y, Hinkley J, et al. Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications. Energy. 2018;149:473-84.
  • [85] Benitez-Guerrero M, Valverde JM, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA. Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture. Chemical Engineering Journal.2018;334:2343-55.
  • [86] Benitez-Guerrero M, Valverde JM, Perejon A, Sanchez-Jimenez PE, Perez-Maqueda LA. Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power. Applied Energy. 2018;210:108-16.

Güneş Enerjisi Depolama Malzemelerinin Bugünü, Yarını ve Geleceği

Yıl 2021, Cilt: 62 Sayı: 702, 70 - 90, 11.03.2021
https://doi.org/10.46399/muhendismakina.797433

Öz

Fosil yakıtların tükenmeye başlaması ve bu yakıtların yan ürünleri olarak ortaya çıkan sera gazı salınımları, bunun yanı sıra artan küresel enerji talebi ve çevresel endişeler, güneş, biyoyakıt, hidrotermal enerji gibi yenilenebilir enerji kaynaklarının potansiyelinin daha da detaylı araştırılmasına yol açmıştır. Bunlar arasında termal güneş enerjisi sistemleri yenilenebilir enerji sistemleri içerisinde güneş ışığına kolay erişilebilir olması, elde edilen verimlilik değerleri ve etkili bir enerji dönüşümü sağlanması sebebiyle çok yaygın olarak tercih edilen sistemler haline gelmiştir. Şimdiye kadar farklı termal depolama biçimleri, özellikle termokimyasal depolama (TCS), artık ısıl depolama (LHS) ve hissedilir ısı depolaması (SHS) ilgili kapsamlı çalışmalar yapılmıştır. Bunların yanı sıra literatürde de ana enerji depolama sistemleri olarak mekanik enerji depolama sistemlerine de odaklanan çalışmalar bulunmaktadır. Ek olarak, bataryalar gibi elektrokimyasal enerji depolama sistemleri yüksek enerji dönüşüm verimleri sayesinde giderek daha fazla popülerlik kazanmaktadır. Çeşitli güneş depolama yöntemleri için yakın zamanda araştırılan malzemeler, teorik sınırlara henüz ulaşılmadığı için güneş enerjisi depolama malzemeleri konusu araştırmacılar için büyük bir potansiyel göstermektedir. Ancak bu çalışmaların çoğu halen deneysel aşamada olup bu değerlendirme çalışmasında güneş enerjisi depolaması ile ilgili malzeme temelli bu potansiyel çalışmalara bir bakış açısı sunulması sağlanmıştır.

