Araştırma Makalesi
BibTex RIS Kaynak Göster

Eriyik Yığma Modelleme Yöntemi Kullanılarak PEEK ile Üretilen Parçaların Mekanik Özelliklerini İyileştirmek için Baskı Parametrelerinin Optimizasyonu

Yıl 2025, Cilt: 66 Sayı: 720, 442 - 461, 30.09.2025

Öz

Katmanlı üretim, yaygın olarak bilinen adıyla 3D baskı, yüksek performanslı polimerlerin kullanımını mümkün kılarak karmaşık yapıların üretiminde devrim yaratmıştır. Bu çalışma, bu polimerlerin mekanik özelliklerini geliştirmek amacıyla baskı parametrelerini optimize etmeyi amaçlamaktadır. Baskı hızı, katman yüksekliği, ekstrüzyon sıcaklığı ve doluluk yoğunluğu gibi parametreleri sistematik olarak değiştirerek, bu parametrelerin, basılmış malzemelerin çekme mukavemeti, darbe direnci ve dayanıklılığı üzerindeki etkileri analiz edilmiştir. Bu araştırma, çeşitli endüstriyel uygulamalarda yüksek performanslı polimer bileşenlerinin (PEEK) üretimi için değerli bilgiler sunmaktadır ve parametre optimizasyonu yoluyla üstün malzeme özelliklerine ulaşmayı amaçlamıştır. Bu amaçla çekme ve darbe testlerinin her numuneye uygulanmış ve varyans analizi ile de baskı parametreleri irdelenmiştir. Baskı parametrelerine göre yapılan testler neticesinde optimum baskı parametresi olarak 20 mm/s baskı hızı, 0.3 mm katman yüksekliği, 400°C ekstrüzyon sıcaklığı ve %100 doluluk oranı belirlenmiştir. Bu parametreler, 82.5 MPa çekme mukavemeti, 4.1 GPa Young modülü ve 7.1 J darbe dayanımı ile üstün mekanik özellikler sağlamıştır. Sonuçlar, bu parametrelerin belirli kombinasyonlarda polimerin mekanik performansını önemli ölçüde iyileştirdiğini göstermiştir.

