Derleme
BibTex RIS Kaynak Göster

Anti-Alzheimer Effects of Some Flavanoids from Plant and Natural Sources; Molecular Review

Yıl 2025, Cilt: 15 Sayı: 3, 839 - 846, 30.09.2025

Öz

Neuroinflammation, toxic protein aggregation, oxidative stress and mitochondrial dysfunction are key pathways in neurodegenerative diseases such as Alzheimer's disease (AD). Alzheimer's Disease (AD) is a progressive neurodegenerative disease that impairs cognitive functions and memory in the elderly. Current treatment options are limited, so alternative treatments such as herbal medicine may suppress symptoms while slowing cognitive decline. Kaempferol and quercetin, found in plants such as Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus and Buplerum falcatum, are flavonoids with polyphenolic structures that show multiple mechanisms of action, such as inhibition of Aβ plaque formation, reduction of tau hyperphosphorylation, suppression of oxidative stress and modulation of BDNF and PI3K/AKT pathways. Naringenin can significantly reduce Aβ accumulation, microglial and astrocytic activation, and proinflammatory cytokine levels, as well as attenuate neuroinflammatory responses via inhibition of the MAPK signaling pathway in vivo and in vitro. Apigenin is commonly found in vegetables such as parsley, celery, onion, and herbs such as chamomile, thyme, marjoram, and basil. Numerous studies have reported that apigenin exhibits various pharmacological functions and has the potential to be a therapeutic agent for inflammation and neurodegenerative-related diseases. Pinocembrin, found in medicinal plants such as Peperomia, Piper genera and Asteraceae family, is known to affect cognitive function and protect nerve cells against toxicity caused by Aβ. Eriodictyol is a natural flavonoid found mainly in citrus fruits and peanuts. Eriodictyol reduces lipopolysaccharide-induced amyloid production, glial activation and excessive release of cytokines, prevents neuronal damage and protects cognitive function by balancing the cholinergic system in the body.

