Derleme
BibTex RIS Kaynak Göster

COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme

Yıl 2024, , 194 - 204, 31.05.2024
https://doi.org/10.31020/mutftd.1384133

Öz

Şiddetli akut solunum sendromu koronavirüsü-2 (SARS-CoV-2)’nin neden olduğu yeni koronavirus hastalığı (COVID-19) dünya genelinde pandemiye neden olmuştur. Ani gelişen solunum sıkıntısı ile ortaya çıkan bu virüs, özellikle immün yetersizliği olan bireylerde ölümcül olarak seyretmektedir. İlk çağlardan itibaren sağlık sorunlarına çözüm bulmak amacıyla bitkilerden yararlanan insanların tıbbi bitkilere olan ilgisi COVID-19 pandemisi ile artmıştır. COVID-19'dan korunmada ve tedavide etkili olabilecek bileşiklerin araştırılmasında tıbbi bitkiler, bu virüsün aktivitesini inhibe eden, viral infeksiyonları iyileştirebilen veya önleyebilen biyolojik aktiviteleri, düşük yan etkileri nedeniyle değerli kaynaklardır. Bu bitkilerin ekstreleri ve/veya bunlardan izole edilen biyoaktif bileşikler hastalığı kontrol altına alabilecek ilaç formülasyonu geliştirilmesi için güçlü adaylar olarak görülmektedir. Bu derlemede, antiviral etkisi veya bağışıklık sistemine etkinliği bilinen ve COVID-19 pandemisine etki potansiyeli olan Thymus sp. ve Origanum sp. (Kekik), Tilia sp. (Ihlamur), Salvia sp. (Adaçayı), Zingiber officinale (Zencefil), Curcuma longa (Zerdeçal), Allium sativum (Sarımsak), Glycirhiza glabra (Meyan) ve Camellia sinensis (Çay) bitkilerinin terapötik etkileri son yıllarda yapılan bilimsel araştırmalar incelenerek sunulmuştur.