Kaynakça

  • Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4), 248-257. https://doi.org/https://doi.org/10.1108/13552540210441166
  • Akhoundi, B., Nabipour, M., Hajami, F., & Shakoori, D. (2020). An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling. Polymer Engineering & Science, 60(5), 979-987. https://doi.org/https://doi.org/10.1002/pen.25353
  • Alabd, M. U., & Temiz, A. (2024). OPTIMIZATION OF ANNEALING AND 3D PRINTING PROCESS PARAMETERS OF PLA PARTS. International Journal of 3D Printing Technologies and Digital Industry, 8(2), 185-201. https://doi.org/10.46519/ij3dptdi.1451666
  • Antonio Morey, M., & Julio, A. (2025). Effect of the Process Parameters on the Mechanical Properties of 3D-Printed Specimens Fabricated by Material Extrusion 3D Printing. 1-1. https://doi.org/10.3390/engproc2025083001
  • Bardot, M., & Schulz, M. D. (2020). Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Nanomaterials, 10(12), 2567. https://doi.org/doi:10.3390/nano10122567
  • Chinmaya, P., Suryakumar, S., & Debraj, B. (2023). Ensembled Surrogate Assisted Material Extrusion Based 3D Printing Process Parameter Optimization for Enhanced Mechanical Properties of PEEK.
  • Deng, X., Zeng, Z., Peng, B., Yan, S., & Ke, W. (2018). Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Materials, 11(2), 216. https://www.mdpi.com/1996-1944/11/2/216
  • Dou, D., Wang, L., Jin, K., Han, Y., Wang, X., Song, L., & Fan, Y. (2024). Optimization of 3D Printing Parameters of Polylactic-Co-Glycolic Acid-Based Biodegradable Antibacterial Materials Using Fused Deposition Modeling. 3D Printing and Additive Manufacturing, 11(3), e1343-e1355. https://doi.org/https://doi.org/10.1089/3dp.2022.0340
  • Esun. (2022). Technical Data Sheet ePEEK-Industrial. In (Vol. 4): Esun3D.
  • Farazin, A., & Mohammadimehr, M. (2022). Effect of different parameters on the tensile properties of printed Polylactic acid samples by FDM: experimental design tested with MDs simulation. The International Journal of Advanced Manufacturing Technology, 118(1), 103-118. https://doi.org/https://doi.org/10.1007/s00170-021-07330-w
  • Hsueh, M.-H., Lai, C.-J., Chung, C.-F., Wang, S.-H., Huang, W.-C., Pan, C.-Y., Zeng, Y.-S., & Hsieh, C.-H. (2021). Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling. Polymers, 13(14), 2387. https://www.mdpi.com/2073-4360/13/14/2387
  • International, A. (2014). Standard Test Method for Tensile Properties of Plastics. In Designation: D638 − 14. International, A. (2023). Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. In Designation: D256 − 23.
  • Jyotisman, B., & Chandrasekaran, M. (2024). Development of ANN model for predicting mechanical properties of 3D printed PEEK polymer using FDM and optimization of process parameters for better mechanical properties. Physica Scripta. https://doi.org/10.1088/1402-4896/ad7f0f
  • Kashimatt, M. G. V. (2024). A systematic review of the process parameters, mechanical characteristics and applications of polyether ether ketone (PEEK) and its composites by additive manufacturing. Engineering research express. https://doi.org/10.1088/2631-8695/ad6af7
  • Lyu, Y., Zhao, H., Wen, X., Lin, L., Schlarb, A. K., & Shi, X. (2021). Optimization of 3D printing parameters for high-performance biodegradable materials. Journal of Applied Polymer Science, 138(32), 50782. https://doi.org/https://doi.org/10.1002/app.50782
  • Makara, L., Makara, L., Nuur Laila Najwa, T., Zuratul Ain Abdul, H., Arjulizan, R., Muhammad Khalil, A., & Raa Khimi, S. (2019). Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B-engineering, 176, 107341. https://doi.org/10.1016/J.COMPOSITESB.2019.107341
  • Ou-Yang, Q., Guo, B., & Xu, J. (2018). Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing. ACS Omega, 3(10), 14309-14317. https://doi.org/https://doi.org/10.1021/acsomega.8b02549
  • Patti, A., Acierno, S., Cicala, G., Tuccitto, N., Domenico, & Acierno. (2022). Refining the 3D Printer Set-up to Reduce the Environmental
  • Impact of the Fused Deposition Modelling (FDM) Technology CHEMICAL ENGINEERING TRANSACTIONS, 91, 415-420. https://doi.org/https://doi.org/10.3303/CET2291070
  • Prasong, W., Ishigami, A., Thumsorn, S., Kurose, T., & Ito, H. (2021). Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing. Polymers, 13(5), 740. https://www.mdpi.com/2073-4360/13/5/740
  • Torrado Perez, A. R., Roberson, D. A., & Wicker, R. B. (2014). Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials. Journal of Failure Analysis and Prevention, 14(3), 343-353. https://doi.org/https://doi.org/10.1007/s11668-014-9803-9
  • Wang, P., Zou, B., Ding, S., Li, L., & Huang, C. (2021). Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics, 34(9), 236-246. https://doi.org/https://doi.org/10.1016/j.cja.2020.05.040
  • Wasti, S., & Adhikari, S. (2020). Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique. Frontiers in Chemistry, 8. https://doi.org/https://doi.org/10.3389/fchem.2020.00315
  • Wu, W., Geng, P., Li, G., Di, Z., Haibo, Z., & Ji, Z. (2015). Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials, 8(9), 5834-5846. https://doi.org/10.3390/MA8095271
  • Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials, 8(9), 5834-5846. https://www.mdpi.com/1996-1944/8/9/5271
  • Xiaoyong, S., Liangcheng, C., Honglin, M., Peng, G., Zhanwei, B., & Cheng, L. (2017, 14-15 Jan. 2017). Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA),
  • Yavuz, İ., & Yuran, A. F. (2021). Endüstrİ 4.0 ve 3 Boyutlu Yazicilarin Karşılaştırılması [Industry 4.0 and comparison of 3d printers]. Mühendis ve Makina, 62(704), 580-606. https://doi.org/10.46399/muhendismakina.910501
  • Zhao, Y.-Q., Yang, J.-H., Ding, X., Ding, X., Duan, S., & Xu, F.-J. (2020). Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling. Bioactive Materials, 5(2), 185-191. https://doi.org/https://doi.org/10.1016/j.bioactmat.2020.02.006