Kaynakça

  • 1. Corey-Bloom J. The ABC of Alzheimer’s disease: cognitive changes and their management in Alzheimer’s disease and related dementias. Int Psychogeriatr 2002;14(1):51–75.
  • 2. De-Paula VJ et al. Alzheimer’s disease. Subcell Biochem 2012;65:329–52.
  • 3. Better MA. Alzheimer’s disease facts and figures. Alzheimers Dement 2023;19:1598–1695.
  • 4. Noorda K et al. Amyloid-Directed Antibodies: Past, Present, and Future. J Alzheimer’s Dis 2024;101:3–22.
  • 5. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006;2006:CD005593.
  • 6. Lee NK et al. Park, E., & Paik, H. D. Heat-Killed Leuconostoc mesenteroides H40 Alleviates Cognitive Impairment by Anti-Inflammation and Antioxidant Effects in a Scopolamine-Induced Mouse Model. Journal of microbiology and biotechnology 2025;35:e2411013.
  • 7. Bukowska B et al. Acetyl- and Butyrylcholinesterase—Structure, Functions and Their Inhibitors. Curr Top Biophys 2007;30:11–23.
  • 8. Rathod NB et al. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023;12:1217.
  • 9. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009;2:270–278.
  • 10. Habauzit V, Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: An update for clinicians. Ther Adv Chronic Dis 2012;3:87–106.
  • 11. Aune D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019;10:404-421.
  • 12. Li S et al. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases. Oxid Med Cell Longev 2018;2018:8394818.
  • 13. Stromsnes K et al. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 2021;9:1074.
  • 14. Singh P et al. The role of quercetin in plants. Plant Physiol Biochem 2021;166:10-19.
  • 15. Batiha GE-S et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 2020;9(3):374.
  • 16. Yang D et al. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev 2020:1–13.
  • 17. Wang G et al. Pharmacological activity of quercetin: an updated review. Evidence-Based Complement Alternat Med 2022:1–12.
  • 18. Wang T et al. Brusatol inhibits the growth of renal cell carcinoma by regulating the PTEN/PI3K/AKT pathway. J Ethnopharmacol 2022;288:115020.
  • 19. Khan A et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol 2018;9:1383
  • 20. Kalra P et al. Neuroprotection induced by quercetin. In Natural Molecules in Neuroprotection and Neurotoxicity 2024:1757–1783.
  • 21. Mannan A et al. Insights into the mechanism of the therapeutic potential of herbal monoamine oxidase inhibitors in neurological diseases. Curr Drug Targets 2022;23(3):286–310.
  • 22. Khan H et al. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019;10(1):59.
  • 23. Sato M et al. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the lys residues. J Biol Chem 2013;288(32):23212–23224.
  • 24. Paris D et al. Flavonoids lower Alzheimer’s Aß production via an NFkB dependent mechanism. Bioinformation 2011;6(6):229–236.
  • 25. Uddin MdS et al. Anti-neuroinflammatory potential of polyphenols by inhibiting NF-κB to halt Alzheimer’s disease. Curr Pharm des 2021;27(3):402–414.
  • 26. Sabogal-Guaqueta AM et al. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015;93:134–145.
  • 27. Qureshi AA et al. Inhibition of nitric oxide in LPS-stimulated macrophages of young and senescent mice by δ-tocotrienol and quercetin. Lipids Health Dis 2011;10(1):239.
  • 28. Al-kuraishy HM et al. The link between metabolic syndrome and Alzheimer disease: a mutual relationship and long rigorous investigation. Ageing Res Rev 2023;91:102084.
  • 29. Molaei A et al. Synergistic effects of quercetin and regular exercise on the recovery of spatial memory and reduction of parameters of oxidative stress in an animal model of Alzheimer’s disease. EXCLI J 2020;19:596–612.
  • 30. Amanzadeh JE et al. Quercetin-conjugated superparamagnetic iron oxide nanoparticles protect AlCl3-induced neurotoxicity in a rat model of Alzheimer’s disease via antioxidant genes, APP gene, and miRNA-101. Front Neurosci 2021;14:598617.
  • 31. Lee GB et al. Anti-inflammatory effects of quercetin, rutin, and troxerutin result from the inhibition of NO production and the reduction of COX-2 levels in RAW 264.7 cells treated with LPS. Appl Biochem Biotechnol 2024;196(12):8431–8452.
  • 32. Esaki S et al. Preparation and taste of certain glycosides of flavanones and of dihydrochalcones. Biosci. Biotechnol. Biochem. 1994;58:1479-1485.
  • 33. Zhang L et al. Solubilities of naringin and naringenin in different solvents and dissociation constants of naringenin. J. Chem. Eng. Data 2015;60:932-940.
  • 34. Lin SP et al. Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to rats. Biomed. (Taipei) 2014;4:16.
  • 35. Yang W et al. Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 2014;35:741-751.
  • 36. Zhang N et al. Protective role of Naringenin against Aβ -caused damage via ER and PI3K/Akt-mediated pathways. Cell Mol Neurobiol 2018;38:549-557.
  • 37. Heo HJ et al. Naringenin from citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord 2014;17:151-157.
  • 38. Lee S et al. In silico docking and in vitro approaches towards BACE1 and cholinesterases inhibitory effect of citrus flavanones. Molecules 2018;23:1509.
  • 39. Ghofrani S et al. Naringenin improves learning and memory in an Alzheimer's disease rat model: insights into the underlying mechanisms. Eur J Pharmacol 2015;764: 195-201.
  • 40. Dabeek WM, Marra MV. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019;11:2288.
  • 41. Al-Brakati A et al. Possible Role of Kaempferol in Reversing Oxidative Damage, Inflammation, and Apoptosis-Mediated Cortical Injury Following Cadmium Exposure. Neurotox Res 2021;39:198–209.
  • 42. Wang J et al. Kaempferol Protects Against Cerebral Ischemia Reperfusion Injury Through Intervening Oxidative and Inflammatory Stress Induced Apoptosis. Front Pharmacol 2020;11:424.
  • 43. El-Kott AF et al. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ 2020;728:138832.
  • 44. Zhou YP, Li GC. Kaempferol protects cell damage in in vitro ischemia reperfusion model in rat neuronal PC12 cells. BioMed Res Int 2020;2020:2461079.
  • 45. Alam W et al. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020;25:4073.
  • 46. Wang J et al. Kaempferol Protects Against Cerebral Ischemia Reperfusion Injury Through Intervening Oxidative and Inflammatory Stress Induced Apoptosis. Front Pharmacol 2020;11:424.
  • 47. Sharoar G et al. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates. J Biomed Sci 2012;19:104.
  • 48. Song KS, Jeong WS, Jun M. Inhibition of β-amyloid peptide-induced neurotoxicity by kaempferol 3-O-(6’’-acetyl)-glucopyranoside from butterbur (Petasites japonicus) leaves in B103 cells. Food Sci Biotechnol 2012;21:845–851.
  • 49. Miranda S et al. The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer’s disease. Prog Neurobiol 2000;62:633-648.
  • 50. Xie C et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 2022;6:76–93.
  • 51. Cook N, Samman S. Flavonoids—Chemistry Metabolism, Cardioprotectiveeffects, and Dietary Sources. J Nutr Biochem 1996;7:66–76.
  • 52. Krstic D, Knuesel I. Deciphering the Mechanism Underlying Late-Onset Alzheimer Disease. Nat Rev Neurol 2013;9:25–34.
  • 53. von Bernhardi R et al Role of TGFβ Signaling in the Pathogenesis of Alzheimer’s Disease. Front Cell Neurosci 2015;9:426.
  • 54. Kang SS, Lee JY, Choi YK. Neuroprotective Effects of Flavones on Hydrogen Peroxide-Induced Apoptosis in SH-SY5Y Neuroblostoma Cells. Bioorg Med Chem Lett 2004;14:2261–2264.
  • 55. Dourado NS et al. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in In Vitro Models of Neuroinflammation Associated with Alzheimer’s Disease. Front Aging Neurosci 2020;12:119.
  • 56. Feng R et al. Anti-inflammatory flavonoids from Cryptocarya chingii. Phytochemistry 2012;76:98–105.
  • 57. Liu R et al. Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β (1-40) injury by suppressing the MAPK/NF-κB inflammatory pathways. Biomed Res Int 2014;2014:1–14.
  • 58. Wang Y et al. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. J Neurol Sci 2016;368:223–230.
  • 59. Q Hu et al. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities, Chin Med 2021;16(1):74.
  • 60. P He et al. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells. J Agric Food Chem 2018;66(39):10205–10214.

Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme

Yıl 2025, Cilt: 15 Sayı: 3, 839 - 846, 30.09.2025

Öz

Nöroinflamasyon, toksik protein agregasyonu, oksidatif stres ve mitokondriyal disfonksiyon, Alzheimer hastalığı (AH) gibi nörodejeneratif hastalıklarda temel yollardır. Mevcut tedavi seçenekleri sınırlıdır, bu nedenle bitkisel ilaç gibi alternatif tedaviler bilişsel gerilemeyi yavaşlatırken semptomları baskılayabilir. Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus ve Buplerum falcatum gibi bitkilerde bulunan kaempferol ve kuersetin, Aβ plak oluşumunun inhibisyonu, tau hiperfosforilasyonunda azalma, oksidatif stresin baskılanması ve BDNF ve PI3K/AKT yollarının modülasyonu gibi çoklu etki mekanizmaları gösteren polifenolik yapıya sahip flavonoidlerdir. Naringenin Aβ birikimi, mikroglial ve astrositik aktivasyonu ve proinflamatuar sitokin seviyelerini önemli ölçüde azaltabildiği gibi in vivo ve in vitro MAPK sinyal yolunun inhibisyonu yoluyla nöroinflamatuar yanıtları zayıflatabilmektedir. Apigenin, maydanoz, kereviz, soğan gibi sebzelerde ve papatya, kekik, mercanköşk, fesleğen gibi otlarda yaygın olarak bulunur. Çok sayıda çalışma, apigeninin çeşitli farmakolojik işlevler sergilediğini ve inflamasyon ve nörodejeneratif ilişkili hastalıklar için terapötik bir ajan olma potansiyeline sahip olduğunu bildirmiştir. Peperomia, Piper genera ve Asteraceae familyası gibi medisinal bitkilerde bulunan pinosembrinin bilişsel işlevi etkilediği ve sinir hücrelerini Aβ'dan kaynaklanan toksisiteye karşı koruduğu bilinmektedir. Eriodiktiol, esas olarak turunçgillerde ve fıstıkta bulunan doğal bir flavonoiddir. Eriodiktiol lipopolisakkarit uyarılı amiloid üretimini, glial aktivasyonu ve sitokinlerin aşırı salınımını azaltmakta,. nöronal hasarı engellemekte ve vücuttaki kolinerjik sistemin dengesini sağlayarak bilişsel işlevi korumaktadır.

