Farklı Ebatlarda Tasarlanan Polimer Elektrolit Membranlı Yakıt Hücresi (PEMYH) Performanslarının Değerlendirilmesi
Yıl 2024,
Cilt: 65 Sayı: 714, 1101 - 120, 29.04.2024
Adem Yılmaz
,
Sinan Ünvar
,
Bünyamin Aygün
Öz
Geleceğin teknolojisi olan yakıt hücreleri hidrojen ile oksijenin kimyasal reaksiyon sonucu birleşmesi ile elektrik enerjisinin meydana gelmesini ve atık olarak H2O ile ısı açığa çıkmasını sağlayan cihazlardır. Yanma olmaksızın elektrik üretildiği için daha az kirlilik meydana gelmektedir. Polimer Elektrolit Membran (PEM) yakıt hücresindeki kimyasal reaksiyonun oluştuğu kısım membran zardan oluşmaktadır. Bu çalışmada farklı boyutlardaki (5-25-50 cm2) yakıt hücrelerinin yakıt sarfiyatı ile ilgili incelemeler yapılarak performansa etki eden faktörler deneysel olarak belirlenmiştir. Öncelikli olarak PEM yakıt hücresi kurulumu yapılmış, kurulan hücrenin özelliklerine göre uygun miktarlarda Hidrojen (H2) ve Oksijen
(O2) yakıt hücresine gönderilmiştir. Çalışma esnasında değişik boyutlardaki yakıt pillerinin performansları belirlenmiştir. Yakıt hücresindeki C-H oranı değerlerine göre yakıt hücresinin davranışı belirlenmiş ve üretilen akıma göre güç değerleri bulunmuştur. Boyutlarına göre yakıt hücrelerinin
performansları değerlendirilerek üretecekleri elektrik enerji miktarları hesaplanmıştır. Bu durumda; yüzey alanı 5 cm2 olan yakıt hücresinin C60H60’da, 25 cm2 olanın C60H46‘da ve 50 cm2 olanın C60H46’da en verimli olduğu tespit edilmiştir.
Kaynakça
- Aili, D., Henkensmeier, D., Martin, S., Singh, B., Hu, Y., Jensen, J., ... Qingfeng, L. (2020). Polybenzimidazole-based high-temperature polymer electrolytemembrane fuel cells: New insights and recent progress. Electrochemical Energy Reviews, 3, 793–845. Doi: https://doi.org/10.1007/s41918-020-00080-5
- Bakonyi, P., Koók, L., Rózsenberszki, T., Tóth, G., Bélafi-Bakó, K. & Nemestóthy, N.(2020). Development and application of supported ionic liquid membranes in microbial fuel cell technology: A concise overview. Membranes, 10(16). Doi: https://doi.org/10.3390/membranes10010016
- Campanari, S., Manzolini, G. & García de la Iglesia, F. (2009). Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 186, 464–477. Doi: https://doi. org/10.1016/j.jpowsour.2008.09.115
- Cano, Z.P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M. & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3, 279–289. Doi: https://doi.org/10.1038/s41560-018-0108-1
- Carbone, A., Pedicini, R., Portale, G., Longo, A., D’Ilario, L. & Passalacqua, E. (2006). Sulphonated poly(ether ether ketone) membranes for fuel cell application: Thermal and structural characterization. Journal of Power Sources, 163, 18– 26. Doi: https://doi.org/10.1016/j.jpowsour.2005.12.066
- Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S.& Kim, I.S. (2008). Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels, 22, 169–176. Doi:https://doi.org/10.1021/ef700308u
- Cleghorn, S., Springer, T., Wilson, M., Zawodzinski, C., Zawodzinski, T.A. & Gottes-feld, S. (1997). PEM fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22, 1137–1144. Doi: https://doi.org/10.1016/S0360-3199(97)00016-5
- Cruz-Martínez, H., Tellez-Cruz, M.M., Guerrero-Gutiérrez, O.X., Ramírez-Herrera, C.A., Salinas-Juárez, M.G., Velázquez-Osorio, A. & Solorza-Feria, O. (2019). Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells. International Journal of
Hydrogen Energy, 44, 12477–12491. Doi: https://doi.org/10.1016/j.ijhydene.2018.05.168