Kaynakça

  • Kaynaklar 1. T.C Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, COVID-19 (SARS-CoV-2 Enfeksiyonu) Genel Bilgiler, Epidemiyoloji ve Tanı 2020:7-9
  • 2. Taha M, Haboub L. Novel Coronavirus Disease (COVID-19): Causes, Pathogenesis and Efforts of Treatment. FABAD Journal of Pharmaceutical Sciences 2020;45(3):279-296.
  • 3. Baydar T, COVID-19: Sıkça Sorulan Sorular ve Yanlış Bilinenler. Uluslararası Eczacılık Federasyonu (FIP). 2020.
  • 4. Caliskan UK, Karakus MM. Evaluation of botanicals as potential COVID-19 symptoms terminator. World J Gastroenterol 2021;27(39):6551-6571.
  • 5. Gezmen Karadağ M, Türközü D, Topağaç Kapucu Dİ. Bitkiler ve ilaç etkileşimleri. Medeniyet Medical Journal 2013;28(4):164-70.
  • 6. Taher MS, et al. The medicinal importance of Thyme plant (Thymus vulgaris). Biomedicine 2021;29;41(3):531-4.
  • 7. Bozdemir Ç. Türkiye’de yetişen kekik türleri, ekonomik önemi ve kullanım alanları. Yuzuncu Yıl University Journal of Agricultural Sciences 2019;29(3):583-94.
  • 8. Nabissi M, et al. Thyme extract increases mucociliary-beating frequency in primary cell lines from chronic obstructive pulmonary disease patients. Biomedicine & Pharmacotherapy 2018;105:1248-53.
  • 9. Sardari S, et al. Therapeutic effect of thyme (Thymus vulgaris) essential oil on patients with covid19: A randomized clinical trial. Journal of Advances in Medical and Biomedical Research 2021;29(133):83-91.
  • 10. Sivakumar P, Gowthaman SR. Characterization, potential application and limitation of medicinal herbs in COVID-19: A review. The Pharma Innovation Journal 2022;SP-11(6):1189-1198
  • 11. Javed H, et al. Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19. Frontiers in Plant Science. 2021:2237.
  • 12. Üzer FB. Luteolin Molekülü Covid-19 ile Mücadelede Bir Seçenek Olabilir mi?. Bütünleyici ve Anadolu Tıbbı Dergisi 2021;2(3):78-89.
  • 13. EMA (2016). Thyme: Thymus vulgaris L. and Thymus zygis L., herba. European medicines Agency. https://www.ema.europa.eu/en/medicines/herbal/thymi-herba (EMA/307113/2016).
  • 14. Sarıkaya AG, Doğdu S. Karacabey'de (Bursa) Doğal Yayılış Yapan Gümüşi Ihlamur (Tilia tomentosa Moench.)'un Bazı Morfolojik Özellikleri ile Yaprak ve Çiçek Uçucu Bileşenlerinin Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi 2021(21):17-24.
  • 15. Tanker M, Tanker N. Farmakognozi, Cilt 1, Ankara Üniversitesi, Eczacılık Fakültesi Yayınları No:66, 1991.
  • 16. Silveira D, et al. COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy?. Frontiers in Pharmacology 2020;1479.
  • 17. Erarslan ZB, Kültür Ş. A cross-sectional survey of herbal remedy taking to prevent Covid-19 in Turkey. J Res Pharm 2021;25(6): 920-936.
  • 18. Pavlovic T, et al. Linden tea from Serbia–an insight into the phenolic profile, radical scavenging and antimicrobial activities. Industrial Crops and Products 2020;15(154):112639.
  • 19. İncedayı B. Gazlı Ihlamur Çayı İçeceğinin Bazı Özelliklerinin Araştırılması. Gıda 2017;42(4):355-63.
  • 20. Ismail A, Hneini F, Na’was T. Tilia cordata: A potent inhibitor of growth and biofilm formation of bacterial clinical isolates. World J. Pharm. Res 2019;5(8):147-58.
  • 21. Fitsiou L, et al. Volatile constituents and antimicrobial activity of Tilia tomentosa Moench and Tilia cordata Miller oils. Journal of Essential Oil Research 2007;19(2):183-5.
  • 22. Tural Büyük E, et al. Ailelerin Covid-19 Pandemisi Sürecinde Çocuklarının Sağlığını Korumak ve Geliştirmek İçin Başvurdukları Geleneksel Tamamlayıcı Alternatif Tedavi Yöntemleri (GETAT). Samsun Sağlık Bilimleri Dergisi 2022;7(1):99-112.
  • 23. EMA (2012) Assessment report on Tilia cordata Miller, Tilia platyphyllos Scop., Tilia x vulgaris Heyne or their mixtures, flos. European Medicines Agency. https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-tilia-cordata-miller-tilia-platyphyllos-scop-tilia-x-vulgaris-heyne-their_en.pdf (EMA/HMPC/337067/2011).
  • 24. Hamidpour M, et al. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. Journal of Traditional and Complementary Medicine 2014;4(2):82-8.
  • 25. Başyiğit M, Baydar H. Tıbbi adaçayı (Salvia officinalis L.)’nda farklı hasat zamanlarının uçucu yağ ve fenolik bileşikler ile antioksidan aktivite üzerine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017;21(1):131-7.
  • 26. EMA (2015) Assessment report on Salvia officinalis L., folium and Salvia officinalis L., aetheroleum. European Medicines Agency. https://www.ema.europa.eu/en/medicines/herbal/salviae-officinalis-folium (EMA/HMPC/150801/2015).
  • 27. Kermanshah H, et al. In vitro evaluation of antibacterial activity of hydroalcoholic extract of Salvia officinalis and Pimpinella anisum against cariogenic bacteria. Journal of Dental Medicine 2009 Sep 1;22(2).
  • 28. Ezema CA, et al. Therapeutic benefits of Salvia species: a focus on cancer and viral infection. Heliyon 2022;e08763.
