Araştırma Makalesi
BibTex RIS Kaynak Göster

60° EĞİMLİ İKİNCİL JETLERE SAHİP SINIRLANDIRILMIŞ ÇARPAN JET DİZİSİNDE ISI TRANSFERİ ETKİLERİNİN İNCELENMESİ

Yıl 2024, Sayı: 717, 598 - 627

Öz

Bu çalışmada, 60° eğimli ikincil jetlere sahip sınırlandırılmış çarpan dizi jet akışında çarpma yüzeyindeki ısı transferi etkileri hem deneysel hem de sayısal olarak incelenmiştir. Çalışmanın deneysel kısmında, Reynolds sayısı değerleri 20000 ve 30000, levhalar arası açıklık değerleri 0.5, 1, 3 ve 6 için çarpma levhasının merkez ekseni üzerince termal kamera ile sıcaklık dağılımları elde edilmiştir. Çalışmanın sayısal kısmında ise, Reynolds sayısının 30000 değerinde aynı açıklık değerleri için Standard k-ε ve Standard k-ω türbülans modellerinin Kato Launder ile modifiye edilmiş versiyonları kullanılarak 2-boyutlu çözümler gerçekleştirilmiş ve çarpma levhası üzerinde hesaplanan sıcaklık dağılımları deneysel sonuçlarla karşılaştırılmıştır. Ölçümlenen sıcaklık dağılımlarıyla, Reynolds sayısı ve levhalar arası açıklık değerlerinin çarpma levhası üzerindeki Nusselt dağılımlarına etkisi araştırılmıştır. Çarpma levhası boyunca Nusselt değerleri artan Reynolds sayısı ile artmakta, artan levhalar arası açıklık değerleri ile azalmaktadır. Çarpma levhası üzerinde ikincil jetlerin eksenleri doğrultusundaki çarpma konumlarında Nusselt sayısı pik değerler almakta ve oluşan piklerin konumları artan levhalar arası açıklı ile daha büyük ±r/D değerlerine kaymaktadır. Her iki türbülans modeliyle hesaplanan Nusselt dağılımlarının benzer olduğu ve çarpma bölgesinde hesaplanan sonuçların Standard k-ε ve Standard k-ω türbülans modelleri için sırasıyla % 9 ve % 11’lik hata payı ile deneysel sonuçlara uyum sağlandığı görülmektedir.