- Ebrahimi, M., Kujawski,W., Fatyeyeva, K. & Kujawa, J. A. (2021). Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). International Journal of Molecular Sciences, 22, 5430. https://doi.org/10.3390/ijms22115430
- Escorihuela, J., Olvera-Mancilla, J., Alexandrova, L., del Castillo, L. & Compañ, V. (2020). Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications. Polymers, 12(9), 1861. Doi:https://doi.org/10.3390/polym12091861
- Esmaeili, N., Gray, E.M.A. & Webb, C.J. (2019). Non-fluorinated polymer composite proton exchange membranes for fuel cell applications-A review. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 20, 2016–2053. Doi: https://doi.org/10.1002/cphc.201900191
- Haile, S.M., Boysen, D., Chisholm, C.R.I. & Merle, R. (2001). Solid acids as fuel cell electrolytes. Nature, 410, 910–913. Doi: https://doi.org/10.1038/35073536
- Hammes-Schiffer, S. & Soudackov, A. (2008). Protoncoupled electron transfer in solution, proteins, and electrochemistry. The Journal of Physical Chemistry B, 112, 14108–14123. Doi: https://doi.org/10.1021/jp805876e
- Han, I., Park, S. & Chung, C. (2016). Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency. Energy Conversion and Management, 113, 52-65. Doi: https://doi.org/10.1016/j.enconman.2016.01.045
- Huang, Y., Ding, H. & Zou Y. (2020). Ecological Performance Analysis of an Integrated Proton Exchange Membrane Fuel Cell and Thermoelectric Devices. International Journal of Electrochemical Science, 2581-2593. Doi: https://doi.org/10.20964/2020.03.31
- Ito, H., Maeda, T., Nakano, A. & Takenaka, H. (2011). Properties of Nafion membranes under PEM water electrolysis conditions. International Journal of Hydrogen Energy, 36, 10527–10540. Doi:https://doi.org/10.1016/j.ijhydene.2011.05.127
- Kaliaguine, S., Mikhailenko, S.D., Wang, K., Xing, P., Robertson, G.P., & Guiver, M.D. (2003). Properties of SPEEK based PEMs for fuel cell application. Catalysis Today, 82, 213-222. http://dx.doi.org/10.1016/S0920-5861(03)00235-9
- Kraytsberg, A. & Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels, 28, 7303–7330. Doi: https://doi.org/10.1021/ef501977k
- Kreuer, K.D., Paddison, S.J., Spohr, E. & Schuster, M. (2004). Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews, 104, 4637–4678. Doi: https://doi.org/10.1021/cr020715f
- Li, Q., Jensena, J., Savinell, R.F. & Bjerrum, N. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34, 449–477. Doi: https://doi.org/10.1016/j.progpolymsci.2008.12.003
- Li, G., Kujawski, W. & Rynkowska, E. (2019). Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). Reviews in Chemical Engineering. https:// doi.org/10.1515/revce-2019-0079
- Liu, C., Khan, S., Lee, M., Kim, K., Akhtar, K. & Han, H. (2013). Fuel cell based on novel hyper-branched polybenzimidazole membrane. Macromolecular Research, 21, 35–41. Doi: https://doi.org/10.1007/s13233-012-0191-2
- Mauritz, K.A. & Moore, R.B. (2004). State of understanding of Nafion. Chemical Reviews, 104, 4535–4585. Doi: https://doi.org/10.1021/cr0207123
- Mogorosi, K., Oladiran, M.T. & Rakgati, E. (2020). Mathematical Modelling and Experimental Investigation of a Low Temperature Proton Exchange Membrane Fuel Cell. Energy and Power Engineering, 12, 653-670. Doi: https://doi.org/10.4236/epe.2020.1211039
- Mubin, A.N., Bahrom, M.H., Azri, M., Ibrahim, Z., Rahim, N.A. & Raihan, S.R. (2017). Analysis performance of proton exchange membrane fuel cell (PEMFC). IOP Conference Series: Materials Science and Engineering, 210 012052. Doi: https://doi.org/10.1088/1757-899X/210/1/012052
