Sistematik Derlemeler ve Meta Analiz
BibTex RIS Kaynak Göster

Eğitimde Yapay Zekâ: Türkiye Kaynaklı Araştırmaların Eğilimleri Üzerine Bir İçerik Analizi

Yıl 2023, Cilt: 5 Sayı: Özel Sayı, 387 - 411, 29.10.2023

Öz

Yapay zekâ (YZ) eğitim alanında hem öğretmenlere hem de öğrencilere yeni yollar sunma konusunda destek olmaktadır. Olumlu ve olumsuz yönleri güncel olarak tartışılmakla birlikte, eğitimde etkileri ve uygulamaları ile ilgili araştırmaları özetleyen çalışmalar henüz oldukça kısıtlıdır. Bu çalışmada Türkiye’de gerçekleştirilen eğitimde yapay zekâ (EYZ) ile ilgili araştırma makaleleri ve lisansüstü tezlerin eğilimi araştırılarak, hızlı gelişen bu alanın eğitimsel çıktıları sunulmuştur. Verilere PRISMA prensiplerine göre sistematik derlemeye dayalı tarama sonucunda ulaşılmıştır. Verilerin analizinde betimsel içerik analizi kullanılmıştır. ULAKBİM TR Dizin ve YÖK Ulusal Tez Merkezi veri tabanları kullanılarak YZ ile ilgili toplamda 1146 kaynaktan belirlenen kriterlere göre seçilen 39 makale ve tez çalışmaya dâhil edilmiştir. Ulaşılan kaynakların yayın yılları, araştırma yöntemleri, çalışma grubu, öğrenme alanları ve YZ’nin rolüne göre analiz gerçekleştirilmiştir. Belirlenen kriterlere göre çalışmaların 2004-2023 yılları arasında ve yarısından fazlasının son beş yılda gerçekleştirildiği görülmektedir. Araştırma yöntemlerinden en çok nicel ve nitel yaklaşımın benimsendiği, lisans öğrencileri ve öğretmen adayları ile gerçekleştirilen çalışmaların ağırlıkta olduğu, tüm öğrenim alanlarına odaklanıldığı sonucuna ulaşılmıştır. Ayrıca YZ çalışmalarda eğitim süreci, eğitim ortamı/içeriği, öğrenci ve YZ sisteminin denenmesine yönelik rollerde kullanılmıştır. Son 20 yılda Türkiye’de gerçekleştirilen EYZ çalışmalarına dair sonuçlar tartışılmıştır.

