Araştırma Makalesi
BibTex RIS Kaynak Göster

Yenilebilir mantar Macrolepiota procera kullanılarak yeşil sentez yöntemiyle sentezlenen gümüş nanopartiküllerinin in-vitro biyolojik aktivitelerinin araştırılması

Yıl 2022, , 198 - 208, 24.01.2022
https://doi.org/10.31020/mutftd.1031151

Öz

Amaç: Mantarlar, çok çeşitli sekonder metabolitler üretebilmeleri nedeniyle halk arasında geleneksel tedavide kullanıldıkları bilinmektedir. Bu çalışmada, daha önce yapılan çalışmalarda anti-kanser, antioksidan, antimikrobiyal gibi çeşitli biyolojik aktiviteleri olduğu bildirilen gümüş nanopartiküllerin (AgNP'ler) Macrolepiota procera aracılı sentezlenmesi ve bu AgNP'lerin çeşitli in-vitro biyolojik aktivitelerinin araştırılması amaçlanmıştır.
Yöntem: Sentezlenen Mp-AgNP'ler, transmisyon elektron mikroskobu (TEM) kullanılarak karakterize edildi. Sentezlenen AgNP'lerin antimikrobiyal, biyofilm inhibisyonu ve hücre canlılığı inhibisyonu, DNA bölünmesi, DPPH aktivitesi gibi çeşitli biyolojik aktiviteleri in-vitro olarak incelenmiştir.
Bulgular: Mp-AgNP'lerin en yüksek DPPH süpürme aktivitesi 200 mg/L konsantrasyonda %92.72 olarak tespit edildi. Mp-AgNP'ler, E. coli pBR322 plazmid DNA'sında tek zincir kırığına neden oldu. Mp-AgNP'ler, test edilen mikroorganizmalara karşı orta düzeyde antimikrobiyal aktivite gösterdi. Ayrıca, Mp-AgNP'lerin P. aeruginosa ve S. aureus'a karşı biyofilm inhibisyon aktivitesi, 200 mg/L'de sırasıyla %65.80 ve %72.60 idi. Mp-AgNP'lerin E. coli hücre canlılığının inhibisyon aktivitesi, 500 mg/L'de %99,99 olarak tespit edildi.
Sonuç: Çalışmada elde edilen bulgulara göre, M. procera'nın AgNP sentezinde kullanılması, düşük maliyetli, çevre dostu, yüksek verime sahip olması ve insan sağlığına toksik olmaması nedeniyle özel önem taşımaktadır. Ayrıca yeni sentezlenen AgNP'ler yapılacak ileri çalışmalardan sonra farklı uygulamalar için etkin bir şekilde kullanılabilirler.