- Nalbant, Y., Colpan, C.O. & Devrim, Y. (2020). Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system. International Journal of Hydrogen Energy, 45, 3584-3594. Doi: https://doi.org/10.1016/j.ijhydene.2019.01.252
- Omran, A., Lucchesi, A., Smith, D., Alaswad, A., Amiri, A., Wilberforce, T., … Olabi, A.G. (2021). Mathematical model of a proton-exchange membrane (PEM) fuel cell. International Journal of Thermofluids. Doi: https://doi.org/10.1016/j.ijft.2021.100110
- Özgür, T., & Yakaryilmaz, A.C. (2018). Thermodynamic analysis of a Proton Exchange Membrane fuel cell. International Journal of Hydrogen Energy, 43, 18007-18013. Doi: https://doi.org/10.1016/j.ijhydene.2018.06.152
- Parnian, M.J., Rowshanzamir, S., Prasad, A. & Advani, S.G. (2018). High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. Journal of Membrane Science, 556, 12-22. Doi: https://doi.org/10.1016/j.memsci.2018.03.083
- Pineri, M. & Eisenberg, A. (1987). Structure and Properties of Ionomers. Springer: Dordrecht, The Netherlands. ISBN-10: 9401082049, ISBN-13: 978-9401082044
- Samms, S.R., Wasmus, S. & Savinell, R.F. (1996). Thermal stability of nafion® in simulated fuel cell environments. Journal of The Electrochemical Society, 143, 1498. Doi: https://doi.org/10.1149/1.1836669
- Scott, K. & Shukla, A. (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Bio/Technology, 3, 273–280. Doi: https://doi.org/10.1007/s11157-004-6884-z
- Toghyani, S., Nafchi, F.M., Afshari, E., Hasanpour, K., Baniasadi, E. & Atyabi, S.A. (2018). Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. International Journal of Hydrogen Energy, 43, 4534-4545. Doi: https://doi.org/10.1016/j.ijhydene.2018.01.068
- Vazifeshenas, Y., Sedighi, K. & Shakeri, M. (2016). Numerical investigation of a novel compound flow-field for PEMFC performance improvement. International Journal of Hydrogen Energy, 40(43), 15032–15039. Doi: https://doi.org/10.1016/j.ijhydene.2015.08.077
- Vidakovic-Koch, T., Gonzalez Martinez, I., Kuwertz, R., Kunz, U., Turek, T. & Sundmacher, K. (2012). Electrochemical membrane reactors for sustainable chlorine recycling. Membranes, 2, 510–528. Doi: https://doi.org/10.3390/membranes2030510
- Wang, Y., Chen, K.S., Mishler, J., Cho, S.C. & Adroher, X.C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88, 981–1007. Doi: https://doi.org/10.1016/j.apenergy.2010.09.030
- Wang, L., Ni, J., Liu, D., Gong, C. & Wang, L. (2018). Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 43, 16694–16703. Doi: https://
doi.org/10.1016/j.ijhydene.2018.06.181
- Whittingham, M., Savinell, R. & Zawodzinski, T. (2004). Introduction: Batteries and fuel cells. Chemical Reviews, 104, 4243–4244. Doi: https://doi.org/10.1021/cr020705e
- Wilberforce, T. & Olabi, A.G. (2020). Proton exchange membrane fuel cell performance prediction using artificial neural network. International Journal of Hydrogen Energy, 46, 6037-6050. Doi:https://doi.org/10.1016/j.ijhydene.2020.07.263
- The Model 850 Fuel Cell Test System. (2023). Erişim adresi: https://www.scribner.com/products/fuel-cell-test-systems/850-fuel-cell-test system/#1503940946730-2-374a5-f1ee
- Zhang, H. &Shen, P.K. (2012). Recent development of polymer electrolyte membranes for fuel cells. Chemical Reviews, 112, 2780–2832. Doi: https://doi.org/10.1021/cr200035s
- Zhang, H. & Sun, C. (2021). Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. Journal of Power Sources, 493, 229445. Doi: https://doi.org/10.1016/j.jpowsour.2020.22944
EVALUATION OF THE PERFORMANCE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL (PEMFC) DESIGNED IN DIFFERENT SIZES
Yıl 2024,
Cilt: 65 Sayı: 714, 1101 - 120, 29.04.2024
Adem Yılmaz
,
Sinan Ünvar
