Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Different Overlay Coating Applications on High Temperature and Solid Particle Erosion Wear

Yıl 2022, Cilt: 63 Sayı: 707, 359 - 375, 09.06.2022

Öz

Two different metallic coating processes (NiCrAlY and NiCoCrAlY) were applied on Inconel 718 substrates using Atmospheric Plasma Spray and High-Speed Oxy Fuel Spray methods. Energy conversion plants, gas turbines, jet engine blades, etc. It was aimed to simulate exposure to particle impact under high temperature in applications. At the end of the coating process, four sample groups with different properties were deposited. Solid particle erosion wear behavior of these samples under ambient conditions and temperature were investigated.
A specially designed test rig that can perform solid particle erosion wear tests under high temperature conditions was used in the experiments. In the experiments, 300°C was preferred as the air temperature. Assuming that the particles impacting the surface may have variable direction, three different erosive particle impingement angles were selected as 30°, 60° and 90°. In addition to these experimental parameters, particle impact velocity of ~97 m/s using the double disk method and Al2O3 erosive with a size of ~400 µm were determined.
As a result of the experiments, the comparative erosion rate graphs of the test samples coated with two different methods were obtained and the results were interpreted by using the SEM, XRD and EDX elemental analyses. In addition, the details of the porosity values of the coatings, hardness and surface roughness measurements of the test specimens were also included in the results of erosion resistance

Kaynakça

  • Nicholls, J.R., et al., Smart overlay coatings — concept and practice. Surface and Coatings Technology, 2002. 149(2): p. 236-244.
  • Pollock, T., D. Lipkin, and K. Hemker, Multifunctional coating interlayers for thermal-barrier systems. MRS bulletin, 2012. 37(10): p. 923-931.
  • Shen, M., et al., High vacuum arc ion plating NiCrAlY coatings: microstructure and oxidation behavior. Corrosion Science, 2015. 94: p. 294-304.
  • Yang, L., et al., Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation. Journal of Materials Science & Technology, 2020. 45: p. 49-58.
  • Zhang, J. and Y.-G. Jung, Advanced ceramic and metallic coating and thin film materials for energy and environmental applications. 2018: Springer.
  • Zhao, L., M. Parco, and E. Lugscheider, Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating. Surface and Coatings Technology, 2004. 184(2-3): p. 298-306.
  • Rajendran, R., Gas turbine coatings–An overview. Engineering Failure Analysis, 2012. 26: p. 355-369.
  • Sudhangshu, B., High temperature coatings. Publisher: Elsevier Science & Technology Books, 2007. 301: p. 301.
  • Tabakoff, W., Investigation of coatings at high temperature for use in turbomachinery. Surface and coatings technology, 1989. 39: p. 97-115.
  • Hamed, A.A., et al., Turbine blade surface deterioration by erosion. Journal of turbomachinery, 2005. 127(3): p. 445-452.
  • Bolelli, G., et al., Performance of wear resistant MCrAlY coatings with oxide dispersion strengthening. Wear, 2020. 444: p. 203116.
  • Jena, A. and M. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys. Journal of Materials Science, 1984. 19(10): p. 3121-3139.
  • Metals, H.T. Inconel 718 Technical Data. High Temp Metals 2019 18.04.2019]; Available from: http://www.hightempmetals.com/techdata/hitempInconel718data.php.
  • Von Niessen, K. and M. Gindrat, Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase. Journal of thermal spray technology, 2011. 20(4): p. 736-743.
  • Kutz, M., Handbook of environmental degradation of materials. 2018: William Andrew.
  • Vuoristo, P., Thermal spray coating processes. 2014.
  • ASTM_G211-14, Standard Test Method for Conducting Elevated Temperature Erosion Tests by Solid Particle Impingement Using Gas Jets. 2014, PA West Conshohocken.
  • Wang, D., et al., Effects of laser remelting on microstructure and solid particle erosion characteristics of ZrO2–7wt% Y2O3 thermal barrier coating prepared by plasma spraying. Ceramics International, 2014. 40(6): p. 8791-8799.
  • Schmitt, M.P., et al., Thermal conductivity and erosion durability of composite two-phase air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 2015. 279: p. 44-52.
  • Hutchings, I. and P. Shipway, Tribology: friction and wear of engineering materials. 2017: Butterworth-Heinemann.
  • Standard, A., E18-12: Standard test methods for Rockwell hardness of metallic materials. ASTM International, West Conshohocken, PA, 2012.
  • Foroozesh, J., et al., Computational fluid dynamics study of the impact of surface roughness on cyclone performance and erosion. Powder Technology, 2021. 389: p. 339-354.
  • Mikijelj, B. and J. Varela, Equivalence of surface areas determined by nitrogen adsorption and by mercury porosimetry. American Ceramic Society Bulletin, 1991. 70(5): p. 829-831.
  • Diamond, S., Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cement and concrete research, 2000. 30(10): p. 1517-1525.
  • Bakan, E., Yttria-Stabilized Zirconia/Gadolinium Zirconate Double-Layer Plasma-Sprayed Thermal Barrier Coating Systems (TBCs). 2015: Werkstoffsynthese und Herstellungsverfahren.
  • Tilly, G. A two stage mechanism of ductile erosion. Wear, 1973. 23(1): p. 87-96.
  • Bagci, M., et al., The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites. Wear, 2020. 444: p. 203159.
  • Nicholls, J.R., Y. Jaslier, and D. Rickerby. Erosion and foreign object damage of thermal barrier coatings. in Materials science forum. 1997. Trans Tech Publ.
  • Mishra, S.B., S. Prakash, and K. Chandra, Studies on erosion behaviour of plasma sprayed coatings on a Ni-based superalloy. Wear, 2006. 260(4): p. 422-432.
  • Shin, D. and A. Hamed, Influence of micro–structure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions. Wear, 2018. 396: p. 34-47.
  • Birks, N., G.H. Meier, and F.S. Pettit, Introduction to the high temperature oxidation of metals. 2006: Cambridge University Press.