Proje Numarası

FKB-2019-9134 and FHD-2019-9132

Kaynakça

  • [1] Mofijur M, Masjuki HH, Kalam M, Atabani AE, Fattah IR, Mobarak H. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial crops and products. 2014;53:78-84.
  • [2] Mofijur M, Masjuki H, Kalam M, Hazrat M, Liaquat A, Shahabuddin M, et al. Prospects of biodiesel from Jatropha in Malaysia. Renewable and Sustainable Energy Reviews. 2012;16:5007-20.
  • [3] Mofijur M, Masjuki H, Kalam M, Atabani A. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy. 2013;55:879-87.
  • [4] Neagu O, Teodoru MC. The relationship between economic complexity, energy consumption structure and greenhouse gas emission: Heterogeneous panel evidence from the EU countries. Sustainability. 2019;11:497.
  • [5] Goh BHH, Ong HC, Cheah MY, Chen W-H, Yu KL, Mahlia TMI. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renewable and Sustainable Energy Reviews. 2019;107:59-74.
  • [6] Prasad DR, Senthilkumar R, Lakshmanarao G, Krishnan S, Prasad BN. A critical review on thermal energy storage materials and systems for solar applications. AIMS Energy. 2019;7:507.
  • [7] Martinopoulos G. Life Cycle Assessment of solar energy conversion systems in energetic retrofitted buildings. Journal of Building Engineering. 2018;20:256-63.
  • [8] H Abedin A, A Rosen M. A critical review of thermochemical energy storage systems. The open renewable energy journal. 2011;4.
  • [9] Dharma S, Masjuki H, Ong HC, Sebayang A, Silitonga A, Kusumo F, et al. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology. Energy Conversion and Management. 2016;115:178-90.
  • [10] Silitonga A, Atabani A, Mahlia T, Masjuki H, Badruddin IA, Mekhilef S. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews. 2011;15:3733-56.
  • [11] Ong HC, Masjuki H, Mahlia T, Silitonga A, Chong W, Leong K. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Conversion and Management. 2014;81:30-40.
  • [12] Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Applied Energy. 2015;160:286-307.
  • [13] Shivashankar S, Mekhilef S, Mokhlis H, Karimi M. Mitigating methods of power fluctuation of photovoltaic (PV) sources–A review. Renewable and Sustainable Energy Reviews. 2016;59:1170-84.
  • [14] DeWinter F. Solar collectors, energy storage, and materials: MIT press; 1990.
  • [15] Silitonga AS, Masjuki HH, Ong HC, Sebayang AH, Dharma S, Kusumo F, et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy. 2018;159:1075-87.
  • [16] Martinopoulos G, Tsalikis G. Diffusion and adoption of solar energy conversion systems–The case of Greece. Energy. 2018;144:800-7.
  • [17] Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power. Solar energy materials and solar cells. 2011;95:2703-25.
  • [18] Powell KM, Edgar TF. Control of a large scale solar thermal energy storage system. Proceedings of the 2011 American control conference: IEEE; 2011. p. 1530-5.
  • [19] Zhao C, Wu Z. Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Solar Energy Materials and Solar Cells. 2011;95:3341-6.
  • [20] Cabeza LF. Advances in thermal energy storage systems: Methods and applications: Elsevier; 2014.
  • [21] Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews. 2010;14:31-55.
  • [22] Hasnain S. Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy conversion and management. 1998;39:1127-38.
  • [23] Kousksou T, Bruel P, Jamil A, El Rhafiki T, Zeraouli Y. Energy storage: Applications and challenges. Solar Energy Materials and Solar Cells. 2014;120:59-80.
  • [24] Badran AA, Jubran BA. Fuel oil heating by a trickle solar collector. Energy conversion and management. 2001;42:1637-45.
  • [25] Marchã J, Osório T, Pereira MC, Horta P. Development and test results of a calorimetric technique for solar thermal testing loops, enabling mass flow and Cp measurements independent from fluid properties of the HTF used. Energy Procedia. 2014;49:2125-34.
  • [26] Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renewable and Sustainable Energy Reviews. 2012;16:2118-32.
  • [27] Wang T, Mantha D, Reddy RG. Novel low melting point quaternary eutectic system for solar thermal energy storage. Applied energy. 2013;102:1422-9.
  • [28] Cárdenas B, León N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and sustainable energy reviews. 2013;27:724-37.
  • [29] Hänchen M, Brückner S, Steinfeld A. High-temperature thermal storage using a packed bed of rocks–heat transfer analysis and experimental validation. Applied Thermal Engineering. 2011;31:1798-806.
  • [30] Martins M, Villalobos U, Delclos T, Armstrong P, Bergan PG, Calvet N. New concentrating solar power facility for testing high temperature concrete thermal energy storage. Energy Procedia. 2015;75:2144-9.
  • [31] Schlipf D, Schicktanz P, Maier H, Schneider G. Using sand and other small grained materials as heat storage medium in a packed bed HTTESS. Energy Procedia. 2015;69:1029-38.