Kaynakça

  • Abdel-Fattah, A. (2007). Numerical and experimental study of turbulent impinging twin-jet flow. Experimental Thermal and Fluid Science, 31, 1061-1072. Doi: https://doi.org/10.1016/j.expthermflusci.2006.11.006
  • Aldabbagh, L. B. Y., & Mohamad, A. A. (2007). Effect of jet-to-plate spacing in laminar array jets impinging. Heat and Mass Transfer, 43, 265-273. Doi: https://doi.org/10.1007/s00231-006-0109-7
  • Aldabbagh, L. B. Y., & Sezai, I. (2002). Numerical simulation of three-dimensional laminar, square twin-jet impingement on a flat plate, flow structure, and heat transfer. Numerical Heat Transfer Part A: Applications, 41, 835-850. Doi: https://doi.org/10.1080/10407780290059378
  • Al Mubarak, A. A., Shaahid, S. M., & Al-Hadhrami, L. M. (2013). Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets. Thermal Science, 17, 1195-1206. Doi: https://doi.org/10.2298/TSCI110630010A
  • Attalla, M., & Specht, E. (2009). Heat transfer characteristics from in-line arrays of free impinging jets. Heat and Mass Transfer, 45, 537-543. Doi: https://doi.org/10.1007/s00231-008-0452-y
  • Baz, F. B., Elshenawy, E. A., El-Agouz, S. A., El-Samadony, Y. A. F., & Marzouk, S. A. (2024). Experimental study on air impinging jet for effective cooling of multiple protruding heat sources. International Journal of Thermal Sciences, 196, 108707. Doi: https://doi.org/10.1016/j.ijthermalsci.2023.108707
  • Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2011). Introduction to Heat Transfer (6th ed.). Wiley.
  • Buchlin, J. M. (2011). Convective Heat Transfer In Impinging-Gas-Jet Arrangements. Journal of Applied Fluid Mechanics, 4, 137-149. Doi: https://doi.org/10.36884/jafm.4.02.11926
  • Caliskan, S., Baskaya, S., & Calisir, T. (2014). Experimental and numerical investigation of geometry effects on multiple impinging air jets. International Journal of Heat and Mass Transfer, 75, 685-703. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.005
  • Chuang, S. H., Chen, M. H., Lii, S. W., & Tai, F. M. (1992). Numerical simulation of twin-jet impingement on a flat plate coupled with cross-flow. International Journal of Numerical Methods for Heat & Fluid Flow, 14, 459-475. Doi: https://doi.org/10.1002/fld.1650140406
  • Chuang, S. H., & Nieh, T. J. (2000). Numerical simulation and analysis of three-dimensional turbulent impinging square twin-jet flow field with no-crossflow. International Journal of Numerical Methods for Heat & Fluid Flow, 33, 475-498. Doi: https://doi.org/10.1002/1097-0363(20000630)33:4%3C475::AID-FLD16%3E3.0.CO;2-Q
  • Churchill, S. W., & Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 18, 1323-1329. Doi: https://doi.org/10.1016/0017-9310(75)90243-4
  • Dagtekin, I., & Oztop, H. F. (2008). Heat transfer due to double laminar slot jets impingement onto an isothermal wall within one side closed long duct. International Communications in Heat and Mass Transfer, 35, 65-75. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2007.05.013
  • Dong, L. L., Leung, C. W., & Cheung, C. S. (2004). Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets. International Journal of Heat and Mass Transfer, 47, 489-500. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.019
  • Fernández, J. A., Elicer-Cortés, J. C., Valencia, A., Pavageau, M., & Gupta, S. (2007). Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices. International Communications in Heat and Mass Transfer, 34, 570-578. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2007.02.011
  • Geers, L. F. G., Hanjalic, K. & Tummers, M. J. Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays, J. Fluid Mech., 546, 2006, 255-284. Doi: https://doi.org/10.1017/S002211200500710X
  • Godi, S.C., Pattamatta, A. & Balaji, C. (2020). Heat transfer from a single and row of three dimensional wall jets - A combined experimental and numerical study, Int. J. Heat Mass Transf. 159, 119801, Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119801.
  • Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G. & Cong, D. (2016). Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows, Int. J. Therm. Sci. 108, 123–131, Doi: https://doi.org/10.1016/j.ijthermalsci.2016.05.006.
  • Kato, M., & Launder, B. E. (1993). The modeling of turbulent flow around stationary and vibrating square cylinders. In Proceedings of the 9th Symposium on Turbulent Shear Flows (pp. 10.4.1–10.4.6).
  • Kline, S., & McClintock, F. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3-8.
  • Maddox, J. F., Knight, R. W., & Bhavnani, S. H. (2015). Liquid Jet Impingement With an Angled Confining Wall for Spent Flow Management for Power Electronics Cooling With Local Thermal Measurements. Journal of Electronic Packaging, 137.Doi: https://doi.org/10.1115/1.4030953
  • Miao, J. M., Wu, C. Y., & Chen, P. H. (2009). Numerical investigation of confined multiple-jet impingement cooling over a flat plate at different crossflow orientations. Numerical Heat Transfer Part A: Applications, 55, 1019-1050. Doi: https://doi.org/10.1080/10407780903014335
  • Ozmen, Y. (2011). Confined impinging twin air jets at high Reynolds numbers. Experimental Thermal and Fluid Science, 35, 355-363. Doi: https://doi.org/10.1016/j.expthermflusci.2010.10.006
  • Ozmen, Y., & Baydar, E. (2013). A numerical investigation on confined impinging array of air jets. Journal of Thermal Science and Technology, 33, 65-74.
  • Ozmen, Y., & Ipek, G. (2016). Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets. Heat and Mass Transfer, 52, 773-787.Doi: https://doi.org/10.1007/s00231-015-1598-z
  • Polat, S., Huang, B., Mujumdar, A. S., & Douglas, W. J. M. (1989). Numerical flow and heat transfer under impinging jets: A review. Annual Review of Numerical Fluid Mechanics and Heat Transfer, 2, 157-197. Doi: https://doi.org/10.1615/AnnualRevHeatTransfer.v2.60
  • San, J. Y. & Chen, J. J. (2014). Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array, Int. J. Heat Mass Transf. 71 (2014) 8–17, Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.079.
  • Seyedein, S. H., Hasan, M., & Mujumdar, A. S. (1995). Turbulent flow and heat transfer from confined multiple impinging slot jets. Numerical Heat Transfer Part A: Applications, 27, 35-51. Doi: https://doi.org/10.1080/10407789508913687
  • Talapati, R. J., Baghel, K., Shrigondekar, H., & Katti, V. V. (2024). Influence of inclined unconfined circular air jet impingement on local heat transfer characteristics of smooth flat plate. International Journal of Thermal Sciences, 197, 108848. Doi: https://doi.org/10.1016/j.ijthermalsci.2023.108848
  • Tepe, A. Ü. (2019). Gaz Türbin Kanatlarında Jet Çarpmalı Soğutmanın Deneysel ve Sayısal İncelenmesi [Doktora tezi, Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü].
  • Yang, Y. T., & Shyu, C. H. (1998). Numerical study of multiple impinging slot jets with an inclined confinement surface. Numerical Heat Transfer Part A: Applications, 33, 23-37. Doi: https://doi.org/10.1080/10407789808913926
  • Yalçınkaya, O., Durmaz, U., Tepe, A. Ü., Benim, A. C., & Uysal, Ü. (2024). Heat and Flow Characteristics of Aerofoil-Shaped Fins on a Curved Target Surface in a Confined Channel for an Impinging Jet Array. Energies, 17(5), 1238. Doi: https://doi.org/10.3390/en17051238

