Effect of 14.1T MRI on Mercury & Amalgam: A Study by ICP-MS and XRD
Yıl 2023,
Cilt: 5 Sayı: 3, 158 - 166, 27.12.2023
Samed Şatır
,
Selmi Yılmaz
Öz
Aim: The aim of this study was to evaluate the effect of electromagnetic effects of magnetic resonance imaging (MRI) on the release of mercury (Hg) and on the possible amalgam phase change in amalgam with 14.1T MRI.
Material and methods: 60 amalgam discs with 4 mm diameter and 4 mm height were prepared. 30 were selected as the control and 30 as MRI group. They were placed in the Fusayama-Meyer solution. MRI group were exposed to 14.1T ultra-high-field magnetic resonance imaging (UHF-MRI) system (EPFL, Lausanne, Switzerland). 2, 12 and 24 hours after MRI, all discs were removed from the solutions. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis was performed to the solutions. X-ray diffractometry (XRD) was performed to amalgam discs. Differences and interactions between groups were evaluated by two-way ANOVA.
Results: The concentration of Hg released from the amalgams to the solution in the MRI group was significantly higher than the control group (p=0,026; F=5,253). The peak intensity of the amalgam in the MRI group obtained by XRD was significantly lower than the control group (p = 0.000).
Conclusion: UHF-MRI increases the release of Hg in the amalgam due to the strength of the magnetic field and appears to have a debilitating effect on the crystal structure of the amalgam within the period of exposure to the magnetic field.
Destekleyen Kurum
AKDENİZ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNATÖRLÜĞÜ
Proje Numarası
TDH-2018-3157
Teşekkür
Thanks to Deniz Ozel Erkan for the support of professional statistical analysis. Thanks to Ting Yin and Ozlem Ipek for their support in the UHF-MRI application.
Kaynakça
- 1. Klatkiewicz T, Gawriołek K, Pobudek Radzikowska M, Czajka-Jakubowska A. Ultrasonography in the diagno-sis of temporomandibular disorders: a meta-analysis. Med Sci Monit. 2018; 24: 812-7.
- 2. Grossmann E, Poluha RL, Iwaki LCV, Santana RG, Fil-ho LI. Predictors of arthrocentesis outcome on joint effusion in patients with disk displacement without reduction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 125: 382-8.
- 3. Apajalahti S, Kelppe J, Kontio R, Hagström J. Imaging characteristics of ameloblastomas and diagnostic va-lue of computed tomography and magnetic resonance imaging in a series of 26 patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015; 120: e118-30.
- 4. Westbrook C, Kaut C (1998) MRI in Practice, 2nd Edn, Blackwell Publishing Company, Oxford, UK.
- 5. Moser E. Ultra-high-field magnetic resonance: why and when? World J Radiol. 2010; 2: 37-40.
- 6. Risher JF. Elemental mercury and ınorganic mercury compounds: human health aspects. World Health Or-ganization, 2003.
- 7. Skare I. Mass balance and systemic uptake of mer-cury released from dental amalgam fillings. Water Air Soil Pollut. 1995; 80: 59-67.
- 8. Counter SA, Buchanan LH. Mercury exposure in child-ren: a review. Toxicol Appl Pharmacol. 2004; 198: 209–30.
- 9. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury – current exposures and clinical manifesta-tions. N Engl J Med. 2003; 349: 1731–7.
- 10. Patini R, Spagnuolo G, Guglielmi F, Staderini E, Sime-one M, Camodeca A, Gallenzi P. Clinical effects of mercury in conservative dentistry: a systematic re-view, meta-analysis, and trial sequential analysis of randomized controlled trials. Int J Dent. 2020: 8857238.
- 11. Müller-Miny H, Erber D, Möller H, Müller-Miny B, Bongartz G. Is there a hazard to health by mercury exposure from amalgam due to MRI? J Magn Reson Imaging. 1996; 6: 258-60.
- 12. Ahn HJ, Song KB, Lee YE, Lee JT, Cho SA, Kim KH. Sur-face change of dental amalgam after treatment with 10% carbamide peroxide. Dent Mater J. 2006; 25: 303-8.
