Araştırma Makalesi
BibTex RIS Kaynak Göster

Monolitik Zirkonyaların Yüzey İşlemleri ve Termal Siklus Sonrasında Mikrosızıntılarının Veri Analizi Yazılımıyla Karşılaştırılması

Yıl 2024, , 97 - 107, 15.10.2024
https://doi.org/10.51122/neudentj.2024.120

Öz

Amaç: Bu çalışmanın amacı; monolitik zirkonyalara uygulanan farklı yüzey işlemleri sonrasında mikrosızıntılarını bilgisayar yazılımıyla incelemektir.
Gereç ve Yöntemler: Çalışmada kullanmak amacıyla, üç farklı monolitik zirkonya ML (Multilayered), STML (Super Translusent Multilayered), UTML (Ultra Translusent Multilayered) 15 mm çapında 1,2 mm kalınlığında disk şeklinde hazırlandı. Hazırlanan örneklere gruplarına göre dört farklı yüzey işlemi (Hidroflorik asit, Tribokimyasal silika kaplama, Hidroflorik asit uygulama+ Tribokimyasal silika kaplama, Frez ile aşındırma + Tribokimyasal silika kaplama + Hidroflorik asit uygulaması) uygulandı (n=8). Örnekler, Grup C: Kontrol grubu, Grup HF: Hidroflorik asit uygulama, Grup T: Tribokimyasal silika kaplama, Grup HF+T: Hidroflorik asit uygulama+ Tribokimyasal silika kaplama, Grup F+HF+T: Frez ile aşındırma, + Tribokimyasal silika kaplama + Hidroflorik asit uygulaması şeklinde 5 gruba ayrıldı, daha sonra tüm örneklere adeziv sistem uygulanıp rezin siman ile tamir yapıldı. Örnekler bir yıllık yaşlandırma amacıyla termal-siklusa tabi tutulup daha sonrasında mikrosızıntıyı değerlendirmek amacıyla bazik fuksin solüsyonuna daldırıldı. Micro-cut cihazı ile ayrılan örnekler stereomikroskop altında değerlendirildi. Alınan görüntülerin ölçüleri Python programında ölçülerek zirkonya örneklerin geçirgenliği ve yüzey işlemleri karşılaştırıldı. İstatiksel analiz iki yönlü ANOVA ile yapıldı (p<0,05).
Bulgular: Örneklerden en düşük mikrosızıntıyı UTML F+HF+T gösterirken (12,15 ± 1,69), en yüksek mikrosızıntı ML C (73,93 ± 1,59) görüldü. Zirkonya örnekler arasında en yüksek adaptasyon UTML zirkonya örneklerde (37,59 ± 23,58) elde edildi.
Sonuç: Elde edilen veriler doğrultusunda frezleme+ tribokimyasal silika kaplama+asit uygulama yüzey işlemleri, monolitik zirkonya restorasyonların tamiri açısından önerilmektedir. Kullanılan monolitik zirkonyanın sinterleme sıcaklığı ve içeriğindeki İtriyum Oksit (Y2O3) tamir sonrası mikrosızıntıda etkili faktördür.