  • 29. Sytar O, et al. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules 2021;26(3):727.
  • 30. Le-Trilling VT, et al. Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro. BMC biology 2022;20(1):1-21.
  • 31. Dissanayake KG, Waliwita WA, Liyanage RP. A review on medicinal uses of Zingiber officinale (ginger). International Journal of Health Sciences and Research 2020;10(6):142-8.
  • 32. Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence?. Journal of Traditional Chinese Medical Sciences 2021;8(4):267-79.
  • 33. San Chang J, et al. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology 2013;145(1):146-51.
  • 34. Khaerunnisa S, et al. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020 Mar 13;2020:2020030226.
  • 35. Joshi A, Sunil Krishnan G, Kaushik V. Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS-CoV2 and SFTS viruses. Journal of Genetic Engineering and Biotechnology 2020 Dec;18:1-8
  • 36. Rabie AM. New potential inhibitors of coronaviral main protease (CoV-Mpro): strychnine bush, pineapple, and ginger could be natural enemies of COVID-19. International Journal of New Chemistry 2022;9(3):433-45.
  • 37. Mesri M, et al. The effects of combination of Zingiber officinale and Echinacea on alleviation of clinical symptoms and hospitalization rate of suspected COVID-19 outpatients: a randomized controlled trial. Journal of Complementary and Integrative Medicine 2021;18(4):775-81.
  • 38. EMA (2011). Assessment report on Zingiber officinale Roscoe, rhizoma. European Medicines Agency. https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-zingiberis-rhizoma_en.pdf. (EMA/HMPC/577856/2010).
  • 39. T.C Sağlık Bakanlığı, Türkiye ilaç ve Tıbbi Cihaz Kurumu, Tıbbi Bitki Monografları, Zingiber officinale Roscoe. https://titck.gov.tr/storage/Archive/2020/dynamicModulesAttachment/ZingiberofficinaleRoscoe_05ea8585-9518-4e30-b6a2-ebf1e6264015.pdf. (erişim tarihi: 03.09.2022)
  • 40. Singh R, Bhardwaj VK, Purohit R. Potential of turmeric-derived compounds against RNA‐dependent RNA polymerase of SARS‐CoV‐2: An in-silico approach. Computers in Biology and Medicine 2021;139:104965.
  • 41. Rajagopal K, et al. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Future Journal of Pharmaceutical Sciences 2020;6:1-0
  • 42. Seal A, et al. Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinformation 2011;5(10):430.
  • 43. Kim HJ, et al. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology 2009;124(2):189-96.
  • 44. Al Hadhrami S, Al Battashi A, Al Hashami H. Turmeric (Curcuminoids): A Possible Effective Antiviral Herb. Advances in Infectious Diseases 2022;12(1):159-62.
  • 45. Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. Journal of Biomolecular Structure and Dynamics 2022;40(5):2024-37.
  • 46. Bormann M, et al. Turmeric root and its bioactive ingredient curcumin effectively neutralize SARS-CoV-2 in vitro. Viruses 2021;13(10):1914.
  • 47. Kow CS, Ramachandram DS, Hasan SS. The effect of curcumin on the risk of mortality in patients with COVID-19: A systematic review and meta-analysis of randomized trials. Phytother Res 2022;36(9):3365-3368.
  • 48. Brendler T, et al. Botanical drugs and supplements affecting the immune response in the time of COVID‐19: Implications for research and clinical practice. Phytotherapy Research 2021;35(6):3013-31.
  • 49. Cheng AL, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001;21(4B):2895-900.
  • 50. EMA (2018). Assessment report on Curcuma longa L., rhizoma. European medicine Agency. https://www.ema.europa.eu/en/medicines/herbal/curcumae-longae-rhizoma. (EMA/HMPC/749518/2016).
  • 51. Khaliq B, et al. Medicinal Plants Against COVID-19: Ahmedah HT, Riaz M, Ahmed S, Moga MA, editors. The COVID-19 Pandemic: A Multidisciplinary Review of Diagnosis, Prevention, and Treatment. New York: Apple Academic Press; 2022. pp:297-337.
  • 52. Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. Journal of Agriculture and Food Research 2023;20:100632.
  • 53. Al-Kuraishy HM, et al. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. European Journal of Medical Research 2022;27(1):186.
  • 54. Srivastava S, et al. A Brief Review on Medicinal Plants-At-Arms against COVID-19. Interdisciplinary Perspectives on Infectious Diseases. 2023;2023.
  • 55. Gyebi GA, et al. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics 2021 Jun 13;39(9):3396-408.
  • 56. Li Y, et al. Ginger supplement significantly reduced length of hospital stay in individuals with COVID-19. Nutrition & Metabolism 2022;19(1):1-5.
  • 57. Chabot AB, Huntwork MP. Turmeric as a possible treatment for COVID-19-induced anosmia and ageusia. Cureus 2021;13(9).
  • 58. Vahedian-Azimi A, et al. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022;14(2):256. https://doi.org/10.3390/nu14020256