,
Bünyamin Aygün
Öz
Fuel cells, the technology of the future, are devices that create electrical energy by combining hydrogen and oxygen as a result of a chemical reaction and release heat with H2O as waste. Since electricity is produced without combustion, less pollution occurs. The part where the chemical reaction takes place in the Polymer Electrolyte Membrane (PEM) fuel cell consists of the membrane. In this study, the fuel consumption of different sizes (5-25-50 cm2) of fuel cells was investigated and the factors affecting the
performance were determined experimentally. First of all, the PEM fuel cell was installed, and appropriate amounts of Hydrogen (H2) and Oxygen (O2) were sent to the fuel cell according to the characteristics of the established cell. During the study, the performances of different sizes of fuel cells were determined. The behavior of the fuel cell was determined according to the C-H ratio values in the fuel cell and power values were found according to the produced current. The performance of fuel cells was evaluated
according to their size and the amount of electrical energy they would produce was calculated. In this case, it was determined that the fuel cell with a surface area of 5 cm2 was the most efficient in C60H60, 25 cm2 in C60H46 and 50 cm2 in C60H46, respectively
Etik Beyan
Çalışmanın hazırlanmasında ve yayın sürecinde hiçbir etik kural ihlali yapılmadığını kabul ve beyan ederiz.
Destekleyen Kurum
Ağrı İbrahim Çeçen Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (Ağrı BAP)
Teşekkür
Ağrı İbrahim Çeçen Üniversitesi
Bilimsel Araştırma Projeleri Koordinasyon Birimine (Ağrı BAP)
Teşekkür ederiz.
Kaynakça
- Aili, D., Henkensmeier, D., Martin, S., Singh, B., Hu, Y., Jensen, J., ... Qingfeng, L. (2020). Polybenzimidazole-based high-temperature polymer electrolytemembrane fuel cells: New insights and recent progress. Electrochemical Energy Reviews, 3, 793–845. Doi: https://doi.org/10.1007/s41918-020-00080-5
- Bakonyi, P., Koók, L., Rózsenberszki, T., Tóth, G., Bélafi-Bakó, K. & Nemestóthy, N.(2020). Development and application of supported ionic liquid membranes in microbial fuel cell technology: A concise overview. Membranes, 10(16). Doi: https://doi.org/10.3390/membranes10010016
- Campanari, S., Manzolini, G. & García de la Iglesia, F. (2009). Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 186, 464–477. Doi: https://doi. org/10.1016/j.jpowsour.2008.09.115
- Cano, Z.P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M. & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3, 279–289. Doi: https://doi.org/10.1038/s41560-018-0108-1
- Carbone, A., Pedicini, R., Portale, G., Longo, A., D’Ilario, L. & Passalacqua, E. (2006). Sulphonated poly(ether ether ketone) membranes for fuel cell application: Thermal and structural characterization. Journal of Power Sources, 163, 18– 26. Doi: https://doi.org/10.1016/j.jpowsour.2005.12.066
- Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S.& Kim, I.S. (2008). Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels, 22, 169–176. Doi:https://doi.org/10.1021/ef700308u
- Cleghorn, S., Springer, T., Wilson, M., Zawodzinski, C., Zawodzinski, T.A. & Gottes-feld, S. (1997). PEM fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22, 1137–1144. Doi: https://doi.org/10.1016/S0360-3199(97)00016-5
- Cruz-Martínez, H., Tellez-Cruz, M.M., Guerrero-Gutiérrez, O.X., Ramírez-Herrera, C.A., Salinas-Juárez, M.G., Velázquez-Osorio, A. & Solorza-Feria, O. (2019). Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells. International Journal of