Kaynakça

  • Joulaei M, Bahari M, Ahmadi A, Oskoee SS. Effect of different surface treatments on repair micro-shear bond strength of silica-and zirconia-filled composite resins. Journal of dental research, dental clinics, dental prospects. 2012;6:131.
  • Mamanee T, Takahashi M, Nakajima M, Foxton RM, Tagami J. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation. Dental Materials Journal. 2015;34:663-70.
  • Nassar M, Al-Fakhri O, Shabbir N, Islam MS, Gordan VV, Lynch CD, et al. Teaching of the repair of defective composite restorations in Middle Eastern and North African Dental Schools. Journal of dentistry. 2021;112:103753.
  • Rekow E, Silva N, Coelho P, Zhang Y, Guess P, Thompson V. Performance of dental ceramics: challenges for improvements. Journal of dental research. 2011;90:937-52.
  • Tang Z, Zhao X, Wang H, Liu B. Clinical evaluation of monolithic zirconia crowns for posterior teeth restorations. Medicine. 2019;98:e17385.
  • Pereira GKR, Graunke P, Maroli A, Zucuni CP, Prochnow C, Valandro LF, et al. Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution. Journal of the mechanical behavior of biomedical materials. 2019;91:122-30.
  • Soares PM, Cadore-Rodrigues AC, Borges ALS, Valandro LF, Pereira GKR, Rippe MP. Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. Journal of the mechanical behavior of biomedical materials. 2021;123:104760.
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence international. 2017;48.
  • Buyukerkmen EB, Bozkurt DA, Terlemez A. Effect of surface treatment, ferrule height, and luting agent type on pull-out bond strength of monolithic zirconia endocrowns. Journal of Oral Science. 2022;64:279-82.
  • Shin YJ, Shin Y, Yi YA, Kim J, Lee IB, Cho BH, et al. Evaluation of the shear bond strength of resin cement to Y‐TZP ceramic after different surface treatments. Scanning: The Journal of Scanning Microscopies. 2014;36:479-86.
  • Heikkinen TT, Matinlinna JP, Vallittu PK, Lassila LV. Dental zirconia adhesion with silicon compounds using some experimental and conventional surface conditioning methods. Silicon. 2009;1:199-202.
  • Han I-H, Kang D-W, Chung C-H, Choe H-C, Son M-K. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia. The Journal of Advanced Prosthodontics. 2013;5:248-55.
  • Kidd EA. Microleakage: a review. Journal of dentistry. 1976;4:199-206.
  • Günay A, Eskibağlar M, Cangül S, Karaağaç Eskibağlar B, Adıgüzel Ö, Çelenk S. İki Farklı Işık Cihazı ile Polimerize Edilen Bonding Ajanların Mikrosızıntılarının AutoCAD Programı Kullanılarak Değerlendirilmesi. 7tepe Klinik Dergisi.19:173-8.
  • ISO I. 6872: Dentistry-ceramic materials. Switzerland: International Organization for Standardization. 2008.
  • Çağlar İ, Ateş SM, Arslan E, Duymuş ZY. Farkli Yöntemlerle Üretilen Metal Alt Yapilara Kompozit Rezin Bağlantisi. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2021;31:414-9.
  • Gale M, Darvell B. Thermal cycling procedures for laboratory testing of dental restorations. Journal of dentistry. 1999;27:89-99.
  • Burrer P, Costermani A, Par M, Attin T, Tauböck TT. Effect of varying working distances between sandblasting device and composite substrate surface on the repair bond strength. Materials. 2021;14:1621.
  • Yin H, Kwon S, Chung SH, Kim RJY. Performance of universal adhesives in composite resin repair. BioMed Research International. 2022;2022.
  • Wendler M, Belli R, Panzer R, Skibbe D, Petschelt A, Lohbauer U. Repair bond strength of aged resin composite after different surface and bonding treatments. Materials. 2016;9:547.
  • Valandro LF, ÖZCAN M, Amaral R, Vanderlei A, Bottino MA. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic: microtensile versus shear test. Dental materials journal. 2008;27:849-55.
  • Akay C, Çakırbay Tanış M, Şen M. Effects of hot chemical etching and 10‐metacryloxydecyl dihydrogen phosphate (MDP) monomer on the bond strength of zirconia ceramics to resin‐based cements. Journal of Prosthodontics. 2017;26:419-23.
  • Zhang Y, Lawn BR, Malament KA, Thompson VP, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. International Journal of Prosthodontics. 2006;19(5).
  • Amaral R, Özcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dental Materials. 2006;22:283-90.
  • Altan B, Cinar S, Tuncelli B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Nigerian journal of clinical practice. 2019;22:1475-82.
  • Bona AD, Anusavice KJ. Microstructure, composition, and etching topography of dental ceramics. International Journal of Prosthodontics. 2002;15(2).
  • Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dental Materials. 2011;27:71-82.
  • Seto KB, McLaren EA, Caputo AA, White SN. Fatigue behavior of the resinous cement to zirconia bond. Journal of Prosthodontics. 2013;22:523-8.
  • Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials. The Journal of prosthetic dentistry. 2007;98:379-88.
  • Ural Ç, Külünk T, Külünk Ş, Kurt M. The effect of laser treatment on bonding between zirconia ceramic surface and resin cement. Acta Odontologica Scandinavica. 2010;68:354-9.
  • Gul P, Altınok-Uygun L. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. The journal of advanced prosthodontics. 2020;12:131.
  • Bayraktar Y, Arslan M, Demirtag Z. Repair bond strength and surface topography of resin‐ceramic and ceramic restorative blocks treated by laser and conventional surface treatments. Microscopy research and technique. 2021;84:1145-54.
  • da Rosa LS, Pilecco RO, Soares PM, Rippe MP, Pereira GKR, Valandro LF, et al. Repair protocols for indirect monolithic restorations: a literature review. PeerJ. 2024;12:e16942.
  • Pereira GK, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. Journal of the mechanical behavior of biomedical materials. 2018;85:57-65.
  • Hao Z, Ma Y, Liu W, Meng Y, Nakamura K, Shen J, Wang H. Influence of low-temperature degradation on the wear characteristics of zirconia against polymer-infiltrated ceramic-network material. The Journal of prosthetic dentistry. 2018;120:596-602.
  • Hjerppe J, Vallittu PK, Fröberg K, Lassila LV. Effect of sintering time on biaxial strength of zirconium dioxide. Dental materials. 2009;25:166-71.
  • Khaledi AAR, Vojdani M, Farzin M, Pirouzi S. The effect of sintering program on the compressive strength of zirconia copings. Journal of Dentistry. 2018;19(3):206.
  • Ersoy NM, Aydoğdu HM, Değirmenci BÜ, Çökük N, Sevimay M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta biomaterialia odontologica Scandinavica. 2015;1:43-50.
  • Mohaghegh M, Baseri S, Kalantari MH, Giti R, Ghoraishian SA. Influence of Sintering Temperature on the Marginal Fit and Compressive Strength of Monolithic Zirconia Crowns. Journal of Dentistry. 2022;23(3):307.
  • Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Japanese Dental Science Review. 2020;56:1-23.
  • D'Amario M, Campidoglio M, Morresi AL, Luciani L, Marchetti E, Baldi M. Effect of thermocycling on the bond strength between dual-cured resin cements and zirconium-oxide ceramics. Journal of oral science. 2010;52:425-30.
  • Blatz MB, Bergler M, Ozer F, Holst S, Phark J-H, Chiche GJ. Bond strength of different veneering ceramics to zirconia and their susceptibility to thermocycling. American journal of dentistry. 2010;23:213-6.
  • Bahari M, Mohammadi N, Alizadeh Oskoee P, Savadi Oskoee S, Davoodi F. Effect of an extra layer of hydrophobic resin on the microleakage of Cl V composite resin restorations with a universal adhesive system. Journal of investigative and clinical dentistry. 2017;8:e12234.
  • Wahab F, Abu-Tabra IT, Amin WM. An in vitro study of micro leakage of different types of composites with respect to their matrix compositions. 2014.
  • Bolgül B, Ayna B, Şimşek İ, Celenk S, Şeker O, Kılınç G. Leakage testing for different adhesive systems and composites to permanent teeth. Nigerian Journal of Clinical Practice. 2017;20:787-91.