- 13. Gurgan S, Kiremitci A, Yalcin F, Alpaslan T, Yazici E. Effect of carbamide peroxide treatments on the metal-ion release and microstructure of different dental amalgams. Oper Dent. 2007; 32: 476-81.
- 14. Shabani MB, Shiina Y, Kirscht FG, Shimanuki Y. Re-cent advanced applications of AAS and ICP-MS in the semiconductor industry. Mater Sci Eng. 2003; 102: 238-46.
- 15. Zhang ZW, Shimbo S, Ochi N Eguchi M, Watanabe T, Moon CS, Ikeda M. Determination of lead and cad-mium in food and blood by inductively coupled plasma mass spectrometry: a comparison with grap-hite furnace atomic absorption spectrometry. Sci To-tal Environ. 1997; 205: 179-87.
- 16. Mostafa D, Aboushelib M. Bioactive-hybrid-zirconia implant surface for enhancing osseointegration: an in vivo study. Int J Implant Dent. 2018; 4: 20.
- 17. Talik E, Babiarz-Zdyb R, Dziedzic A. Chemical cha-racterization of selected high copper dental amal-gams using XPS and XRD techniques. J Alloys Compd. 2005; 398: 276-82.
- 18. T. Alkurt M, Sadik E, Peker I, Cakmak M. Effect of magnetic resonance applications on dental amalgam phase changes. Curr Med Imaging Rev. 2016; 12: 59-66.
- 19. https://www.fda.gov/news-events/press-announcements/fda-clears-first-7t-magnetic-resonance-imaging-device.
- 20. Yilmaz S, Adisen MZ. Ex vivo mercury release from dental amalgam after 7.0-T and 1.5-T MRI. Radiology. 2018; 288:799-803.
- 21. Noureddine Y, Bitz AK, Ladd ME Thürling M, Ladd SC, Schaefers G, Kraff O. Experience with magnetic reso-nance imaging of human subjects with passive imp-lants and tattoos at 7 T: a retrospective study. MAG-MA. 2015; 28: 577-90.
- 22. Beau A, Bossard D, Gebeile-Chauty S. Magnetic reso-nance imaging artefacts and fixed orthodontic at-tachments. Orthod Fr. 2017; 88: 131-8.
- 23. Oriso K, Kobayashi T, Sasaki M, Uwano I, Kihara H, Kondo H. Impact of the static and radiofrequency magnetic fields produced by a 7T MR ımager on me-tallic dental materials. Magn Reson Med Sci. 2016; 15: 26-33.
- 24. Al-Salehi SK, Hatton PV, Miller CA, Mcleod C, Joiner A. The effect of carbamide peroxide treatment on metal ion release from dental amalgam. Dent Mater. 2006; 22: 948-53.
- 25. Al-Salehi SK, Hatton PV, McLeod CW, Cox AG. The ef-fect of hydrogen peroxide concentration on metal ion release from dental amalgam. J Dent. 2007; 35: 172-6.
- 26. Al-Salehi SK. Effects of bleaching on mercury ion re-lease from dental amalgam. J Dent Res. 2009; 88: 239-43.
- 27. Kursun S, Öztas B, Atas H, Tastekin M. Effects of X-rays and magnetic resonance imaging on mercury re-lease from dental amalgam into artificial saliva. Oral Radiol. 2014; 30: 142.
- 28. Toledano M, Aguilera FS, Osorio E, Cabello I, Toleda-no-Osorio M, Osorio R. Mechanical and chemical characterisation of demineralised human dentine af-ter amalgam restorations. J Mech Behav Biomed Ma-ter. 2015; 47: 65-76.
- 29. Park JE, Jang YS, Bae TS, Lee MH. Biocompatibility characteristics of titanium coated with multi walled carbon nanotubes-hydroxyapatite nanocomposites. Materials (Basel). 2019; 12: 224.
- 30. Lee HS, Singh JK, Ismail MA, Bhattacharya C, Seikh AH, Alharthi N, Hussain RR. Corrosion mechanism and kinetics of Al-Zn coating deposited by arc thermal spraying process in saline solution at prolong expo-sure periods. Sci Rep. 2019; 9: 3399.