Farklı Bağ Kaplama Uygulamalarının Yüksek Sıcaklık ve Katı Partikül Erozyon Aşınmasına Etkisi

Yıl 2022, Cilt: 63 Sayı: 707, 359 - 375, 09.06.2022

Öz

Inconel 718 altlık malzeme üzerine iki farklı bağ kaplama (NiCrAlY ve NiCoCrAlY), Atmosferik Plazma Sprey (APS) ve Yüksek Hızlı Oksi-Yakıt Püskürtme (HVOF) yöntemleri kullanılarak uygulanmıştır. Enerji dönüşüm santralleri, gaz türbinleri, jet motor kanatları vb. uygulamalarda kullanılan bağ kaplamaların yüksek sıcaklık altında partikül etkisine maruz kalmasının simüle edilmesi amaçlanmıştır. Kaplama işlemi sonunda farklı özelliklere sahip dört numune grubu oluşturulmuştur. Bu numunelerin ortam koşulları ve sıcaklık altında katı partikül erozyon aşınma davranışları incelenmiştir.
Deneylerde, yüksek sıcaklık koşullarında katı partikül erozyon aşınma testlerini yapabilen özel olarak tasarlanmış bir test düzeneği kullanılmıştır. Deney test sıcaklığı, 21 °C ve 300 °C tercih edilmiştir. Yüzeye çarpan partiküllerin değişken açılara sahip olabileceği varsayılarak 30°, 60° ve 90° olmak üzere üç farklı aşındırıcı partikül çarpma açısı seçilmiştir. Bu deneysel parametrelere ek olarak ~97 m/s partikül çarpma hızı ve ~400 µm boyutunda alümina (Al2O3) aşındırıcı partiküller kullanılmıştır.
Deneyler sonucunda iki farklı yöntemle kaplanan test numunelerinin karşılaştırmalı erozyon oranı grafikleri elde edilmiş ve sonuçları yorumlanmıştır. Ayrıca test numunelerinin gözeneklilik değerleri, sertlik ve yüzey pürüzlülük ölçümlerinin detayları da erozyon direnci sonuçlarına dahil edilmiştir.

