Derleme
BibTex RIS Kaynak Göster

Effects of Grinding and Magnetic Abrasive Finishing Methods on Removal of Surface Roughness

Yıl 2023, , 111 - 134, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.13

Öz

Magnetic abrasive machining (MAF) is a specialized machining technique used to reduce surface roughness and polish the surface of metal. It can be effectively used for machining parts with precision and complex geometries. While the traditional grinding method is used for polishing the metal surface after milling and turning operations, the MAF method has been tried in the last 10 years. In the MAF method, abrasive grains are magnetically excited by magnets in a carrier apparatus and brought close to the surface of the material to be machined. Under the influence of the magnetic field, the abrasive grains affect the surface of the material and help to obtain the desired shape, smoothness and gloss. The effects of MAF and grinding methods, which have not been compared in the literature so far, on the surface roughness values of the workpiece were investigated. In the MAF method, the abrasive powders become flexible brushes with the help of magnetic field, while in the grinding method, the abrasive powders are held together with adhesive on the abrasive wheel and do not have flexibility. While Ra: 0.473 µm for Inconel718 nickel alloy before surface polishing with grinding method, Ra: 0.153 µm for Ti-6Al-4V alloy before MAF method. When the surface treatment methods are evaluated within themselves, Ra: 0.153 µm in Inconel718. In Ti-6Al-4V, Ra decreased to 0.117 µm. It was seen that the MAF method would be an alternative method. This method will facilitate the machining of complex and precise workpieces. Mathematical modeling of the cutting force used for the two methods was investigated. The idea on which the study was based was found to be consistent with the literature findings.

Kaynakça

  • Talaş Kaldırma Yöntemlerinin Sınıflandırılması, (Erişim: 11 Nisan 2023); https://docplayer.biz.tr/4688114-Talasli-imalat-talas-kaldirma-yontemlerinin-siniflandirilmasi-1-geleneksek-talasli-imalat-1a-tornalama-ve-iliskili-operasyonlar.html
  • M. P. Groover, 21. Chapter; Theory of Metal Machining, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 7th ed., New Jersey, USA: John Wiley & Sons, (2020), 485-500. ISBN: 978-0470-467002. (Date of Access: 24 June 2023); https://www.fcusd.org/cms/lib/CA01001934/Centricity/Domain/4529/Fundamentals%20of%20Modern%20Manufacturing%20Materials%20%20Processes%20and%20Systems%20%204th%20Edition.pdf
  • Talaşlı İmalat, (Erişim: 11 Nisan 2023); http://web.hitit.edu.tr/dosyalar/materyaller/eminerdin@hititedutr110520185B2N4W5Y.pdf
  • V. K. Jain, V. Sidpara, M.R. Sankar, M. Das, Nano-Finishing Techniques: A Review, Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 226(1) (2011), 327-346. Doi: 10.1177/0954406211426948
  • H. Demir, A. Güllü, U. Şeker, Düzlem Taşlama İşleminde Taşlama Kuvvetlerinin Ölçülmesi için Bir Dinamometre Tasarımı ve İmalatı, Teknoloji, 9(2) (2006), 111-118. Doi: 10.12739/NWSA.2017.12.4.2A0127
  • R. Rekha, S. Vinoth Kumar, V. Aravinth Raj, B. Aswin Baboo, P. Gokul Raj, A. Jai Vignesh, Optimization of Cylindrical Grinding Process Parameters on Austenitic Stainless Steel 304 Using Taguchi Based Grey Relational Analysis, Materials Today: Proceedings, 72(4) (2023), 2569-2573, Doi: 10.1016/j.matpr.2022.10.120