14.1T MRG'nin Cıva ve Amalgama Etkisi: ICP-MS ve XRD Çalışması
Yıl 2023,
Cilt: 5 Sayı: 3, 158 - 166, 27.12.2023
Samed Şatır
,
Selmi Yılmaz
Öz
Amaç: Bu çalışmanın amacı, Manyetik Rezonans Görüntülemenin (MRG) elektromanyetik etkilerinin cıva (Hg) salınımı ve olası amalgam faz değişimi üzerindeki etkisini 14.1T MRG ile değerlendirmektir.
Gereç ve Yöntemler: 4 mm çapında ve 4 mm yüksekliğinde 60 adet amalgam disk hazırlandı. 30'u kontrol ve 30'u MRG grubu olarak seçildi. Diskler Fusayama-Meyer solüsyonuna yerleştirildi. MRG grubu 14.1T Ultra Yüksek Alanlı Manyetik Rezonans Görüntüleme (UYA-MRG) sistemine (EPFL, Lozan, İsviçre) maruz bırakıldı. MRG'den 2, 12 ve 24 saat sonra tüm diskler solüsyonlardan çıkarıldı. Solüsyonlara İndüktif eşleşmiş plazma-kütle spektroskopisi (ICP-MS) analizi yapıldı. Amalgam disklere X-ışını difraktometresi (XRD) uygulandı. Gruplar arasındaki farklılıklar ve etkileşimler çift yönlü ANOVA ile değerlendirildi.
Bulgular: MRG grubunda amalgamlardan solüsyona salınan Hg konsantrasyonu kontrol grubuna göre anlamlı derecede yüksekti (p=0,026; F=5,253). XRD ile elde edilen MRG grubundaki amalgamın pik seviyesi kontrol grubuna göre anlamlı derecede düşüktü (p=0.000).
Sonuç: UYA-MRG, manyetik alanın gücünden dolayı amalgamdaki Hg salınımını arttırmaktadır ve manyetik alana maruz kalma süresi içinde amalgamın kristal yapısı üzerinde zayıflatıcı bir etkiye sahip olduğu görülmektedir.
Proje Numarası
TDH-2018-3157
Kaynakça
- 1. Klatkiewicz T, Gawriołek K, Pobudek Radzikowska M, Czajka-Jakubowska A. Ultrasonography in the diagno-sis of temporomandibular disorders: a meta-analysis. Med Sci Monit. 2018; 24: 812-7.
- 2. Grossmann E, Poluha RL, Iwaki LCV, Santana RG, Fil-ho LI. Predictors of arthrocentesis outcome on joint effusion in patients with disk displacement without reduction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 125: 382-8.
- 3. Apajalahti S, Kelppe J, Kontio R, Hagström J. Imaging characteristics of ameloblastomas and diagnostic va-lue of computed tomography and magnetic resonance imaging in a series of 26 patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015; 120: e118-30.
- 4. Westbrook C, Kaut C (1998) MRI in Practice, 2nd Edn, Blackwell Publishing Company, Oxford, UK.
- 5. Moser E. Ultra-high-field magnetic resonance: why and when? World J Radiol. 2010; 2: 37-40.
- 6. Risher JF. Elemental mercury and ınorganic mercury compounds: human health aspects. World Health Or-ganization, 2003.
- 7. Skare I. Mass balance and systemic uptake of mer-cury released from dental amalgam fillings. Water Air Soil Pollut. 1995; 80: 59-67.
- 8. Counter SA, Buchanan LH. Mercury exposure in child-ren: a review. Toxicol Appl Pharmacol. 2004; 198: 209–30.
- 9. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury – current exposures and clinical manifesta-tions. N Engl J Med. 2003; 349: 1731–7.
- 10. Patini R, Spagnuolo G, Guglielmi F, Staderini E, Sime-one M, Camodeca A, Gallenzi P. Clinical effects of mercury in conservative dentistry: a systematic re-view, meta-analysis, and trial sequential analysis of randomized controlled trials. Int J Dent. 2020: 8857238.
- 11. Müller-Miny H, Erber D, Möller H, Müller-Miny B, Bongartz G. Is there a hazard to health by mercury exposure from amalgam due to MRI? J Magn Reson Imaging. 1996; 6: 258-60.
- 12. Ahn HJ, Song KB, Lee YE, Lee JT, Cho SA, Kim KH. Sur-face change of dental amalgam after treatment with 10% carbamide peroxide. Dent Mater J. 2006; 25: 303-8.