Kaynakça

  • 1. Kumar Panda M, et al. Green synthesis of silver nanoparticles and its potential effect on phytopathogens. Mater Today Proc 2021;35:233–8.
  • 2. Dhar SA, et al. Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthus emblica fruit extract. Mater Today Proc 2021;42:1867–71.
  • 3. Danagoudar A, et al. Characterization, cytotoxic and antioxidant potential of silver nanoparticles biosynthesised using endophytic fungus (Penicillium citrinum CGJ-C1). Mater Today Commun 2020;25(May):101385.
  • 4. Gauthami R, et al. Cissampelous pairera mediated synthesis of silver nanoparticles and it’s invitro antioxidant, antibacterial and antidiabetic activities. Mater Today Proc 2020;47(3):853–7.
  • 5. Das G, Patra JK, Shin HS. Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies. Mater Sci Eng C 2020;114(June 2019):111011.
  • 6. Mousavi SAA, Salari S, Hadizadeh S. Evaluation of antifungal effect of silver nanoparticles against microsporum canis, trichophyton mentagrophytes and microsporum gypseum. Iran J Biotechnol 2015;13(4).
  • 7. Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Struct 2020;1208.
  • 8. Ozlem Saygi K, Usta C. Rosa canina waste seed extract-mediated synthesis of silver nanoparticles and the evaluation of its antimutagenic action in Salmonella typhimurium. Mater Chem Phys 2021;266(March):124537.
  • 9. Sreekanth TVM, et al. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B Biol 2018;188:6–11.
  • 10. Chavan RR, et al. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Mater Today Commun 2020;24(May):101320.
  • 11. Ahn EY, Jin H, Park Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 2019;101(March):204–16.
  • 12. Krupodorova T, Sevindik M. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Sci J 2020;9(1):186–91.
  • 13. Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. Evidence-based Complement Altern Med 2018; 7271509.1-9.
  • 14. Aydın E et al. Effect of Different Processing Technologies on chemical Properties of Wild-Grown Edible mushroom Macrolepiota Procera Var.Procera (Scop.). Journal of Food Processing and Preservation 2017; 41:e12802.
  • 15. Kosanić M, et al. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 2016;24(3):477–84.
  • 16. Sabir S, et al. Biosynthesis of ZnO Nanoparticles Using Bacillus Subtilis: Characterization and Nutritive Significance for Promoting Plant Growth in Zea mays L, Dose-Response: An International Journal 2020:1-9.
  • 17. Agırtaş MS, Karatas C, Özdemir S. Synthesis of some metallophthalocyanines with dimethyl 5- (phenoxy)-isophthalate substituents and evaluation of their antioxidant-antibacterial activities. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy 2015;135:20–4.
  • 18. Alsubki R, et al. Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on Coriander sativum. Saudi J Biol Sci 2021;28(4):2102–8.
  • 19. Chick CN, et al. Preparation and antioxidant study of silver nanoparticles of Microsorum pteropus methanol extract. Bioorganic Med Chem Lett 2020;30(22):127526.
  • 20. Odeniyi MA, et al. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain Chem Pharm 2020;15(November 2019).
  • 21. Maheshwaran G, et al. Green synthesis of Silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities. J Environ Chem Eng 2020;8(5):104137.
  • 22. Palanisamy S, et al. Green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: An in vitro analysis. Mater Lett 2017;189:196–200.
  • 23. Ravichandran V, et al. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their Antimicrobial and antioxidant activity, Mater Lett 180 (2016) 264–267.
  • 24. Wang L, et al. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater Sci Eng C 2018;86(April 2017):1–8.
  • 25. Khorrami S, Zarepour A, Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. Biotechnol Reports 2019;24:e00393.
  • 26. Mousavi-Khattat M, Keyhanfar M, Razmjou A. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif Cells, Nanomedicine Biotechnol 2018; 46 (sup3):S1022–31.
  • 27. Begum MY, Alhamhoom Y, Roy A. Study of antimicrobial and DNA cleavage property of biocompatible silver nanoparticles prepared by using Ficus carica L. Mater Res Innov 2021;25(3):147–54.
  • 28. Morales-Lozoya V, et al. Study of the effect of the different parts of Morinda citrifolia L. (noni) on the green synthesis of silver nanoparticles and their antibacterial activity. Appl Surf Sci 2021;537(February 2020):147855.
  • 29. Alsubki R, et al. Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on Coriander sativum. Saudi J Biol Sci 2021;28(4):2102–8.
  • 30. Sathishkumar RS, et al. Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J Saudi Chem Soc 2019;23(8):1180–91.
  • 31. Sangaonkar GM, Pawar KD. Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids Surfaces B Biointerfaces 2018;164:210–7.
  • 32. Mehwish HM, et al. Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J Environ Chem Eng 2021;9(4):105290.
  • 33. Jalilian F, et al. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv Powder Technol 2020;31(3):1323–32.
  • 34. Lara HH, et al. Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles. ACS Appl Mater Interfaces 2020;12(19):21183–91.
  • 35. Singh P, et al. green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomedicine 2018;13:3571–91.

Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera

Yıl 2022, , 198 - 208, 24.01.2022
https://doi.org/10.31020/mutftd.1031151

Öz

Aim: Mushrooms known that to be used in traditional treatment among the people as they can generate a large diversity of secondary metabolites. In the present study, it was aimed to synthesized silver nanoparticles (AgNPs) mediated Macrolepiota procera, which is known to have diverse biological activities such as anticancer, antioxidant, antimicrobial in previous studies, and to investigated various in-vitro biological activities of these AgNPs.
Materials and Methods: Synthesized Mp-AgNPs were characterized using transmission electron microscopy (TEM). Various biological activities including antimicrobial, biofilm inhibition and cell viability inhibition, DNA cleavage, DPPH activity of synthesized AgNPs were investigated in-vitro.
Results: The highest DPPH scavenging activity of Mp-AgNPs was found as 92.72%, at 200 mg/L concentration. Mp-AgNPs caused single strain break in the E. coli pBR322 plasmid DNA. Mp-AgNPs showed moderate antimicrobial activity against tested microorganisms. Furthermore, the biofilm inhibition activity of Mp-AgNPs toward P. aeruginosa and S. aureus was 65.80% and 72.60% at 200 mg/L, respectively. Inhibition activity of E. coli cell viability of Mp-AgNPs was found as 99.99% at 500 mg/L.
Conclusion: From the findings obtained in the study , the use of M. procera in the AgNPs synthesis it is important private regard due to its low cost, eco-friendly, high yield and non-toxicity human health. In addition, newly synthesized AgNPs can be used effectively for different applications after further studies.

Kaynakça

  • 1. Kumar Panda M, et al. Green synthesis of silver nanoparticles and its potential effect on phytopathogens. Mater Today Proc 2021;35:233–8.
  • 2. Dhar SA, et al. Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthus emblica fruit extract. Mater Today Proc 2021;42:1867–71.
  • 3. Danagoudar A, et al. Characterization, cytotoxic and antioxidant potential of silver nanoparticles biosynthesised using endophytic fungus (Penicillium citrinum CGJ-C1). Mater Today Commun 2020;25(May):101385.
  • 4. Gauthami R, et al. Cissampelous pairera mediated synthesis of silver nanoparticles and it’s invitro antioxidant, antibacterial and antidiabetic activities. Mater Today Proc 2020;47(3):853–7.
  • 5. Das G, Patra JK, Shin HS. Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies. Mater Sci Eng C 2020;114(June 2019):111011.
  • 6. Mousavi SAA, Salari S, Hadizadeh S. Evaluation of antifungal effect of silver nanoparticles against microsporum canis, trichophyton mentagrophytes and microsporum gypseum. Iran J Biotechnol 2015;13(4).
  • 7. Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Struct 2020;1208.
  • 8. Ozlem Saygi K, Usta C. Rosa canina waste seed extract-mediated synthesis of silver nanoparticles and the evaluation of its antimutagenic action in Salmonella typhimurium. Mater Chem Phys 2021;266(March):124537.
  • 9. Sreekanth TVM, et al. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B Biol 2018;188:6–11.
  • 10. Chavan RR, et al. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Mater Today Commun 2020;24(May):101320.
  • 11. Ahn EY, Jin H, Park Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 2019;101(March):204–16.
  • 12. Krupodorova T, Sevindik M. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Sci J 2020;9(1):186–91.
  • 13. Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. Evidence-based Complement Altern Med 2018; 7271509.1-9.
  • 14. Aydın E et al. Effect of Different Processing Technologies on chemical Properties of Wild-Grown Edible mushroom Macrolepiota Procera Var.Procera (Scop.). Journal of Food Processing and Preservation 2017; 41:e12802.
  • 15. Kosanić M, et al. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 2016;24(3):477–84.
  • 16. Sabir S, et al. Biosynthesis of ZnO Nanoparticles Using Bacillus Subtilis: Characterization and Nutritive Significance for Promoting Plant Growth in Zea mays L, Dose-Response: An International Journal 2020:1-9.
  • 17. Agırtaş MS, Karatas C, Özdemir S. Synthesis of some metallophthalocyanines with dimethyl 5- (phenoxy)-isophthalate substituents and evaluation of their antioxidant-antibacterial activities. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy 2015;135:20–4.
  • 18. Alsubki R, et al. Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on Coriander sativum. Saudi J Biol Sci 2021;28(4):2102–8.
  • 19. Chick CN, et al. Preparation and antioxidant study of silver nanoparticles of Microsorum pteropus methanol extract. Bioorganic Med Chem Lett 2020;30(22):127526.
  • 20. Odeniyi MA, et al. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain Chem Pharm 2020;15(November 2019).
  • 21. Maheshwaran G, et al. Green synthesis of Silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities. J Environ Chem Eng 2020;8(5):104137.
  • 22. Palanisamy S, et al. Green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: An in vitro analysis. Mater Lett 2017;189:196–200.
  • 23. Ravichandran V, et al. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their Antimicrobial and antioxidant activity, Mater Lett 180 (2016) 264–267.
  • 24. Wang L, et al. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater Sci Eng C 2018;86(April 2017):1–8.
  • 25. Khorrami S, Zarepour A, Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. Biotechnol Reports 2019;24:e00393.
  • 26. Mousavi-Khattat M, Keyhanfar M, Razmjou A. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif Cells, Nanomedicine Biotechnol 2018; 46 (sup3):S1022–31.
  • 27. Begum MY, Alhamhoom Y, Roy A. Study of antimicrobial and DNA cleavage property of biocompatible silver nanoparticles prepared by using Ficus carica L. Mater Res Innov 2021;25(3):147–54.
  • 28. Morales-Lozoya V, et al. Study of the effect of the different parts of Morinda citrifolia L. (noni) on the green synthesis of silver nanoparticles and their antibacterial activity. Appl Surf Sci 2021;537(February 2020):147855.
  • 29. Alsubki R, et al. Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on Coriander sativum. Saudi J Biol Sci 2021;28(4):2102–8.
  • 30. Sathishkumar RS, et al. Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J Saudi Chem Soc 2019;23(8):1180–91.
  • 31. Sangaonkar GM, Pawar KD. Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids Surfaces B Biointerfaces 2018;164:210–7.
  • 32. Mehwish HM, et al. Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J Environ Chem Eng 2021;9(4):105290.
  • 33. Jalilian F, et al. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv Powder Technol 2020;31(3):1323–32.
  • 34. Lara HH, et al. Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles. ACS Appl Mater Interfaces 2020;12(19):21183–91.
  • 35. Singh P, et al. green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomedicine 2018;13:3571–91.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Serpil Gonca 0000-0002-8544-1184