  • S. Jha, V. K. Jain, 8. Chapter; Nano-Finishing Techniques, Micro-manufacturing and Nanotechnology, Springer Publishing, Berlin, Heidelberg, (2006), 171-195. (Date of Access: 24 June 2023); https://link.springer.com/chapter/10.1007/3-540-29339-6_8
  • H. K. Tonshoff, B. Karpuschewski, T. Mandrysch, Grinding Process Achievements and Their Consequences on Machine Tools Chalenges and Opportunities, Annals of CIRP, 47(2) (1998), 651-668. Doi: 10.1016/S0007-8506(07)63247-8
  • H. Ding, J. Yang, W. Wang, J. Guo, Q. Liu, Characterization and Formation Mechanisms of Rail Chips from Facing Grinding by Abrasive Wheel, Journal of Manufacturing Processes, 73(1) (2022), 544-554. Doi: 10.1016/j.jmapro.2021.11.032
  • V. Gopan, K. L. D. Wins, A. Surendran, Integrated ANN-GA Approach for Predictive Modeling and Optimization of Grinding Parameters with Surface Roughness as the Response, Materials Today: Proceedings, 5(5) (2018), 12133-12141. Doi: 10.1016/j.matpr.2018.02.191
  • O. Adıyaman, F. Sönmez, Yeni Tip Taşlama Yönteminde Taşlama Parametrelerinin Deneysel Tasarım Yöntemi ile Yüzey Pürüzlülüğü Üzerine Etkisinin İncelenmesi, BEÜ Fen Bilimleri Dergisi, 9(1) (2020), 215-225. Doi: 10.17798/bitlisfen.544248
  • O. Adıyaman, Geliştirilen İkincil Dönel Eksenli Taşlama Mekanizması ile Düzlem Yüzey Taşlama İşleminde Kesme Parametrelerinin Araştırılması, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Elazığ, Türkiye, 2015.
  • J. Zhang, J. Liu, S. Yang, C. Ju, J. Li, Z. Qiao, A Model for Material Removal of Robot-Assisted Blade Polishing Using Abrasive Cloth Wheel, The International Journal of Advanced Manufacturing Technology, 123(7-8) (2022), 1-13. Doi: 10.1007/s00170-022-10239-7
  • S. Cai, W. Liu, J. Song, K. Deng, Y. Tang, Research and Progress on Truing and Sharpening Process of Diamond Abrasive Grinding Tools, Applied Sciences, 12(9) (2022), 4683-4694. Doi: 10.3390/app12094683
  • L. Lv, Z. Deng, T. Liu, Z. Li, W. Liu, Intelligent Technology in Grinding Process Driven by Data: A Review, Journal of Manufacturing Processes, 58(17) (2020), 1039-1051. Doi: 10.1016/j.jmapro.2020.09.018
  • M. Zeyveli, A. Güldaş, Taşlama Operasyonları için Uzman Sistem Destekli Zımpara Taşı Seçimi, Teknoloji, 7(2) (2004), 241-249. (Erişim: 11 Nisan 2023); https://jestech.karabuk.edu.tr/arsiv/1302-0056/2004/Cilt%287%29/Sayi%282%29/241-249.pdf
  • Md Amir, R. Sharma, V. Mishra, S. Wazed Ali, G. S. Khan, Polishing Performance of Magnetic Nanocomposites Based Nanoabrasive, Materials Today Proceedings, 56(1) (2022), 549-554. Doi: 10.1016/j.matpr.2022.02.276
  • A. Wahab Hashmi, H. Singh Mali, et al., Understanding the Mechanism of Abrasive-Based Finishing Processes Using Mathematical Modeling and Numerical Simulation, Metals, 12(8) (2022), 3-65. Doi: 10.3390/met12081328
  • Fundamentals of Hard Turning, (Date of Access: 24 June 2023); http://cdn2.hubspot.net/hub/139128/file-17761415- pdf/docs/gos_wp_hardturning_f.pdf4
  • Taşlama İşlemleri, (Erişim: 11 Nisan 2023); https://tf.selcuk.edu.tr/dosyalar/files/033003/5_taslama_islemleri.pdf
  • Ö. Salman, Manyetik Aşındırıcılar ile Yüzey İşleme, Makine Teknolojileri Elektronik Dergisi, 11(1) (2014), 1-10. (Erişim: 11 Nisan 2023); https://docplayer.biz.tr/15702465-Manyetik-asindiricilar-ile-yuzey-isleme.html
  • V. K. Jain, Magnetic Field Assisted Abrasive Based Micro/Nano Finishing, Journal of Materials Processing Technology, 209(20) (2009), 6022-6038. Doi: 10.1016/j.jmatprotec.2009.08.015
  • H. Demir, Alüminyum Oksit Zımpara Taşlarıyla Silindirik Taşlamada Çeşitli Çelikler için Taşlama Oranlarının Belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Ankara, Türkiye, 1998.