Kaynakça

  • 1. Corey-Bloom J. The ABC of Alzheimer’s disease: cognitive changes and their management in Alzheimer’s disease and related dementias. Int Psychogeriatr 2002;14(1):51–75.
  • 2. De-Paula VJ et al. Alzheimer’s disease. Subcell Biochem 2012;65:329–52.
  • 3. Better MA. Alzheimer’s disease facts and figures. Alzheimers Dement 2023;19:1598–1695.
  • 4. Noorda K et al. Amyloid-Directed Antibodies: Past, Present, and Future. J Alzheimer’s Dis 2024;101:3–22.
  • 5. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006;2006:CD005593.
  • 6. Lee NK et al. Park, E., & Paik, H. D. Heat-Killed Leuconostoc mesenteroides H40 Alleviates Cognitive Impairment by Anti-Inflammation and Antioxidant Effects in a Scopolamine-Induced Mouse Model. Journal of microbiology and biotechnology 2025;35:e2411013.
  • 7. Bukowska B et al. Acetyl- and Butyrylcholinesterase—Structure, Functions and Their Inhibitors. Curr Top Biophys 2007;30:11–23.
  • 8. Rathod NB et al. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023;12:1217.
  • 9. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009;2:270–278.
  • 10. Habauzit V, Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: An update for clinicians. Ther Adv Chronic Dis 2012;3:87–106.
  • 11. Aune D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019;10:404-421.
  • 12. Li S et al. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases. Oxid Med Cell Longev 2018;2018:8394818.
  • 13. Stromsnes K et al. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 2021;9:1074.
  • 14. Singh P et al. The role of quercetin in plants. Plant Physiol Biochem 2021;166:10-19.
  • 15. Batiha GE-S et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 2020;9(3):374.
  • 16. Yang D et al. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev 2020:1–13.
  • 17. Wang G et al. Pharmacological activity of quercetin: an updated review. Evidence-Based Complement Alternat Med 2022:1–12.
  • 18. Wang T et al. Brusatol inhibits the growth of renal cell carcinoma by regulating the PTEN/PI3K/AKT pathway. J Ethnopharmacol 2022;288:115020.
  • 19. Khan A et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol 2018;9:1383
  • 20. Kalra P et al. Neuroprotection induced by quercetin. In Natural Molecules in Neuroprotection and Neurotoxicity 2024:1757–1783.
  • 21. Mannan A et al. Insights into the mechanism of the therapeutic potential of herbal monoamine oxidase inhibitors in neurological diseases. Curr Drug Targets 2022;23(3):286–310.
  • 22. Khan H et al. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019;10(1):59.
  • 23. Sato M et al. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the lys residues. J Biol Chem 2013;288(32):23212–23224.
  • 24. Paris D et al. Flavonoids lower Alzheimer’s Aß production via an NFkB dependent mechanism. Bioinformation 2011;6(6):229–236.
  • 25. Uddin MdS et al. Anti-neuroinflammatory potential of polyphenols by inhibiting NF-κB to halt Alzheimer’s disease. Curr Pharm des 2021;27(3):402–414.
  • 26. Sabogal-Guaqueta AM et al. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015;93:134–145.
  • 27. Qureshi AA et al. Inhibition of nitric oxide in LPS-stimulated macrophages of young and senescent mice by δ-tocotrienol and quercetin. Lipids Health Dis 2011;10(1):239.
  • 28. Al-kuraishy HM et al. The link between metabolic syndrome and Alzheimer disease: a mutual relationship and long rigorous investigation. Ageing Res Rev 2023;91:102084.
  • 29. Molaei A et al. Synergistic effects of quercetin and regular exercise on the recovery of spatial memory and reduction of parameters of oxidative stress in an animal model of Alzheimer’s disease. EXCLI J 2020;19:596–612.
  • 30. Amanzadeh JE et al. Quercetin-conjugated superparamagnetic iron oxide nanoparticles protect AlCl3-induced neurotoxicity in a rat model of Alzheimer’s disease via antioxidant genes, APP gene, and miRNA-101. Front Neurosci 2021;14:598617.
  • 31. Lee GB et al. Anti-inflammatory effects of quercetin, rutin, and troxerutin result from the inhibition of NO production and the reduction of COX-2 levels in RAW 264.7 cells treated with LPS. Appl Biochem Biotechnol 2024;196(12):8431–8452.