Comparison of Microleakage of Monolithic Zirconia after Surface Treatment and Thermal Cycles Using Data Analysis Software

Yıl 2024, , 97 - 107, 15.10.2024
https://doi.org/10.51122/neudentj.2024.120

Öz

Objective: The aim of this study was to investigate the microleakage of monolithic zirconia after different surface treatments using computer software.
Materials and Methods: Three different monolithic zirconia ML (Multilayered), STML (Super Translucent Multilayered), UTML (Ultra Translucent Multilayered) were prepared as discs with a diameter of 15 mm and a thickness of 1.2 mm. Four different surface treatments (Hydrofluoric acid, Tribochemical silica coating, Hydrofluoric acid application + Tribochemical silica coating, Milling + Tribochemical silica coating + Hydrofluoric acid application) were applied to the prepared samples according to their groups (n=8). Samples, Group C: Control group, Group HF: Hydrofluoric acid application, Group T: Tribochemical silica coating, Group HF+T: Hydrofluoric acid application + Tribochemical silica coating, Group F+HF+T: Milling + Tribochemical silica coating + Hydrofluoric acid application, then adhesive system was applied to all specimens and repaired with resin cement. The specimens were thermocycled for one year aging and then immersed in basic fuchsin solution to evaluate microleakage. The specimens were separated with a micro-cut device and evaluated under a stereomicroscope. The dimensions of the images were measured in Python program and the permeability and surface treatments of the zirconia samples were compared. Statistical analysis was performed by two-way ANOVA (p<0.05).
Results: UTML F+HF+T showed the lowest microleakage (12.15 ± 1.69), while ML C showed the highest microleakage (73.93 ± 1.59). Among the zirconia specimens, the highest adaptation was obtained in the UTML zirconia (37.59 ± 23.58).
Conclusion: According to the data obtained, milling + tribochemical silica coating + acid application surface treatments are recommended for the repair of monolithic zirconia restorations. The sintering temperature and Yttrium Oxide (Y2O3) content of the monolithic zirconia used are effective factors in microleakage after repair.