  • M. J. Jackson, C. J. Davis, M. P. Hitchiner, B. Mills, High-Speed Grinding with CBN Grinding Wheels – Applications and Future Technology, Journal of Materials Processing Technology, 110(1) (2001), 78-88. Doi: 10.1016/S0924-0136(00)00869-4
  • L. Slătineanu, O. Dodun, G. Nagîț, M. Coteață, I. Beșliu, A Review on Magnetic Abrasive Machining, Romanian Association of Nonconventional Technologies Review, 21(2) (2017), 10-21. (Date of Access: 24 June 2023); http://www.revtn.ro/index.php/revtn/article/view/184
  • H. Demir, A. Güllü, Taşlamada Parametrelerin Etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 7(2) (2001), 189-198. (Erişim: 11 Nisan 2023); https://dergipark.org.tr/tr/pub/pajes/issue/20536/218801
  • H. Demir, A. Güllü, Taş Dokusunun Yüzey Pürüzlülüğü ve Taşlama Kuvvetlerine Etkilerinin İncelenmesi, Gazi Üniversitesi Mühendislik ve Mimimarlık Fakültesi Dergisi, 23(1) (2008), 77-83. (Erişim: 11 Nisan 2023); https://dergipark.org.tr/tr/download/article-file/75510
  • H. Demir, A. Güllü, İ. Çiftci, U. Şeker, An Investigation into the Influences of Grain Size and Grinding Parameters on Surface Roughness and Grinding Forces when Grinding, Strojniški vestnik - Journal of Mechanical Engineering, 56(7-8) (2010), 447-454. (Date of Access: 24 June 2023); https://www.sv-jme.eu/article/an-investigation-into-the-influences-of-grain-size-and-grinding-parameters-on-surface-roughness-and-grinding-forces-when-grinding/
  • X. Chen, W. Brian, Analysis and Similation of The Grinding Process, Part III: Comparasion With Experiment, International Journal of Machine Tools&Manufacture, Pergaman, 36(8) (1996b) 897-906. (Date of Access: 24 June 2023); https://researchonline.ljmu.ac.uk/id/eprint/7083/9/Analysis%20of%20grinding%20surface%20creation%20by%20single%20grit%20approach.pdf
  • H. Masoumi, S. M. Safavi, M. Salehi, Grinding Force, Specific Energy and Material Removal Mechanism in Grinding of HVOF-Sprayed WC–Co–Cr Coating, Materials and Manufacturing Processes, 29(3) (2014), 321-330. Doi:10.1080/10426914.2013.872261
  • E. Brinksmeier, J. C. Aurich, et al., Advances in Modeling and Simulation of Grinding Processes, CIRP Annals, 55(2) (2006), 667-696. Doi: 10.1016/j.cirp.2006.10.003
  • J. Kopac, P. Krajnik, High-Performance Grinding—A Review, Journal of Materials Processing Technology, 175(1–3) (2006), 278-284. Doi: 10.1016/j.jmatprotec.2005.04.010
  • Y. Li, Y. Liu, Y.Tian, Y. Wang, J. Wang, Application of Improved Fireworks Algorithm in Grinding Surface Roughness Online Monitoring, Journal of Manufacturing Processes, 74(1) (2022), 400-412. Doi: 10.1016/j.jmapro.2021.12.046
  • Ş. Baday, H. Başak, F. Sönmez, The Assessment of Cutting Force with Taguchi Design in Medium Carbon Steel–Applied Spheroidization Heat Treatment, Measurement and Control, 50(4) (2017), 89-96. Doi: 10.1177/0020294017713767