Kaynakça

  • Akdeniz, M., & Özdinç, F. (2021). Eğitimde yapay zekâ konusunda Türkiye adresli çalışmaların incelenmesi. YYÜ Eğitim Fakültesi Dergisi, 18(1), 912-932. https://doi.org/10.33711/yyuefd.938734
  • Alam, A. (2021, 26-27 November). Possibilities and apprehensions in the landscape of artificial intelligence in education [Conference presentation]. International Conference on Computational Intelligence and Computing Applications (ICCICA), Nagpur, India. https://doi.org/10.1109/ICCICA52458.2021.9697272
  • Bahadır, E. (2016). Using neural network and logistic regression analysis to predict prospective mathematics teachers’ academic success upon entering graduate education. Kuram ve Uygulamada Eğitim Bilimleri, 16(3), 943–964. https://doi.org/10.12738/estp.2016.3.0214.
  • Baker, T., & Smith, L. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta. Retrieved from https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf
  • Birer, G. C. (2023). ChatGPT. TÜBİTAK Bilim ve Teknik Dergisi, 56(662), 36-37.
  • Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial intelligence trends in education: A narrative overview. Procedia Computer Science, 136, 16-24.
  • Chen, L., Chen, P., & Lin, A. Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264- 75278. https://doi.org/10.1109/ACCESS.2020.2988510
  • Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2022.100118
  • Chiu, T. K. F. (2021). A holistic approach to Artificial Intelligence (AI) curriculum for K-12 schools. TechTrends, 65, 796–807. https://doi.org/10.1007/s11528-021-00637-1
  • Cohen, L., Manion, L. & Morrison, K. (2007). Research methods in education. (6th Ed.). Routledge.
  • Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32, 444–452. https://doi.org/10.1007/s10956-023-10039-y
  • Çalık, M. & Sözbilir, M. (2014). Parameters of content analysis. Education and Science, 39(174), 33-38. http://dx.doi.org/10.15390/EB.2014.3412
  • Gonz´alez-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied Sciences, 11(12), 5467. https://doi.org/10.3390/app11125467
  • Gough, D., Oliver, S., & Thomas, J. (2017). An introduction to systematic reviews, (2nd ed.). SAGE.
  • Güzey, C., Çakır, O., Athar, M. H., Yurdaöz, E., & Saad, S. (2023). Eğitimde yapay zekâ konusunda yapılmış çalışmaların içerik analizi. Bilgi ve İletişim Teknolojileri Dergisi, 5(1), 66-77. https://doi.org/10.53694/bited.1060730
  • Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1. https://doi.org/10.1016/j.caeai.2020.100001.
  • Karaca, O., Çalışkan, S. A., & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS) - development, validity and reliability study. BMC Medical Education, 21(1). https://doi.org/10.1186/s12909-021-02546-6
  • Liu, S., Guo, D., Sun, J., Yu, J., & Zhou, D. (2020). MapOnLearn: The use of maps in online learning systems for education sustainability. Sustainability, 12(17), 7018. https://doi.org/10.3390/su12177018
  • Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed-an argument for AI in education. Pearson. Retrieved from http://discovery.ucl.ac.uk/1475756/
  • Meço, G., & Coştu, F. (2022). Eğitimde yapay zekânın kullanılması: Betimsel içerik analizi çalışması. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 12(23), 171-193. Retrieved from https://dergipark.org.tr/tr/pub/sbed/issue/70445/1092727
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097.t001
  • Ouyang, F., Zheng, L., & Jiao, P. (2022). Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Education and Information Technologies, 27, 7893–7925. https://doi.org/10.1007/s10639-022-10925-9
  • Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, https://doi.org/10.1016/j.caeai.2021.100020
  • Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26, 582–599, https://doi.org/10.1007/s40593-016-0110-3
  • Talan, T. & Kalınkara, Y. (2023). The role of artificial intelligence in higher education: ChatGPT assessment for anatomy course. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi, 7(1), 33-40. https://doi.org/10.33461/uybisbbd.1244777
  • Tang, K. Y., Chang, C. Y., & Hwang, G. J. (2023) Trends in artificial intelligence-supported e-learning: a systematic review and co-citation network analysis (1998–2019). Interactive Learning Environments, 31(4), 2134-2152, https://doi.org/10.1080/10494820.2021.1875001
  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(39), https://doi.org/10.1186/s41239-019-0171-0
  • Zeide, E. (2019). Artificial intelligence in higher education: Applications, promise and perils, and ethical questions. EDUCAUSE Review, 54(3), 31–39. Retrieved from https://er.educause.edu/-/media/files/articles/2019/8/er193104.pdf

Artificial Intelligence in Education: A Content Analysis on Trends in Research from Türkiye

Yıl 2023, Cilt: 5 Sayı: Özel Sayı, 387 - 411, 29.10.2023

Öz

Artificial intelligence (AI) assists both teachers and students in offering new ways in the educational researches. Although its positive and negative aspects are currently being discussed, studies reviewing research on its effects and implementations in education are still very limited. In this study, research articles and postgraduate theses on AI in education in Turkey were investigated and the educational outcomes of this rapidly developing field were presented. The data were obtained as a result of the systematic review according to the principles of PRISMA. Descriptive content analysis was used to analyze the data. Using the ULAKBİM TR Index and Council of Higher Education (CHE) National Thesis Center databases, 39 articles and theses related to AI were selected from 1146 sources in total. The analysis was carried out according to the publication years, research methods, study group, learning domain and the role of AI in the studies. According to the determined criteria, the studies were carried out between 2004-2023 and more than half of them were carried out in the last five years. The most quantitative and qualitative research methods was used, the studies carried out with undergraduate students and pre-service teachers were predominant, the focus was on all learning domains. In addition, AI has been used in the roles in educational process, educational environment/content, student and testing the AI system in studies. The results of the AI studies in the education held in Türkiye in the last 20 years have been discussed.