  • 32. Esaki S et al. Preparation and taste of certain glycosides of flavanones and of dihydrochalcones. Biosci. Biotechnol. Biochem. 1994;58:1479-1485.
  • 33. Zhang L et al. Solubilities of naringin and naringenin in different solvents and dissociation constants of naringenin. J. Chem. Eng. Data 2015;60:932-940.
  • 34. Lin SP et al. Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to rats. Biomed. (Taipei) 2014;4:16.
  • 35. Yang W et al. Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 2014;35:741-751.
  • 36. Zhang N et al. Protective role of Naringenin against Aβ -caused damage via ER and PI3K/Akt-mediated pathways. Cell Mol Neurobiol 2018;38:549-557.
  • 37. Heo HJ et al. Naringenin from citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord 2014;17:151-157.
  • 38. Lee S et al. In silico docking and in vitro approaches towards BACE1 and cholinesterases inhibitory effect of citrus flavanones. Molecules 2018;23:1509.
  • 39. Ghofrani S et al. Naringenin improves learning and memory in an Alzheimer's disease rat model: insights into the underlying mechanisms. Eur J Pharmacol 2015;764: 195-201.
  • 40. Dabeek WM, Marra MV. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019;11:2288.
  • 41. Al-Brakati A et al. Possible Role of Kaempferol in Reversing Oxidative Damage, Inflammation, and Apoptosis-Mediated Cortical Injury Following Cadmium Exposure. Neurotox Res 2021;39:198–209.
  • 42. Wang J et al. Kaempferol Protects Against Cerebral Ischemia Reperfusion Injury Through Intervening Oxidative and Inflammatory Stress Induced Apoptosis. Front Pharmacol 2020;11:424.
  • 43. El-Kott AF et al. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ 2020;728:138832.
  • 44. Zhou YP, Li GC. Kaempferol protects cell damage in in vitro ischemia reperfusion model in rat neuronal PC12 cells. BioMed Res Int 2020;2020:2461079.
  • 45. Alam W et al. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020;25:4073.
  • 46. Wang J et al. Kaempferol Protects Against Cerebral Ischemia Reperfusion Injury Through Intervening Oxidative and Inflammatory Stress Induced Apoptosis. Front Pharmacol 2020;11:424.
  • 47. Sharoar G et al. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates. J Biomed Sci 2012;19:104.
  • 48. Song KS, Jeong WS, Jun M. Inhibition of β-amyloid peptide-induced neurotoxicity by kaempferol 3-O-(6’’-acetyl)-glucopyranoside from butterbur (Petasites japonicus) leaves in B103 cells. Food Sci Biotechnol 2012;21:845–851.
  • 49. Miranda S et al. The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer’s disease. Prog Neurobiol 2000;62:633-648.
  • 50. Xie C et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 2022;6:76–93.
  • 51. Cook N, Samman S. Flavonoids—Chemistry Metabolism, Cardioprotectiveeffects, and Dietary Sources. J Nutr Biochem 1996;7:66–76.
  • 52. Krstic D, Knuesel I. Deciphering the Mechanism Underlying Late-Onset Alzheimer Disease. Nat Rev Neurol 2013;9:25–34.
  • 53. von Bernhardi R et al Role of TGFβ Signaling in the Pathogenesis of Alzheimer’s Disease. Front Cell Neurosci 2015;9:426.
  • 54. Kang SS, Lee JY, Choi YK. Neuroprotective Effects of Flavones on Hydrogen Peroxide-Induced Apoptosis in SH-SY5Y Neuroblostoma Cells. Bioorg Med Chem Lett 2004;14:2261–2264.
  • 55. Dourado NS et al. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in In Vitro Models of Neuroinflammation Associated with Alzheimer’s Disease. Front Aging Neurosci 2020;12:119.
  • 56. Feng R et al. Anti-inflammatory flavonoids from Cryptocarya chingii. Phytochemistry 2012;76:98–105.
  • 57. Liu R et al. Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β (1-40) injury by suppressing the MAPK/NF-κB inflammatory pathways. Biomed Res Int 2014;2014:1–14.
  • 58. Wang Y et al. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells. J Neurol Sci 2016;368:223–230.
  • 59. Q Hu et al. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities, Chin Med 2021;16(1):74.
  • 60. P He et al. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells. J Agric Food Chem 2018;66(39):10205–10214.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Geleneksel, Tamamlayıcı ve Bütünleştirici Tıp (Diğer)
Bölüm Derleme
Yazarlar