A Review on Medicinal Plants with Potential Effect on COVID-19 Pandemic

Yıl 2024, , 194 - 204, 31.05.2024
https://doi.org/10.31020/mutftd.1384133

Öz

The new coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a pandemic worldwide. This virus, which occurs with sudden respiratory distress, is fatal especially in immunocompromised individuals. The interest of people, who have been using plants to find solutions to health problems since ancient times, has increased with the COVID-19 pandemic. In the search for compounds that may be effective in the prevention and treatment of COVID-19, medicinal plants are valuable resources due to their existing biological activities, that inhibit the activity of this virus, cure or prevent viral infections, and low side effects. Extracts of these plants and/or bioactive compounds isolated from them are considered strong candidates for the development of drug formulations that can control the disease. Thyme (Thymus sp. and Origanum sp.), Linden (Tilia sp.), Sage (Salvia sp), Ginger (Zingiber officinale), Turmeric (Curcuma longa), Garlic (Allium sativum), Licorice (Glycirhiza glabra) and Tea (Camellia sinensis) are medicinal plants with antiviral or immunomodulatory activity. In this review, potential therapetic effectsof these plants against Covid-19 are presented based on recent scientific researches.

Kaynakça

  • Kaynaklar 1. T.C Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, COVID-19 (SARS-CoV-2 Enfeksiyonu) Genel Bilgiler, Epidemiyoloji ve Tanı 2020:7-9
  • 2. Taha M, Haboub L. Novel Coronavirus Disease (COVID-19): Causes, Pathogenesis and Efforts of Treatment. FABAD Journal of Pharmaceutical Sciences 2020;45(3):279-296.
  • 3. Baydar T, COVID-19: Sıkça Sorulan Sorular ve Yanlış Bilinenler. Uluslararası Eczacılık Federasyonu (FIP). 2020.
  • 4. Caliskan UK, Karakus MM. Evaluation of botanicals as potential COVID-19 symptoms terminator. World J Gastroenterol 2021;27(39):6551-6571.
  • 5. Gezmen Karadağ M, Türközü D, Topağaç Kapucu Dİ. Bitkiler ve ilaç etkileşimleri. Medeniyet Medical Journal 2013;28(4):164-70.
  • 6. Taher MS, et al. The medicinal importance of Thyme plant (Thymus vulgaris). Biomedicine 2021;29;41(3):531-4.
  • 7. Bozdemir Ç. Türkiye’de yetişen kekik türleri, ekonomik önemi ve kullanım alanları. Yuzuncu Yıl University Journal of Agricultural Sciences 2019;29(3):583-94.
  • 8. Nabissi M, et al. Thyme extract increases mucociliary-beating frequency in primary cell lines from chronic obstructive pulmonary disease patients. Biomedicine & Pharmacotherapy 2018;105:1248-53.
  • 9. Sardari S, et al. Therapeutic effect of thyme (Thymus vulgaris) essential oil on patients with covid19: A randomized clinical trial. Journal of Advances in Medical and Biomedical Research 2021;29(133):83-91.
  • 10. Sivakumar P, Gowthaman SR. Characterization, potential application and limitation of medicinal herbs in COVID-19: A review. The Pharma Innovation Journal 2022;SP-11(6):1189-1198
  • 11. Javed H, et al. Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19. Frontiers in Plant Science. 2021:2237.
  • 12. Üzer FB. Luteolin Molekülü Covid-19 ile Mücadelede Bir Seçenek Olabilir mi?. Bütünleyici ve Anadolu Tıbbı Dergisi 2021;2(3):78-89.
  • 13. EMA (2016). Thyme: Thymus vulgaris L. and Thymus zygis L., herba. European medicines Agency. https://www.ema.europa.eu/en/medicines/herbal/thymi-herba (EMA/307113/2016).
  • 14. Sarıkaya AG, Doğdu S. Karacabey'de (Bursa) Doğal Yayılış Yapan Gümüşi Ihlamur (Tilia tomentosa Moench.)'un Bazı Morfolojik Özellikleri ile Yaprak ve Çiçek Uçucu Bileşenlerinin Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi 2021(21):17-24.