Kaynakça

  • Nicholls, J.R., et al., Smart overlay coatings — concept and practice. Surface and Coatings Technology, 2002. 149(2): p. 236-244.
  • Pollock, T., D. Lipkin, and K. Hemker, Multifunctional coating interlayers for thermal-barrier systems. MRS bulletin, 2012. 37(10): p. 923-931.
  • Shen, M., et al., High vacuum arc ion plating NiCrAlY coatings: microstructure and oxidation behavior. Corrosion Science, 2015. 94: p. 294-304.
  • Yang, L., et al., Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation. Journal of Materials Science & Technology, 2020. 45: p. 49-58.
  • Zhang, J. and Y.-G. Jung, Advanced ceramic and metallic coating and thin film materials for energy and environmental applications. 2018: Springer.
  • Zhao, L., M. Parco, and E. Lugscheider, Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating. Surface and Coatings Technology, 2004. 184(2-3): p. 298-306.
  • Rajendran, R., Gas turbine coatings–An overview. Engineering Failure Analysis, 2012. 26: p. 355-369.
  • Sudhangshu, B., High temperature coatings. Publisher: Elsevier Science & Technology Books, 2007. 301: p. 301.
  • Tabakoff, W., Investigation of coatings at high temperature for use in turbomachinery. Surface and coatings technology, 1989. 39: p. 97-115.
  • Hamed, A.A., et al., Turbine blade surface deterioration by erosion. Journal of turbomachinery, 2005. 127(3): p. 445-452.
  • Bolelli, G., et al., Performance of wear resistant MCrAlY coatings with oxide dispersion strengthening. Wear, 2020. 444: p. 203116.
  • Jena, A. and M. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys. Journal of Materials Science, 1984. 19(10): p. 3121-3139.
  • Metals, H.T. Inconel 718 Technical Data. High Temp Metals 2019 18.04.2019]; Available from: http://www.hightempmetals.com/techdata/hitempInconel718data.php.
  • Von Niessen, K. and M. Gindrat, Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase. Journal of thermal spray technology, 2011. 20(4): p. 736-743.
  • Kutz, M., Handbook of environmental degradation of materials. 2018: William Andrew.
  • Vuoristo, P., Thermal spray coating processes. 2014.
  • ASTM_G211-14, Standard Test Method for Conducting Elevated Temperature Erosion Tests by Solid Particle Impingement Using Gas Jets. 2014, PA West Conshohocken.
  • Wang, D., et al., Effects of laser remelting on microstructure and solid particle erosion characteristics of ZrO2–7wt% Y2O3 thermal barrier coating prepared by plasma spraying. Ceramics International, 2014. 40(6): p. 8791-8799.
  • Schmitt, M.P., et al., Thermal conductivity and erosion durability of composite two-phase air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 2015. 279: p. 44-52.
  • Hutchings, I. and P. Shipway, Tribology: friction and wear of engineering materials. 2017: Butterworth-Heinemann.
  • Standard, A., E18-12: Standard test methods for Rockwell hardness of metallic materials. ASTM International, West Conshohocken, PA, 2012.
  • Foroozesh, J., et al., Computational fluid dynamics study of the impact of surface roughness on cyclone performance and erosion. Powder Technology, 2021. 389: p. 339-354.
  • Mikijelj, B. and J. Varela, Equivalence of surface areas determined by nitrogen adsorption and by mercury porosimetry. American Ceramic Society Bulletin, 1991. 70(5): p. 829-831.
  • Diamond, S., Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cement and concrete research, 2000. 30(10): p. 1517-1525.
  • Bakan, E., Yttria-Stabilized Zirconia/Gadolinium Zirconate Double-Layer Plasma-Sprayed Thermal Barrier Coating Systems (TBCs). 2015: Werkstoffsynthese und Herstellungsverfahren.
  • Tilly, G. A two stage mechanism of ductile erosion. Wear, 1973. 23(1): p. 87-96.
  • Bagci, M., et al., The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites. Wear, 2020. 444: p. 203159.
  • Nicholls, J.R., Y. Jaslier, and D. Rickerby. Erosion and foreign object damage of thermal barrier coatings. in Materials science forum. 1997. Trans Tech Publ.
  • Mishra, S.B., S. Prakash, and K. Chandra, Studies on erosion behaviour of plasma sprayed coatings on a Ni-based superalloy. Wear, 2006. 260(4): p. 422-432.
  • Shin, D. and A. Hamed, Influence of micro–structure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions. Wear, 2018. 396: p. 34-47.
  • Birks, N., G.H. Meier, and F.S. Pettit, Introduction to the high temperature oxidation of metals. 2006: Cambridge University Press.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Musa Demirci Bu kişi benim 0000-0002-4159-2378

Mehmet Bağcı Bu kişi benim 0000-0001-6934-8660

Erken Görünüm Tarihi 9 Haziran 2022
Yayımlanma Tarihi 9 Haziran 2022
Gönderilme Tarihi 18 Ekim 2021
Kabul Tarihi 3 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 63 Sayı: 707

Kaynak Göster

APA Demirci, M., & Bağcı, M. (2022). Farklı Bağ Kaplama Uygulamalarının Yüksek Sıcaklık ve Katı Partikül Erozyon Aşınmasına Etkisi. Mühendis Ve Makina, 63(707), 359-375.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520