- 13. Gurgan S, Kiremitci A, Yalcin F, Alpaslan T, Yazici E. Effect of carbamide peroxide treatments on the metal-ion release and microstructure of different dental amalgams. Oper Dent. 2007; 32: 476-81.
- 14. Shabani MB, Shiina Y, Kirscht FG, Shimanuki Y. Re-cent advanced applications of AAS and ICP-MS in the semiconductor industry. Mater Sci Eng. 2003; 102: 238-46.
- 15. Zhang ZW, Shimbo S, Ochi N Eguchi M, Watanabe T, Moon CS, Ikeda M. Determination of lead and cad-mium in food and blood by inductively coupled plasma mass spectrometry: a comparison with grap-hite furnace atomic absorption spectrometry. Sci To-tal Environ. 1997; 205: 179-87.
- 16. Mostafa D, Aboushelib M. Bioactive-hybrid-zirconia implant surface for enhancing osseointegration: an in vivo study. Int J Implant Dent. 2018; 4: 20.
- 17. Talik E, Babiarz-Zdyb R, Dziedzic A. Chemical cha-racterization of selected high copper dental amal-gams using XPS and XRD techniques. J Alloys Compd. 2005; 398: 276-82.
- 18. T. Alkurt M, Sadik E, Peker I, Cakmak M. Effect of magnetic resonance applications on dental amalgam phase changes. Curr Med Imaging Rev. 2016; 12: 59-66.
- 19. https://www.fda.gov/news-events/press-announcements/fda-clears-first-7t-magnetic-resonance-imaging-device.
- 20. Yilmaz S, Adisen MZ. Ex vivo mercury release from dental amalgam after 7.0-T and 1.5-T MRI. Radiology. 2018; 288:799-803.
- 21. Noureddine Y, Bitz AK, Ladd ME Thürling M, Ladd SC, Schaefers G, Kraff O. Experience with magnetic reso-nance imaging of human subjects with passive imp-lants and tattoos at 7 T: a retrospective study. MAG-MA. 2015; 28: 577-90.
- 22. Beau A, Bossard D, Gebeile-Chauty S. Magnetic reso-nance imaging artefacts and fixed orthodontic at-tachments. Orthod Fr. 2017; 88: 131-8.
- 23. Oriso K, Kobayashi T, Sasaki M, Uwano I, Kihara H, Kondo H. Impact of the static and radiofrequency magnetic fields produced by a 7T MR ımager on me-tallic dental materials. Magn Reson Med Sci. 2016; 15: 26-33.
- 24. Al-Salehi SK, Hatton PV, Miller CA, Mcleod C, Joiner A. The effect of carbamide peroxide treatment on metal ion release from dental amalgam. Dent Mater. 2006; 22: 948-53.
- 25. Al-Salehi SK, Hatton PV, McLeod CW, Cox AG. The ef-fect of hydrogen peroxide concentration on metal ion release from dental amalgam. J Dent. 2007; 35: 172-6.
- 26. Al-Salehi SK. Effects of bleaching on mercury ion re-lease from dental amalgam. J Dent Res. 2009; 88: 239-43.
- 27. Kursun S, Öztas B, Atas H, Tastekin M. Effects of X-rays and magnetic resonance imaging on mercury re-lease from dental amalgam into artificial saliva. Oral Radiol. 2014; 30: 142.
- 28. Toledano M, Aguilera FS, Osorio E, Cabello I, Toleda-no-Osorio M, Osorio R. Mechanical and chemical characterisation of demineralised human dentine af-ter amalgam restorations. J Mech Behav Biomed Ma-ter. 2015; 47: 65-76.
- 29. Park JE, Jang YS, Bae TS, Lee MH. Biocompatibility characteristics of titanium coated with multi walled carbon nanotubes-hydroxyapatite nanocomposites. Materials (Basel). 2019; 12: 224.
- 30. Lee HS, Singh JK, Ismail MA, Bhattacharya C, Seikh AH, Alharthi N, Hussain RR. Corrosion mechanism and kinetics of Al-Zn coating deposited by arc thermal spraying process in saline solution at prolong expo-sure periods. Sci Rep. 2019; 9: 3399.