  • [32] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy conversion and management. 2004;45:1597-615.
  • [33] Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P. A review on high temperature thermochemical heat energy storage. Renewable and Sustainable Energy Reviews. 2014;32:591-610.
  • [34] Silakhori M, Jafarian M, Arjomandi M, Nathan GJ. Comparing the thermodynamic potential of alternative liquid metal oxides for the storage of solar thermal energy. Solar Energy. 2017;157:251-8.
  • [35] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Solar energy. 1983;30:313-32.
  • [36] Fallahi A, Guldentops G, Tao M, Granados-Focil S, Van Dessel S. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Applied Thermal Engineering. 2017;127:1427-41.
  • [37] Sharma R, Ganesan P, Tyagi V, Metselaar H, Sandaran S. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management. 2015;95:193-228.
  • [38] Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Progress in materials science. 2014;65:67-123.
  • [39] Buschle J, Steinmann W-D, Tamme R. Latent heat storage for process heat applications. Proceedings of the 10th International Conference on Thermal Energy Storage ECOSTOCK, Atlantic City, NJ, USA2006.
  • [40] Li Y, Wang J, Tang J, Liu Y, He Y. Conductive performances of solid polymer electrolyte films based on PVB/LiClO4 plasticized by PEG200, PEG400 and PEG600. Journal of Power Sources. 2009;187:305-11.
  • [41] Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochimica Acta. 2012;540:7-60.
  • [42] N’Tsoukpoe KE, Schmidt T, Rammelberg HU, Watts BA, Ruck WK. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Applied Energy. 2014;124:1-16.
  • [43] González-Roubaud E, Pérez-Osorio D, Prieto C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renewable and sustainable energy reviews. 2017;80:133-48.
  • [44] Janz GJ, Allen CB, Bansal N, Murphy R, Tomkins R. Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. National Standard Reference Data System; 1979.
  • [45] Alnaimat F, Rashid Y. Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions. Energies. 2019;12:4164.
  • [46] Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy conversion and management. 2009;50:1172-9.
  • [47] Liu H, Jiang J. Flywheel energy storage—An upswing technology for energy sustainability. Energy and buildings. 2007;39:599-604.
  • [48] Krajačić G, Lončar D, Duić N, Zeljko M, Arántegui RL, Loisel R, et al. Analysis of financial mechanisms in support to new pumped hydropower storage projects in Croatia. Applied energy. 2013;101:161-71.
  • [49] Amiryar ME, Pullen KR. A review of flywheel energy storage system technologies and their applications. Applied Sciences. 2017;7:286.
  • [50] Wicki S, Hansen EG. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage. Journal of cleaner production. 2017;162:1118-34.
  • [51] Cheng H, Chen C, Wu S, Mirza ZA, Liu Z. Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. Journal of Cleaner Production. 2017;144:559-71.
  • [52] Sebastián R, Alzola RP. Flywheel energy storage systems: Review and simulation for an isolated wind power system. Renewable and Sustainable Energy Reviews. 2012;16:6803-13.
  • [53] Mahmoud M, Ramadan M, Olabi A-G, Pullen K, Naher S. A review of mechanical energy storage systems combined with wind and solar applications. Energy Conversion and Management. 2020;210:112670.
  • [54] Martin JE, Rohwer LE, Stupak Jr J. Elastic magnetic composites for energy storage flywheels. Composites Part B: Engineering. 2016;97:141-9.
  • [55] Shen P, Braham W, Yi Y, Eaton E. Rapid multi-objective optimization with multi-year future weather condition and decision-making support for building retrofit. Energy. 2019;172:892-912.
  • [56] Koko SP, Kusakana K, Vermaak HJ. Optimal power dispatch of a grid-interactive micro-hydrokinetic-pumped hydro storage system. Journal of Energy Storage. 2018;17:63-72.
  • [57] Kusakana K. Optimal operation scheduling of grid-connected PV with ground pumped hydro storage system for cost reduction in small farming activities. Journal of Energy Storage. 2018;16:133-8.
  • [58] Tan ST, Hashim H, Lim JS, Ho WS, Lee CT, Yan J. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Applied Energy. 2014;136:797-804.
  • [59] Cárdenas B, Hoskin A, Rouse J, Garvey SD. Wire-wound pressure vessels for small scale CAES. Journal of Energy Storage. 2019;26:100909.
  • [60] Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Advanced materials. 2010;22:E28-E62.
  • [61] Whittingham M. Electrochemical energy storage: Batteries and capacitors. Fundamentals of Materials for Energy and Environmental Sustainability: Cambridge Univ. Press; 2011. p. 608-23.