Optimization of Printing Parameters to Enhance the Mechanical Properties of Parts Produced with PEEK Using Fused Deposition Modelling Method

Yıl 2025, Cilt: 66 Sayı: 720, 442 - 461, 30.09.2025

Öz

3D printing or additive manufacturing, has revolutionized the production of embroiled structures by facilitating the use of high-performance polymers. This study aims to optimize the printing parameters to enhance the mechanical properties of these polymers. Through the analysis of the effects of layer height, printing speed, extrusion temperature, filling density and other parameters on the tensile strength, impact resistance and durability of the printed materials by changing parameters systematically. This study provides important support for producing high-performance polymer (PEEK) used for various industrial purposes in order to pursue optimal settings for enhanced material features. To this aim, impact and tensile tests was applied to each sample and the printing parameters was analyzed with variance analysis(ANOVA). The ideal printing parameters determined include a printing speed of 20 mm/s, a layer height of 0.3 mm, an extrusion temperature of 400°C, and a filling ratio of 100%, according to trials conducted in accordance with printer specifications. The parameters demonstrated noteworthy mechanical qualities, such as a Young's modulus of 4.1 GPa, an impact strength of 7.1 J, and a tensile strength of 82.5 MPa. The findings showed that certain combinations of these characteristics significantly enhaced the PEEK's mechanical performance.