  • 15. Tanker M, Tanker N. Farmakognozi, Cilt 1, Ankara Üniversitesi, Eczacılık Fakültesi Yayınları No:66, 1991.
  • 16. Silveira D, et al. COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy?. Frontiers in Pharmacology 2020;1479.
  • 17. Erarslan ZB, Kültür Ş. A cross-sectional survey of herbal remedy taking to prevent Covid-19 in Turkey. J Res Pharm 2021;25(6): 920-936.
  • 18. Pavlovic T, et al. Linden tea from Serbia–an insight into the phenolic profile, radical scavenging and antimicrobial activities. Industrial Crops and Products 2020;15(154):112639.
  • 19. İncedayı B. Gazlı Ihlamur Çayı İçeceğinin Bazı Özelliklerinin Araştırılması. Gıda 2017;42(4):355-63.
  • 20. Ismail A, Hneini F, Na’was T. Tilia cordata: A potent inhibitor of growth and biofilm formation of bacterial clinical isolates. World J. Pharm. Res 2019;5(8):147-58.
  • 21. Fitsiou L, et al. Volatile constituents and antimicrobial activity of Tilia tomentosa Moench and Tilia cordata Miller oils. Journal of Essential Oil Research 2007;19(2):183-5.
  • 22. Tural Büyük E, et al. Ailelerin Covid-19 Pandemisi Sürecinde Çocuklarının Sağlığını Korumak ve Geliştirmek İçin Başvurdukları Geleneksel Tamamlayıcı Alternatif Tedavi Yöntemleri (GETAT). Samsun Sağlık Bilimleri Dergisi 2022;7(1):99-112.
  • 23. EMA (2012) Assessment report on Tilia cordata Miller, Tilia platyphyllos Scop., Tilia x vulgaris Heyne or their mixtures, flos. European Medicines Agency. https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-tilia-cordata-miller-tilia-platyphyllos-scop-tilia-x-vulgaris-heyne-their_en.pdf (EMA/HMPC/337067/2011).
  • 24. Hamidpour M, et al. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. Journal of Traditional and Complementary Medicine 2014;4(2):82-8.
  • 25. Başyiğit M, Baydar H. Tıbbi adaçayı (Salvia officinalis L.)’nda farklı hasat zamanlarının uçucu yağ ve fenolik bileşikler ile antioksidan aktivite üzerine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017;21(1):131-7.
  • 26. EMA (2015) Assessment report on Salvia officinalis L., folium and Salvia officinalis L., aetheroleum. European Medicines Agency. https://www.ema.europa.eu/en/medicines/herbal/salviae-officinalis-folium (EMA/HMPC/150801/2015).
  • 27. Kermanshah H, et al. In vitro evaluation of antibacterial activity of hydroalcoholic extract of Salvia officinalis and Pimpinella anisum against cariogenic bacteria. Journal of Dental Medicine 2009 Sep 1;22(2).
  • 28. Ezema CA, et al. Therapeutic benefits of Salvia species: a focus on cancer and viral infection. Heliyon 2022;e08763.
  • 29. Sytar O, et al. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules 2021;26(3):727.
  • 30. Le-Trilling VT, et al. Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro. BMC biology 2022;20(1):1-21.
  • 31. Dissanayake KG, Waliwita WA, Liyanage RP. A review on medicinal uses of Zingiber officinale (ginger). International Journal of Health Sciences and Research 2020;10(6):142-8.
  • 32. Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence?. Journal of Traditional Chinese Medical Sciences 2021;8(4):267-79.
  • 33. San Chang J, et al. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology 2013;145(1):146-51.
  • 34. Khaerunnisa S, et al. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020 Mar 13;2020:2020030226.
  • 35. Joshi A, Sunil Krishnan G, Kaushik V. Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS-CoV2 and SFTS viruses. Journal of Genetic Engineering and Biotechnology 2020 Dec;18:1-8
  • 36. Rabie AM. New potential inhibitors of coronaviral main protease (CoV-Mpro): strychnine bush, pineapple, and ginger could be natural enemies of COVID-19. International Journal of New Chemistry 2022;9(3):433-45.