INVESTIGATION OF HEAT TRANSFER EFFECTS IN A CONFINED IMPINGING JET ARRAY WITH 60° INCLINED SECONDARY JETS

Yıl 2024, Sayı: 717, 598 - 627

Öz

In this study, the effects of heat transfer on the impingement surface of a confined impinging array jet flow with 60° inclined secondary jets are investigated both experimentally and numerically. In the experimental section of the study, temperature distributions were obtained with a thermal camera among the middle axis of the impingement plate for 20000 and 30000 values of Reynolds number and 0.5, 1, 3 and 6 values of the aperture among plates. In the numerical section of the study, for the same Reynolds number and spacing values, bidimensional solutions were performed with the Kato Launder modified version of the Standard k-ε and Standard k-ω turbulence models and the calculated temperature distributions on the target impingement plate were compared with the experimental results. With measured temperature distributions, the effect of Reynolds number and aperture between plates on the Nusselt distributions on the target impingement plate is investigated. The Nusselt values on the surface of target impingement plate increase with increasing Reynolds number and decrease with increasing aperture between plates. The Nusselt number takes top point values at the impingement positions of the secondary jets on the impingement plate in the direction of their axes, and the positions of the top points shift to larger ±r/D values with increasing inter-plate spacing. It is observed that the Nusselt distributions calculated with both turbulence models are similar and the calculated results in the impingement region agree with the experimental results with a margin of error of 9 % and 11 % for the Standard k-ε and Standard k-ω turbulence models, respectively.

Etik Beyan

Bu çalışmada araştırma ve yayın etiğine uyulmuştur.

Teşekkür

K.T.Ü. Makina Mühendisliği Bölümü’ne test ekipmanı ve programı sağladığı için teşekkür ederiz.