Kaynakça

  • Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4), 248-257. https://doi.org/https://doi.org/10.1108/13552540210441166
  • Akhoundi, B., Nabipour, M., Hajami, F., & Shakoori, D. (2020). An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling. Polymer Engineering & Science, 60(5), 979-987. https://doi.org/https://doi.org/10.1002/pen.25353
  • Alabd, M. U., & Temiz, A. (2024). OPTIMIZATION OF ANNEALING AND 3D PRINTING PROCESS PARAMETERS OF PLA PARTS. International Journal of 3D Printing Technologies and Digital Industry, 8(2), 185-201. https://doi.org/10.46519/ij3dptdi.1451666
  • Antonio Morey, M., & Julio, A. (2025). Effect of the Process Parameters on the Mechanical Properties of 3D-Printed Specimens Fabricated by Material Extrusion 3D Printing. 1-1. https://doi.org/10.3390/engproc2025083001
  • Bardot, M., & Schulz, M. D. (2020). Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Nanomaterials, 10(12), 2567. https://doi.org/doi:10.3390/nano10122567
  • Chinmaya, P., Suryakumar, S., & Debraj, B. (2023). Ensembled Surrogate Assisted Material Extrusion Based 3D Printing Process Parameter Optimization for Enhanced Mechanical Properties of PEEK.
  • Deng, X., Zeng, Z., Peng, B., Yan, S., & Ke, W. (2018). Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Materials, 11(2), 216. https://www.mdpi.com/1996-1944/11/2/216
  • Dou, D., Wang, L., Jin, K., Han, Y., Wang, X., Song, L., & Fan, Y. (2024). Optimization of 3D Printing Parameters of Polylactic-Co-Glycolic Acid-Based Biodegradable Antibacterial Materials Using Fused Deposition Modeling. 3D Printing and Additive Manufacturing, 11(3), e1343-e1355. https://doi.org/https://doi.org/10.1089/3dp.2022.0340
  • Esun. (2022). Technical Data Sheet ePEEK-Industrial. In (Vol. 4): Esun3D.
  • Farazin, A., & Mohammadimehr, M. (2022). Effect of different parameters on the tensile properties of printed Polylactic acid samples by FDM: experimental design tested with MDs simulation. The International Journal of Advanced Manufacturing Technology, 118(1), 103-118. https://doi.org/https://doi.org/10.1007/s00170-021-07330-w
  • Hsueh, M.-H., Lai, C.-J., Chung, C.-F., Wang, S.-H., Huang, W.-C., Pan, C.-Y., Zeng, Y.-S., & Hsieh, C.-H. (2021). Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling. Polymers, 13(14), 2387. https://www.mdpi.com/2073-4360/13/14/2387
  • International, A. (2014). Standard Test Method for Tensile Properties of Plastics. In Designation: D638 − 14. International, A. (2023). Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. In Designation: D256 − 23.
  • Jyotisman, B., & Chandrasekaran, M. (2024). Development of ANN model for predicting mechanical properties of 3D printed PEEK polymer using FDM and optimization of process parameters for better mechanical properties. Physica Scripta. https://doi.org/10.1088/1402-4896/ad7f0f
  • Kashimatt, M. G. V. (2024). A systematic review of the process parameters, mechanical characteristics and applications of polyether ether ketone (PEEK) and its composites by additive manufacturing. Engineering research express. https://doi.org/10.1088/2631-8695/ad6af7
  • Lyu, Y., Zhao, H., Wen, X., Lin, L., Schlarb, A. K., & Shi, X. (2021). Optimization of 3D printing parameters for high-performance biodegradable materials. Journal of Applied Polymer Science, 138(32), 50782. https://doi.org/https://doi.org/10.1002/app.50782
  • Makara, L., Makara, L., Nuur Laila Najwa, T., Zuratul Ain Abdul, H., Arjulizan, R., Muhammad Khalil, A., & Raa Khimi, S. (2019). Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B-engineering, 176, 107341. https://doi.org/10.1016/J.COMPOSITESB.2019.107341
  • Ou-Yang, Q., Guo, B., & Xu, J. (2018). Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing. ACS Omega, 3(10), 14309-14317. https://doi.org/https://doi.org/10.1021/acsomega.8b02549
  • Patti, A., Acierno, S., Cicala, G., Tuccitto, N., Domenico, & Acierno. (2022). Refining the 3D Printer Set-up to Reduce the Environmental
  • Impact of the Fused Deposition Modelling (FDM) Technology CHEMICAL ENGINEERING TRANSACTIONS, 91, 415-420. https://doi.org/https://doi.org/10.3303/CET2291070
  • Prasong, W., Ishigami, A., Thumsorn, S., Kurose, T., & Ito, H. (2021). Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing. Polymers, 13(5), 740. https://www.mdpi.com/2073-4360/13/5/740
  • Torrado Perez, A. R., Roberson, D. A., & Wicker, R. B. (2014). Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials. Journal of Failure Analysis and Prevention, 14(3), 343-353. https://doi.org/https://doi.org/10.1007/s11668-014-9803-9
  • Wang, P., Zou, B., Ding, S., Li, L., & Huang, C. (2021). Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics, 34(9), 236-246. https://doi.org/https://doi.org/10.1016/j.cja.2020.05.040
  • Wasti, S., & Adhikari, S. (2020). Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique. Frontiers in Chemistry, 8. https://doi.org/https://doi.org/10.3389/fchem.2020.00315
  • Wu, W., Geng, P., Li, G., Di, Z., Haibo, Z., & Ji, Z. (2015). Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials, 8(9), 5834-5846. https://doi.org/10.3390/MA8095271
  • Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials, 8(9), 5834-5846. https://www.mdpi.com/1996-1944/8/9/5271
  • Xiaoyong, S., Liangcheng, C., Honglin, M., Peng, G., Zhanwei, B., & Cheng, L. (2017, 14-15 Jan. 2017). Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA),
  • Yavuz, İ., & Yuran, A. F. (2021). Endüstrİ 4.0 ve 3 Boyutlu Yazicilarin Karşılaştırılması [Industry 4.0 and comparison of 3d printers]. Mühendis ve Makina, 62(704), 580-606. https://doi.org/10.46399/muhendismakina.910501
  • Zhao, Y.-Q., Yang, J.-H., Ding, X., Ding, X., Duan, S., & Xu, F.-J. (2020). Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling. Bioactive Materials, 5(2), 185-191. https://doi.org/https://doi.org/10.1016/j.bioactmat.2020.02.006
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katmanlı Üretim
Bölüm Araştırma Makalesi
Yazarlar

Oğuzhan Nazlım 0000-0002-7557-6333

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 18 Aralık 2024
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 66 Sayı: 720

Kaynak Göster

APA Nazlım, O. (2025). Optimization of Printing Parameters to Enhance the Mechanical Properties of Parts Produced with PEEK Using Fused Deposition Modelling Method. Mühendis ve Makina, 66(720), 442-461.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520