  • 37. Mesri M, et al. The effects of combination of Zingiber officinale and Echinacea on alleviation of clinical symptoms and hospitalization rate of suspected COVID-19 outpatients: a randomized controlled trial. Journal of Complementary and Integrative Medicine 2021;18(4):775-81.
  • 38. EMA (2011). Assessment report on Zingiber officinale Roscoe, rhizoma. European Medicines Agency. https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-zingiberis-rhizoma_en.pdf. (EMA/HMPC/577856/2010).
  • 39. T.C Sağlık Bakanlığı, Türkiye ilaç ve Tıbbi Cihaz Kurumu, Tıbbi Bitki Monografları, Zingiber officinale Roscoe. https://titck.gov.tr/storage/Archive/2020/dynamicModulesAttachment/ZingiberofficinaleRoscoe_05ea8585-9518-4e30-b6a2-ebf1e6264015.pdf. (erişim tarihi: 03.09.2022)
  • 40. Singh R, Bhardwaj VK, Purohit R. Potential of turmeric-derived compounds against RNA‐dependent RNA polymerase of SARS‐CoV‐2: An in-silico approach. Computers in Biology and Medicine 2021;139:104965.
  • 41. Rajagopal K, et al. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Future Journal of Pharmaceutical Sciences 2020;6:1-0
  • 42. Seal A, et al. Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinformation 2011;5(10):430.
  • 43. Kim HJ, et al. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology 2009;124(2):189-96.
  • 44. Al Hadhrami S, Al Battashi A, Al Hashami H. Turmeric (Curcuminoids): A Possible Effective Antiviral Herb. Advances in Infectious Diseases 2022;12(1):159-62.
  • 45. Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. Journal of Biomolecular Structure and Dynamics 2022;40(5):2024-37.
  • 46. Bormann M, et al. Turmeric root and its bioactive ingredient curcumin effectively neutralize SARS-CoV-2 in vitro. Viruses 2021;13(10):1914.
  • 47. Kow CS, Ramachandram DS, Hasan SS. The effect of curcumin on the risk of mortality in patients with COVID-19: A systematic review and meta-analysis of randomized trials. Phytother Res 2022;36(9):3365-3368.
  • 48. Brendler T, et al. Botanical drugs and supplements affecting the immune response in the time of COVID‐19: Implications for research and clinical practice. Phytotherapy Research 2021;35(6):3013-31.
  • 49. Cheng AL, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001;21(4B):2895-900.
  • 50. EMA (2018). Assessment report on Curcuma longa L., rhizoma. European medicine Agency. https://www.ema.europa.eu/en/medicines/herbal/curcumae-longae-rhizoma. (EMA/HMPC/749518/2016).
  • 51. Khaliq B, et al. Medicinal Plants Against COVID-19: Ahmedah HT, Riaz M, Ahmed S, Moga MA, editors. The COVID-19 Pandemic: A Multidisciplinary Review of Diagnosis, Prevention, and Treatment. New York: Apple Academic Press; 2022. pp:297-337.
  • 52. Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. Journal of Agriculture and Food Research 2023;20:100632.
  • 53. Al-Kuraishy HM, et al. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. European Journal of Medical Research 2022;27(1):186.
  • 54. Srivastava S, et al. A Brief Review on Medicinal Plants-At-Arms against COVID-19. Interdisciplinary Perspectives on Infectious Diseases. 2023;2023.
  • 55. Gyebi GA, et al. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics 2021 Jun 13;39(9):3396-408.
  • 56. Li Y, et al. Ginger supplement significantly reduced length of hospital stay in individuals with COVID-19. Nutrition & Metabolism 2022;19(1):1-5.
  • 57. Chabot AB, Huntwork MP. Turmeric as a possible treatment for COVID-19-induced anosmia and ageusia. Cureus 2021;13(9).
  • 58. Vahedian-Azimi A, et al. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022;14(2):256. https://doi.org/10.3390/nu14020256
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Geleneksel, Tamamlayıcı ve Bütünleştirici Tıp (Diğer)
Bölüm Derleme
Yazarlar