Hydrogen Energy, 44, 12477–12491. Doi: https://doi.org/10.1016/j.ijhydene.2018.05.168
- Ebrahimi, M., Kujawski,W., Fatyeyeva, K. & Kujawa, J. A. (2021). Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). International Journal of Molecular Sciences, 22, 5430. https://doi.org/10.3390/ijms22115430
- Escorihuela, J., Olvera-Mancilla, J., Alexandrova, L., del Castillo, L. & Compañ, V. (2020). Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications. Polymers, 12(9), 1861. Doi:https://doi.org/10.3390/polym12091861
- Esmaeili, N., Gray, E.M.A. & Webb, C.J. (2019). Non-fluorinated polymer composite proton exchange membranes for fuel cell applications-A review. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 20, 2016–2053. Doi: https://doi.org/10.1002/cphc.201900191
- Haile, S.M., Boysen, D., Chisholm, C.R.I. & Merle, R. (2001). Solid acids as fuel cell electrolytes. Nature, 410, 910–913. Doi: https://doi.org/10.1038/35073536
- Hammes-Schiffer, S. & Soudackov, A. (2008). Protoncoupled electron transfer in solution, proteins, and electrochemistry. The Journal of Physical Chemistry B, 112, 14108–14123. Doi: https://doi.org/10.1021/jp805876e
- Han, I., Park, S. & Chung, C. (2016). Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency. Energy Conversion and Management, 113, 52-65. Doi: https://doi.org/10.1016/j.enconman.2016.01.045
- Huang, Y., Ding, H. & Zou Y. (2020). Ecological Performance Analysis of an Integrated Proton Exchange Membrane Fuel Cell and Thermoelectric Devices. International Journal of Electrochemical Science, 2581-2593. Doi: https://doi.org/10.20964/2020.03.31
- Ito, H., Maeda, T., Nakano, A. & Takenaka, H. (2011). Properties of Nafion membranes under PEM water electrolysis conditions. International Journal of Hydrogen Energy, 36, 10527–10540. Doi:https://doi.org/10.1016/j.ijhydene.2011.05.127
- Kaliaguine, S., Mikhailenko, S.D., Wang, K., Xing, P., Robertson, G.P., & Guiver, M.D. (2003). Properties of SPEEK based PEMs for fuel cell application. Catalysis Today, 82, 213-222. http://dx.doi.org/10.1016/S0920-5861(03)00235-9
- Kraytsberg, A. & Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels, 28, 7303–7330. Doi: https://doi.org/10.1021/ef501977k
- Kreuer, K.D., Paddison, S.J., Spohr, E. & Schuster, M. (2004). Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews, 104, 4637–4678. Doi: https://doi.org/10.1021/cr020715f
- Li, Q., Jensena, J., Savinell, R.F. & Bjerrum, N. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34, 449–477. Doi: https://doi.org/10.1016/j.progpolymsci.2008.12.003
- Li, G., Kujawski, W. & Rynkowska, E. (2019). Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). Reviews in Chemical Engineering. https:// doi.org/10.1515/revce-2019-0079
- Liu, C., Khan, S., Lee, M., Kim, K., Akhtar, K. & Han, H. (2013). Fuel cell based on novel hyper-branched polybenzimidazole membrane. Macromolecular Research, 21, 35–41. Doi: https://doi.org/10.1007/s13233-012-0191-2
- Mauritz, K.A. & Moore, R.B. (2004). State of understanding of Nafion. Chemical Reviews, 104, 4535–4585. Doi: https://doi.org/10.1021/cr0207123
- Mogorosi, K., Oladiran, M.T. & Rakgati, E. (2020). Mathematical Modelling and Experimental Investigation of a Low Temperature Proton Exchange Membrane Fuel Cell. Energy and Power Engineering, 12, 653-670. Doi: https://doi.org/10.4236/epe.2020.1211039
- Mubin, A.N., Bahrom, M.H., Azri, M., Ibrahim, Z., Rahim, N.A. & Raihan, S.R. (2017). Analysis performance of proton exchange membrane fuel cell (PEMFC). IOP Conference Series: Materials Science and Engineering, 210 012052. Doi: https://doi.org/10.1088/1757-899X/210/1/012052