Kaynakça

  • Abdel-Fattah, A. (2007). Numerical and experimental study of turbulent impinging twin-jet flow. Experimental Thermal and Fluid Science, 31, 1061-1072. Doi: https://doi.org/10.1016/j.expthermflusci.2006.11.006
  • Aldabbagh, L. B. Y., & Mohamad, A. A. (2007). Effect of jet-to-plate spacing in laminar array jets impinging. Heat and Mass Transfer, 43, 265-273. Doi: https://doi.org/10.1007/s00231-006-0109-7
  • Aldabbagh, L. B. Y., & Sezai, I. (2002). Numerical simulation of three-dimensional laminar, square twin-jet impingement on a flat plate, flow structure, and heat transfer. Numerical Heat Transfer Part A: Applications, 41, 835-850. Doi: https://doi.org/10.1080/10407780290059378
  • Al Mubarak, A. A., Shaahid, S. M., & Al-Hadhrami, L. M. (2013). Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets. Thermal Science, 17, 1195-1206. Doi: https://doi.org/10.2298/TSCI110630010A
  • Attalla, M., & Specht, E. (2009). Heat transfer characteristics from in-line arrays of free impinging jets. Heat and Mass Transfer, 45, 537-543. Doi: https://doi.org/10.1007/s00231-008-0452-y
  • Baz, F. B., Elshenawy, E. A., El-Agouz, S. A., El-Samadony, Y. A. F., & Marzouk, S. A. (2024). Experimental study on air impinging jet for effective cooling of multiple protruding heat sources. International Journal of Thermal Sciences, 196, 108707. Doi: https://doi.org/10.1016/j.ijthermalsci.2023.108707
  • Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2011). Introduction to Heat Transfer (6th ed.). Wiley.
  • Buchlin, J. M. (2011). Convective Heat Transfer In Impinging-Gas-Jet Arrangements. Journal of Applied Fluid Mechanics, 4, 137-149. Doi: https://doi.org/10.36884/jafm.4.02.11926
  • Caliskan, S., Baskaya, S., & Calisir, T. (2014). Experimental and numerical investigation of geometry effects on multiple impinging air jets. International Journal of Heat and Mass Transfer, 75, 685-703. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.005
  • Chuang, S. H., Chen, M. H., Lii, S. W., & Tai, F. M. (1992). Numerical simulation of twin-jet impingement on a flat plate coupled with cross-flow. International Journal of Numerical Methods for Heat & Fluid Flow, 14, 459-475. Doi: https://doi.org/10.1002/fld.1650140406
  • Chuang, S. H., & Nieh, T. J. (2000). Numerical simulation and analysis of three-dimensional turbulent impinging square twin-jet flow field with no-crossflow. International Journal of Numerical Methods for Heat & Fluid Flow, 33, 475-498. Doi: https://doi.org/10.1002/1097-0363(20000630)33:4%3C475::AID-FLD16%3E3.0.CO;2-Q
  • Churchill, S. W., & Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 18, 1323-1329. Doi: https://doi.org/10.1016/0017-9310(75)90243-4
  • Dagtekin, I., & Oztop, H. F. (2008). Heat transfer due to double laminar slot jets impingement onto an isothermal wall within one side closed long duct. International Communications in Heat and Mass Transfer, 35, 65-75. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2007.05.013
  • Dong, L. L., Leung, C. W., & Cheung, C. S. (2004). Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets. International Journal of Heat and Mass Transfer, 47, 489-500. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.019
  • Fernández, J. A., Elicer-Cortés, J. C., Valencia, A., Pavageau, M., & Gupta, S. (2007). Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices. International Communications in Heat and Mass Transfer, 34, 570-578. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2007.02.011
  • Geers, L. F. G., Hanjalic, K. & Tummers, M. J. Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays, J. Fluid Mech., 546, 2006, 255-284. Doi: https://doi.org/10.1017/S002211200500710X
  • Godi, S.C., Pattamatta, A. & Balaji, C. (2020). Heat transfer from a single and row of three dimensional wall jets - A combined experimental and numerical study, Int. J. Heat Mass Transf. 159, 119801, Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119801.
  • Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G. & Cong, D. (2016). Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows, Int. J. Therm. Sci. 108, 123–131, Doi: https://doi.org/10.1016/j.ijthermalsci.2016.05.006.
  • Kato, M., & Launder, B. E. (1993). The modeling of turbulent flow around stationary and vibrating square cylinders. In Proceedings of the 9th Symposium on Turbulent Shear Flows (pp. 10.4.1–10.4.6).
  • Kline, S., & McClintock, F. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3-8.
  • Maddox, J. F., Knight, R. W., & Bhavnani, S. H. (2015). Liquid Jet Impingement With an Angled Confining Wall for Spent Flow Management for Power Electronics Cooling With Local Thermal Measurements. Journal of Electronic Packaging, 137.Doi: https://doi.org/10.1115/1.4030953
  • Miao, J. M., Wu, C. Y., & Chen, P. H. (2009). Numerical investigation of confined multiple-jet impingement cooling over a flat plate at different crossflow orientations. Numerical Heat Transfer Part A: Applications, 55, 1019-1050. Doi: https://doi.org/10.1080/10407780903014335
  • Ozmen, Y. (2011). Confined impinging twin air jets at high Reynolds numbers. Experimental Thermal and Fluid Science, 35, 355-363. Doi: https://doi.org/10.1016/j.expthermflusci.2010.10.006
  • Ozmen, Y., & Baydar, E. (2013). A numerical investigation on confined impinging array of air jets. Journal of Thermal Science and Technology, 33, 65-74.
  • Ozmen, Y., & Ipek, G. (2016). Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets. Heat and Mass Transfer, 52, 773-787.Doi: https://doi.org/10.1007/s00231-015-1598-z
  • Polat, S., Huang, B., Mujumdar, A. S., & Douglas, W. J. M. (1989). Numerical flow and heat transfer under impinging jets: A review. Annual Review of Numerical Fluid Mechanics and Heat Transfer, 2, 157-197. Doi: https://doi.org/10.1615/AnnualRevHeatTransfer.v2.60
  • San, J. Y. & Chen, J. J. (2014). Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array, Int. J. Heat Mass Transf. 71 (2014) 8–17, Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.079.
  • Seyedein, S. H., Hasan, M., & Mujumdar, A. S. (1995). Turbulent flow and heat transfer from confined multiple impinging slot jets. Numerical Heat Transfer Part A: Applications, 27, 35-51. Doi: https://doi.org/10.1080/10407789508913687
  • Talapati, R. J., Baghel, K., Shrigondekar, H., & Katti, V. V. (2024). Influence of inclined unconfined circular air jet impingement on local heat transfer characteristics of smooth flat plate. International Journal of Thermal Sciences, 197, 108848. Doi: https://doi.org/10.1016/j.ijthermalsci.2023.108848
  • Tepe, A. Ü. (2019). Gaz Türbin Kanatlarında Jet Çarpmalı Soğutmanın Deneysel ve Sayısal İncelenmesi [Doktora tezi, Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü].
  • Yang, Y. T., & Shyu, C. H. (1998). Numerical study of multiple impinging slot jets with an inclined confinement surface. Numerical Heat Transfer Part A: Applications, 33, 23-37. Doi: https://doi.org/10.1080/10407789808913926
  • Yalçınkaya, O., Durmaz, U., Tepe, A. Ü., Benim, A. C., & Uysal, Ü. (2024). Heat and Flow Characteristics of Aerofoil-Shaped Fins on a Curved Target Surface in a Confined Channel for an Impinging Jet Array. Energies, 17(5), 1238. Doi: https://doi.org/10.3390/en17051238
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Haluk Keleş 0000-0002-6562-8902

Yücel Özmen 0000-0003-1127-1060

Erken Görünüm Tarihi 11 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 24 Nisan 2024
Kabul Tarihi 10 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 717

Kaynak Göster

APA Keleş, H., & Özmen, Y. (2024). 60° EĞİMLİ İKİNCİL JETLERE SAHİP SINIRLANDIRILMIŞ ÇARPAN JET DİZİSİNDE ISI TRANSFERİ ETKİLERİNİN İNCELENMESİ. Mühendis Ve Makina(717), 598-627.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520