Kaynakça

  • Akdeniz, M., & Özdinç, F. (2021). Eğitimde yapay zekâ konusunda Türkiye adresli çalışmaların incelenmesi. YYÜ Eğitim Fakültesi Dergisi, 18(1), 912-932. https://doi.org/10.33711/yyuefd.938734
  • Alam, A. (2021, 26-27 November). Possibilities and apprehensions in the landscape of artificial intelligence in education [Conference presentation]. International Conference on Computational Intelligence and Computing Applications (ICCICA), Nagpur, India. https://doi.org/10.1109/ICCICA52458.2021.9697272
  • Bahadır, E. (2016). Using neural network and logistic regression analysis to predict prospective mathematics teachers’ academic success upon entering graduate education. Kuram ve Uygulamada Eğitim Bilimleri, 16(3), 943–964. https://doi.org/10.12738/estp.2016.3.0214.
  • Baker, T., & Smith, L. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta. Retrieved from https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf
  • Birer, G. C. (2023). ChatGPT. TÜBİTAK Bilim ve Teknik Dergisi, 56(662), 36-37.
  • Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial intelligence trends in education: A narrative overview. Procedia Computer Science, 136, 16-24.
  • Chen, L., Chen, P., & Lin, A. Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264- 75278. https://doi.org/10.1109/ACCESS.2020.2988510
  • Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2022.100118
  • Chiu, T. K. F. (2021). A holistic approach to Artificial Intelligence (AI) curriculum for K-12 schools. TechTrends, 65, 796–807. https://doi.org/10.1007/s11528-021-00637-1
  • Cohen, L., Manion, L. & Morrison, K. (2007). Research methods in education. (6th Ed.). Routledge.
  • Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32, 444–452. https://doi.org/10.1007/s10956-023-10039-y
  • Çalık, M. & Sözbilir, M. (2014). Parameters of content analysis. Education and Science, 39(174), 33-38. http://dx.doi.org/10.15390/EB.2014.3412
  • Gonz´alez-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied Sciences, 11(12), 5467. https://doi.org/10.3390/app11125467
  • Gough, D., Oliver, S., & Thomas, J. (2017). An introduction to systematic reviews, (2nd ed.). SAGE.
  • Güzey, C., Çakır, O., Athar, M. H., Yurdaöz, E., & Saad, S. (2023). Eğitimde yapay zekâ konusunda yapılmış çalışmaların içerik analizi. Bilgi ve İletişim Teknolojileri Dergisi, 5(1), 66-77. https://doi.org/10.53694/bited.1060730
  • Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1. https://doi.org/10.1016/j.caeai.2020.100001.
  • Karaca, O., Çalışkan, S. A., & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS) - development, validity and reliability study. BMC Medical Education, 21(1). https://doi.org/10.1186/s12909-021-02546-6
  • Liu, S., Guo, D., Sun, J., Yu, J., & Zhou, D. (2020). MapOnLearn: The use of maps in online learning systems for education sustainability. Sustainability, 12(17), 7018. https://doi.org/10.3390/su12177018
  • Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed-an argument for AI in education. Pearson. Retrieved from http://discovery.ucl.ac.uk/1475756/
  • Meço, G., & Coştu, F. (2022). Eğitimde yapay zekânın kullanılması: Betimsel içerik analizi çalışması. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 12(23), 171-193. Retrieved from https://dergipark.org.tr/tr/pub/sbed/issue/70445/1092727
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097.t001
  • Ouyang, F., Zheng, L., & Jiao, P. (2022). Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Education and Information Technologies, 27, 7893–7925. https://doi.org/10.1007/s10639-022-10925-9
  • Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, https://doi.org/10.1016/j.caeai.2021.100020
  • Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26, 582–599, https://doi.org/10.1007/s40593-016-0110-3
  • Talan, T. & Kalınkara, Y. (2023). The role of artificial intelligence in higher education: ChatGPT assessment for anatomy course. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi, 7(1), 33-40. https://doi.org/10.33461/uybisbbd.1244777
  • Tang, K. Y., Chang, C. Y., & Hwang, G. J. (2023) Trends in artificial intelligence-supported e-learning: a systematic review and co-citation network analysis (1998–2019). Interactive Learning Environments, 31(4), 2134-2152, https://doi.org/10.1080/10494820.2021.1875001
  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(39), https://doi.org/10.1186/s41239-019-0171-0
  • Zeide, E. (2019). Artificial intelligence in higher education: Applications, promise and perils, and ethical questions. EDUCAUSE Review, 54(3), 31–39. Retrieved from https://er.educause.edu/-/media/files/articles/2019/8/er193104.pdf
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilim, Teknoloji ve Mühendislik Eğitimi ve Programlarının Geliştirilmesi
Bölüm Makaleler
Yazarlar

Nurcan Tekin 0000-0002-2848-9739

Erken Görünüm Tarihi 27 Ekim 2023
Yayımlanma Tarihi 29 Ekim 2023
Gönderilme Tarihi 30 Ağustos 2023
Kabul Tarihi 13 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: Özel Sayı

Kaynak Göster

APA Tekin, N. (2023). Eğitimde Yapay Zekâ: Türkiye Kaynaklı Araştırmaların Eğilimleri Üzerine Bir İçerik Analizi. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 5(Özel Sayı), 387-411.