Kaynakça

  • Joulaei M, Bahari M, Ahmadi A, Oskoee SS. Effect of different surface treatments on repair micro-shear bond strength of silica-and zirconia-filled composite resins. Journal of dental research, dental clinics, dental prospects. 2012;6:131.
  • Mamanee T, Takahashi M, Nakajima M, Foxton RM, Tagami J. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation. Dental Materials Journal. 2015;34:663-70.
  • Nassar M, Al-Fakhri O, Shabbir N, Islam MS, Gordan VV, Lynch CD, et al. Teaching of the repair of defective composite restorations in Middle Eastern and North African Dental Schools. Journal of dentistry. 2021;112:103753.
  • Rekow E, Silva N, Coelho P, Zhang Y, Guess P, Thompson V. Performance of dental ceramics: challenges for improvements. Journal of dental research. 2011;90:937-52.
  • Tang Z, Zhao X, Wang H, Liu B. Clinical evaluation of monolithic zirconia crowns for posterior teeth restorations. Medicine. 2019;98:e17385.
  • Pereira GKR, Graunke P, Maroli A, Zucuni CP, Prochnow C, Valandro LF, et al. Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution. Journal of the mechanical behavior of biomedical materials. 2019;91:122-30.
  • Soares PM, Cadore-Rodrigues AC, Borges ALS, Valandro LF, Pereira GKR, Rippe MP. Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. Journal of the mechanical behavior of biomedical materials. 2021;123:104760.
  • Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence international. 2017;48.
  • Buyukerkmen EB, Bozkurt DA, Terlemez A. Effect of surface treatment, ferrule height, and luting agent type on pull-out bond strength of monolithic zirconia endocrowns. Journal of Oral Science. 2022;64:279-82.
  • Shin YJ, Shin Y, Yi YA, Kim J, Lee IB, Cho BH, et al. Evaluation of the shear bond strength of resin cement to Y‐TZP ceramic after different surface treatments. Scanning: The Journal of Scanning Microscopies. 2014;36:479-86.
  • Heikkinen TT, Matinlinna JP, Vallittu PK, Lassila LV. Dental zirconia adhesion with silicon compounds using some experimental and conventional surface conditioning methods. Silicon. 2009;1:199-202.
  • Han I-H, Kang D-W, Chung C-H, Choe H-C, Son M-K. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia. The Journal of Advanced Prosthodontics. 2013;5:248-55.
  • Kidd EA. Microleakage: a review. Journal of dentistry. 1976;4:199-206.
  • Günay A, Eskibağlar M, Cangül S, Karaağaç Eskibağlar B, Adıgüzel Ö, Çelenk S. İki Farklı Işık Cihazı ile Polimerize Edilen Bonding Ajanların Mikrosızıntılarının AutoCAD Programı Kullanılarak Değerlendirilmesi. 7tepe Klinik Dergisi.19:173-8.
  • ISO I. 6872: Dentistry-ceramic materials. Switzerland: International Organization for Standardization. 2008.
  • Çağlar İ, Ateş SM, Arslan E, Duymuş ZY. Farkli Yöntemlerle Üretilen Metal Alt Yapilara Kompozit Rezin Bağlantisi. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2021;31:414-9.
  • Gale M, Darvell B. Thermal cycling procedures for laboratory testing of dental restorations. Journal of dentistry. 1999;27:89-99.
  • Burrer P, Costermani A, Par M, Attin T, Tauböck TT. Effect of varying working distances between sandblasting device and composite substrate surface on the repair bond strength. Materials. 2021;14:1621.
  • Yin H, Kwon S, Chung SH, Kim RJY. Performance of universal adhesives in composite resin repair. BioMed Research International. 2022;2022.
  • Wendler M, Belli R, Panzer R, Skibbe D, Petschelt A, Lohbauer U. Repair bond strength of aged resin composite after different surface and bonding treatments. Materials. 2016;9:547.
  • Valandro LF, ÖZCAN M, Amaral R, Vanderlei A, Bottino MA. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic: microtensile versus shear test. Dental materials journal. 2008;27:849-55.
  • Akay C, Çakırbay Tanış M, Şen M. Effects of hot chemical etching and 10‐metacryloxydecyl dihydrogen phosphate (MDP) monomer on the bond strength of zirconia ceramics to resin‐based cements. Journal of Prosthodontics. 2017;26:419-23.
  • Zhang Y, Lawn BR, Malament KA, Thompson VP, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. International Journal of Prosthodontics. 2006;19(5).
  • Amaral R, Özcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dental Materials. 2006;22:283-90.