Ulaş Değirmenci 0000-0001-5208-6430

Erken Görünüm Tarihi 27 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 25 Mart 2025
Kabul Tarihi 8 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Değirmenci, U. (2025). Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 15(3), 839-846.
AMA Değirmenci U. Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. Eylül 2025;15(3):839-846.
Chicago Değirmenci, Ulaş. “Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 15, sy. 3 (Eylül 2025): 839-46.
EndNote Değirmenci U (01 Eylül 2025) Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 15 3 839–846.
IEEE U. Değirmenci, “Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme”, Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, c. 15, sy. 3, ss. 839–846, 2025.
ISNAD Değirmenci, Ulaş. “Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 15/3 (Eylül2025), 839-846.
JAMA Değirmenci U. Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2025;15:839–846.
MLA Değirmenci, Ulaş. “Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, c. 15, sy. 3, 2025, ss. 839-46.
Vancouver Değirmenci U. Bitkisel ve Doğal Kaynaklı Bazı Flavanoidlerin anti-Alzheimer Etkileri; Moleküler İnceleme. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2025;15(3):839-46.
Creative Commons Lisansı
                                                                            Bu Dergi Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.

Mersin Üniversitesi Tıp Fakültesi’nin süreli bilimsel yayınıdır. Kaynak gösterilmeden kullanılamaz.  Makalelerin sorumlulukları yazarlara aittir 

Kapak 

Ayşegül Tuğuz

İlter Uzel’inDioskorides ve Öğrencisi adlı eserinden 

Adres

Mersin Üniversitesi Tıp Fakültesi Tıp Tarihi ve Etik  Anabilim Dalı Çiftlikköy Kampüsü

Yenişehir/ Mersin