  • [62] Arani AK, Karami H, Gharehpetian G, Hejazi M. Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids. Renewable and Sustainable Energy Reviews. 2017;69:9-18.
  • [63] Guezgouz M, Jurasz J, Bekkouche B, Ma T, Javed MS, Kies A. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Conversion and Management. 2019;199:112046.
  • [64] He W, Wang J. Optimal selection of air expansion machine in Compressed Air Energy Storage: A review. Renewable and Sustainable Energy Reviews. 2018;87:77-95.
  • [65] Whittingham MS. Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Progress in Solid State Chemistry. 1978;12:41-99.
  • [66] Hauch A, Georg A, Krašovec UO, Orel B. Photovoltaically self-charging battery. Journal of the Electrochemical Society. 2002;149:A1208.
  • [67] Grätzel M. Photoelectrochemical cells. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific; 2011. p. 26-32.
  • [68] O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. nature. 1991;353:737-40.
  • [69] Saito Y, Uchida S, Kubo T, Segawa H. Energy-storable dye-sensitized solar cells with tungsten oxide charge-storage electrode. ECS Transactions. 2009;16:27.
  • [70] Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q. Redox flow batteries: a review. Journal of applied electrochemistry. 2011;41:1137.
  • [71] Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Advanced Functional Materials. 2013;23:970-86.
  • [72] Rychcik M, Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery. Journal of power sources. 1988;22:59-67.
  • [73] Joerissen L, Garche J, Fabjan C, Tomazic G. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. Journal of power sources. 2004;127:98-104.
  • [74] Wei Z, Liu D, Hsu C, Liu F. All-vanadium redox photoelectrochemical cell: An approach to store solar energy. Electrochemistry Communications. 2014;45:79-82.
  • [75] Wei Z, Shen Y, Liu D, Hsu C, Sajjad SD, Rajeshwar K, et al. Geometry-enhanced ultra-long TiO2 nanobelts in an all-vanadium photoelectrochemical cell for efficient storage of solar energy. Nano energy. 2016;26:200-7.
  • [76] Liu D, Zi W, Sajjad SD, Hsu C, Shen Y, Wei M, et al. Reversible electron storage in an all-vanadium photoelectrochemical storage cell: synergy between vanadium redox and hybrid photocatalyst. Acs Catalysis. 2015;5:2632-9.
  • [77] Hada H, Takaoka K, Saikawa M, Yonezawa Y. Energy Conversion and Storage in Solid-state Photogalvanic Cells. Bulletin of the Chemical Society of Japan. 1981;54:1640-4.
  • [78] Yu M, Ren X, Ma L, Wu Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging. Nature communications. 2014;5:5111.
  • [79] Liu Y, Li N, Wu S, Liao K, Zhu K, Yi J, et al. Reducing the charging voltage of a Li–O 2 battery to 1.9 V by incorporating a photocatalyst. Energy & Environmental Science. 2015;8:2664-7.
  • [80] Yu M, McCulloch WD, Beauchamp DR, Huang Z, Ren X, Wu Y. Aqueous lithium–iodine solar flow battery for the simultaneous conversion and storage of solar energy. Journal of the American Chemical Society. 2015;137:8332-5.
  • [81] Awad A, Burns A, Waleed M, Al-Yasiri M, Wen D. Latent and sensible energy storage enhancement of nano-nitrate molten salt. Solar Energy. 2018;172:191-7.
  • [82] Rea JE, Oshman CJ, Singh A, Alleman J, Parilla PA, Hardin CL, et al. Experimental demonstration of a dispatchable latent heat storage system with aluminum-silicon as a phase change material. Applied energy. 2018;230:1218-29.
  • [83] Zhang Z, Yuan Y, Alelyani S, Cao X, Phelan PE. Thermophysical properties enhancement of ternary carbonates with carbon materials for high-temperature thermal energy storage. Solar Energy. 2017;155:661-9.
  • [84] Bayon A, Bader R, Jafarian M, Fedunik-Hofman L, Sun Y, Hinkley J, et al. Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications. Energy. 2018;149:473-84.
  • [85] Benitez-Guerrero M, Valverde JM, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA. Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture. Chemical Engineering Journal.2018;334:2343-55.
  • [86] Benitez-Guerrero M, Valverde JM, Perejon A, Sanchez-Jimenez PE, Perez-Maqueda LA. Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power. Applied Energy. 2018;210:108-16.
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm icindekiler-sunuş
Yazarlar

Dawar Ali Bu kişi benim 0000-0001-5628-2260

Mehmet Fatih Kaya 0000-0002-2444-0583

Levent Şendoğdular Bu kişi benim 0000-0002-6364-0932

Proje Numarası FKB-2019-9134 and FHD-2019-9132
Yayımlanma Tarihi 11 Mart 2021
Gönderilme Tarihi 21 Eylül 2020
Kabul Tarihi 21 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 62 Sayı: 702

Kaynak Göster

APA Ali, D., Kaya, M. F., & Şendoğdular, L. (2021). Today, Tomorrow, and the Future of Energy Storage Materials for Solar Energy. Mühendis Ve Makina, 62(702), 70-90. https://doi.org/10.46399/muhendismakina.797433

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520