Yayımlanma Tarihi 24 Ocak 2022
Gönderilme Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Gonca, S. (2022). Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi, 12(1), 198-208. https://doi.org/10.31020/mutftd.1031151
AMA Gonca S. Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. Ocak 2022;12(1):198-208. doi:10.31020/mutftd.1031151
Chicago Gonca, Serpil. “Investigation of in-Vitro Biological Activities of Silver Nanoparticles Synthesized by Green Synthesis Method Using Wild Edible Mushroom Macrolepiota Procera”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi 12, sy. 1 (Ocak 2022): 198-208. https://doi.org/10.31020/mutftd.1031151.
EndNote Gonca S (01 Ocak 2022) Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 12 1 198–208.
IEEE S. Gonca, “Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera”, Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, c. 12, sy. 1, ss. 198–208, 2022, doi: 10.31020/mutftd.1031151.
ISNAD Gonca, Serpil. “Investigation of in-Vitro Biological Activities of Silver Nanoparticles Synthesized by Green Synthesis Method Using Wild Edible Mushroom Macrolepiota Procera”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 12/1 (Ocak 2022), 198-208. https://doi.org/10.31020/mutftd.1031151.
JAMA Gonca S. Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2022;12:198–208.
MLA Gonca, Serpil. “Investigation of in-Vitro Biological Activities of Silver Nanoparticles Synthesized by Green Synthesis Method Using Wild Edible Mushroom Macrolepiota Procera”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi, c. 12, sy. 1, 2022, ss. 198-0, doi:10.31020/mutftd.1031151.
Vancouver Gonca S. Investigation of in-vitro biological activities of silver nanoparticles synthesized by green synthesis method using wild edible mushroom Macrolepiota procera. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2022;12(1):198-20.
Creative Commons Lisansı
                                                                            Bu Dergi Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.

Mersin Üniversitesi Tıp Fakültesi’nin süreli bilimsel yayınıdır. Kaynak gösterilmeden kullanılamaz.  Makalelerin sorumlulukları yazarlara aittir 

Kapak 

Ayşegül Tuğuz

İlter Uzel’inDioskorides ve Öğrencisi adlı eserinden 

Adres

Mersin Üniversitesi Tıp Fakültesi Tıp Tarihi ve Etik  Anabilim Dalı Çiftlikköy Kampüsü

Yenişehir/ Mersin