Ali Eren Nizamoğlu 0009-0001-8168-3207

Gamze Kökdil 0000-0001-8832-4322

Erken Görünüm Tarihi 29 Mayıs 2024
Yayımlanma Tarihi 31 Mayıs 2024
Gönderilme Tarihi 31 Ekim 2023
Kabul Tarihi 22 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Nizamoğlu, A. E., & Kökdil, G. (2024). COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi, 14(2), 194-204. https://doi.org/10.31020/mutftd.1384133
AMA Nizamoğlu AE, Kökdil G. COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. Mayıs 2024;14(2):194-204. doi:10.31020/mutftd.1384133
Chicago Nizamoğlu, Ali Eren, ve Gamze Kökdil. “COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi 14, sy. 2 (Mayıs 2024): 194-204. https://doi.org/10.31020/mutftd.1384133.
EndNote Nizamoğlu AE, Kökdil G (01 Mayıs 2024) COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 14 2 194–204.
IEEE A. E. Nizamoğlu ve G. Kökdil, “COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme”, Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, c. 14, sy. 2, ss. 194–204, 2024, doi: 10.31020/mutftd.1384133.
ISNAD Nizamoğlu, Ali Eren - Kökdil, Gamze. “COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 14/2 (Mayıs 2024), 194-204. https://doi.org/10.31020/mutftd.1384133.
JAMA Nizamoğlu AE, Kökdil G. COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2024;14:194–204.
MLA Nizamoğlu, Ali Eren ve Gamze Kökdil. “COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi, c. 14, sy. 2, 2024, ss. 194-0, doi:10.31020/mutftd.1384133.
Vancouver Nizamoğlu AE, Kökdil G. COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2024;14(2):194-20.
Creative Commons Lisansı
                                                                            Bu Dergi Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.

Mersin Üniversitesi Tıp Fakültesi’nin süreli bilimsel yayınıdır. Kaynak gösterilmeden kullanılamaz.  Makalelerin sorumlulukları yazarlara aittir 

Kapak 

Ayşegül Tuğuz

İlter Uzel’inDioskorides ve Öğrencisi adlı eserinden 

Adres

Mersin Üniversitesi Tıp Fakültesi Tıp Tarihi ve Etik  Anabilim Dalı Çiftlikköy Kampüsü

Yenişehir/ Mersin