- Nalbant, Y., Colpan, C.O. & Devrim, Y. (2020). Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system. International Journal of Hydrogen Energy, 45, 3584-3594. Doi: https://doi.org/10.1016/j.ijhydene.2019.01.252
- Omran, A., Lucchesi, A., Smith, D., Alaswad, A., Amiri, A., Wilberforce, T., … Olabi, A.G. (2021). Mathematical model of a proton-exchange membrane (PEM) fuel cell. International Journal of Thermofluids. Doi: https://doi.org/10.1016/j.ijft.2021.100110
- Özgür, T., & Yakaryilmaz, A.C. (2018). Thermodynamic analysis of a Proton Exchange Membrane fuel cell. International Journal of Hydrogen Energy, 43, 18007-18013. Doi: https://doi.org/10.1016/j.ijhydene.2018.06.152
- Parnian, M.J., Rowshanzamir, S., Prasad, A. & Advani, S.G. (2018). High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. Journal of Membrane Science, 556, 12-22. Doi: https://doi.org/10.1016/j.memsci.2018.03.083
- Pineri, M. & Eisenberg, A. (1987). Structure and Properties of Ionomers. Springer: Dordrecht, The Netherlands. ISBN-10: 9401082049, ISBN-13: 978-9401082044
- Samms, S.R., Wasmus, S. & Savinell, R.F. (1996). Thermal stability of nafion® in simulated fuel cell environments. Journal of The Electrochemical Society, 143, 1498. Doi: https://doi.org/10.1149/1.1836669
- Scott, K. & Shukla, A. (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Bio/Technology, 3, 273–280. Doi: https://doi.org/10.1007/s11157-004-6884-z
- Toghyani, S., Nafchi, F.M., Afshari, E., Hasanpour, K., Baniasadi, E. & Atyabi, S.A. (2018). Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. International Journal of Hydrogen Energy, 43, 4534-4545. Doi: https://doi.org/10.1016/j.ijhydene.2018.01.068
- Vazifeshenas, Y., Sedighi, K. & Shakeri, M. (2016). Numerical investigation of a novel compound flow-field for PEMFC performance improvement. International Journal of Hydrogen Energy, 40(43), 15032–15039. Doi: https://doi.org/10.1016/j.ijhydene.2015.08.077
- Vidakovic-Koch, T., Gonzalez Martinez, I., Kuwertz, R., Kunz, U., Turek, T. & Sundmacher, K. (2012). Electrochemical membrane reactors for sustainable chlorine recycling. Membranes, 2, 510–528. Doi: https://doi.org/10.3390/membranes2030510
- Wang, Y., Chen, K.S., Mishler, J., Cho, S.C. & Adroher, X.C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88, 981–1007. Doi: https://doi.org/10.1016/j.apenergy.2010.09.030
- Wang, L., Ni, J., Liu, D., Gong, C. & Wang, L. (2018). Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 43, 16694–16703. Doi: https://
doi.org/10.1016/j.ijhydene.2018.06.181
- Whittingham, M., Savinell, R. & Zawodzinski, T. (2004). Introduction: Batteries and fuel cells. Chemical Reviews, 104, 4243–4244. Doi: https://doi.org/10.1021/cr020705e
- Wilberforce, T. & Olabi, A.G. (2020). Proton exchange membrane fuel cell performance prediction using artificial neural network. International Journal of Hydrogen Energy, 46, 6037-6050. Doi:https://doi.org/10.1016/j.ijhydene.2020.07.263
- The Model 850 Fuel Cell Test System. (2023). Erişim adresi: https://www.scribner.com/products/fuel-cell-test-systems/850-fuel-cell-test system/#1503940946730-2-374a5-f1ee
- Zhang, H. &Shen, P.K. (2012). Recent development of polymer electrolyte membranes for fuel cells. Chemical Reviews, 112, 2780–2832. Doi: https://doi.org/10.1021/cr200035s
- Zhang, H. & Sun, C. (2021). Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. Journal of Power Sources, 493, 229445. Doi: https://doi.org/10.1016/j.jpowsour.2020.22944