  • Altan B, Cinar S, Tuncelli B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Nigerian journal of clinical practice. 2019;22:1475-82.
  • Bona AD, Anusavice KJ. Microstructure, composition, and etching topography of dental ceramics. International Journal of Prosthodontics. 2002;15(2).
  • Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dental Materials. 2011;27:71-82.
  • Seto KB, McLaren EA, Caputo AA, White SN. Fatigue behavior of the resinous cement to zirconia bond. Journal of Prosthodontics. 2013;22:523-8.
  • Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials. The Journal of prosthetic dentistry. 2007;98:379-88.
  • Ural Ç, Külünk T, Külünk Ş, Kurt M. The effect of laser treatment on bonding between zirconia ceramic surface and resin cement. Acta Odontologica Scandinavica. 2010;68:354-9.
  • Gul P, Altınok-Uygun L. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. The journal of advanced prosthodontics. 2020;12:131.
  • Bayraktar Y, Arslan M, Demirtag Z. Repair bond strength and surface topography of resin‐ceramic and ceramic restorative blocks treated by laser and conventional surface treatments. Microscopy research and technique. 2021;84:1145-54.
  • da Rosa LS, Pilecco RO, Soares PM, Rippe MP, Pereira GKR, Valandro LF, et al. Repair protocols for indirect monolithic restorations: a literature review. PeerJ. 2024;12:e16942.
  • Pereira GK, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. Journal of the mechanical behavior of biomedical materials. 2018;85:57-65.
  • Hao Z, Ma Y, Liu W, Meng Y, Nakamura K, Shen J, Wang H. Influence of low-temperature degradation on the wear characteristics of zirconia against polymer-infiltrated ceramic-network material. The Journal of prosthetic dentistry. 2018;120:596-602.
  • Hjerppe J, Vallittu PK, Fröberg K, Lassila LV. Effect of sintering time on biaxial strength of zirconium dioxide. Dental materials. 2009;25:166-71.
  • Khaledi AAR, Vojdani M, Farzin M, Pirouzi S. The effect of sintering program on the compressive strength of zirconia copings. Journal of Dentistry. 2018;19(3):206.
  • Ersoy NM, Aydoğdu HM, Değirmenci BÜ, Çökük N, Sevimay M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta biomaterialia odontologica Scandinavica. 2015;1:43-50.
  • Mohaghegh M, Baseri S, Kalantari MH, Giti R, Ghoraishian SA. Influence of Sintering Temperature on the Marginal Fit and Compressive Strength of Monolithic Zirconia Crowns. Journal of Dentistry. 2022;23(3):307.
  • Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Japanese Dental Science Review. 2020;56:1-23.
  • D'Amario M, Campidoglio M, Morresi AL, Luciani L, Marchetti E, Baldi M. Effect of thermocycling on the bond strength between dual-cured resin cements and zirconium-oxide ceramics. Journal of oral science. 2010;52:425-30.
  • Blatz MB, Bergler M, Ozer F, Holst S, Phark J-H, Chiche GJ. Bond strength of different veneering ceramics to zirconia and their susceptibility to thermocycling. American journal of dentistry. 2010;23:213-6.
  • Bahari M, Mohammadi N, Alizadeh Oskoee P, Savadi Oskoee S, Davoodi F. Effect of an extra layer of hydrophobic resin on the microleakage of Cl V composite resin restorations with a universal adhesive system. Journal of investigative and clinical dentistry. 2017;8:e12234.
  • Wahab F, Abu-Tabra IT, Amin WM. An in vitro study of micro leakage of different types of composites with respect to their matrix compositions. 2014.
  • Bolgül B, Ayna B, Şimşek İ, Celenk S, Şeker O, Kılınç G. Leakage testing for different adhesive systems and composites to permanent teeth. Nigerian Journal of Clinical Practice. 2017;20:787-91.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Malzemeleri ve Ekipmanı, Protez
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Emel Arslan 0000-0002-9319-5972

Halil Nuri Özdemir 0009-0009-9671-5089

Hatice Sevmez 0000-0003-3637-3784

Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 16 Haziran 2024
Kabul Tarihi 14 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Arslan E, Özdemir HN, Sevmez H. Comparison of Microleakage of Monolithic Zirconia after Surface Treatment and Thermal Cycles Using Data Analysis Software. NEU Dent J. 2024(3):97-107.