  • A. Kumar Singh, A. Kumar, V. Sharma, P. Kala, Sustainable Techniques in Grinding: State of The Art Review, Journal of Cleaner Production, 269(1) (2020), 121876-121892. Doi: 10.1016/j.jclepro.2020.121876
  • F. Hashimoto, H. Yamaguchi, P. Krajnik, K. Wegener, R. Chaudhari, H. W. Hoffmeister, F. Kuster, Abrasive Fine-Finishing Technology, CIRP Ann.-Manufacturing Technology, 65(2) (2016), 597-620. Doi: 10.1016/j.cirp.2016.06.003
  • M. Çelik, Manyetik Aşındırıcılarla İşleme Yönteminde İç Yüzeylerin İşlenebilirliğinin Araştırılması, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği İmalat Teknolojileri Anabilim Dalı, Elazığ, Türkiye, 2017.
  • Aşınma Çeşitleri, (Erişim: 11 Nisan 2023); https://insapedia.com/asinma-nedir-asinma-cesitleri-ve-etki-eden-faktorler/
  • B. Singh, C. Kalra Singh, Optimization of Magnetic Abrasive Finishing Parameters During Finishing of Brass Tube, International Research Journal of Enginerring and Technology (IRJET), 2(4) (2015), 1810-1817. Doi: 10.1007/978-81-322-1859-3_25
  • B. Girma, S. S. Joshi, M. V. G. S. Raghuram, An Experimental Analysis of Magnetic Abrasives Finishing of Plane Surfaces, Machining Science and Technology, 10(3) (2006), 323–340. Doi: 10.1080/10910340600902140
  • M. Sharma, D. P. Singh, To Study the Effect of Various Parameters on Magnetic Abrasive Finishing, International Journal of Research in Mechanical Engineering & Technology-IJRMET, 3(2) (2013), 212-215. (Date of Access: 24 June 2023); https://typeset.io/pdf/to-study-the-effect-of-various-parameters-on-magnetic-2fporjl33p.pdf
  • M. Çelik, Elektro-erozyon Yöntemiyle İşlenmiş Ti6Al4V Alaşımının Yüzey Kalitesinin Manyetik Aşındırıcılarla İşleme Yöntemiyle İyileştirilmesi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, İmalat Mühendisliği Anabilim Dalı, Ankara, 2021.
  • M. Fox, K. Agrawal, T. Shinmura, R. Komanduri, Magnetic Abrasive Machining of Rollers, Annals of the CIRP, 43(1) (1994), 181-184. Doi: 10.1016/S0007-8506(07)62191-X
  • X. Sun, Y. Zou, Development of Magnetic Abrasive Finishing Combined with Electrolytic Process for Finishing SUS304 Stainless Steel Plane, The International Journal of Advanced Manufacturing Technology, 92(1) (2017), 3373–3384. Doi:10.1007/s00170-017-0408-9
  • T. Mori, K. Hikota, Y. Kawashim, Clarification of Magnetic Abrasive Finishing Mechanism, Journal of Material Processing Technology, 143(20) (2003), 682-686. Doi:10.1016/S0924-0136(03)00410-2
  • H. Yamaguchi, T. Shinmura, M. Takenaga, Development of a New Precision Internal Machining Process Using an Alternating Magnetic Field, Precision Engineering, 27(1) (2003), 51-58. Doi:10.1016/S0141-6359(02)00177-0
  • Z. Song, Y. Zhao, G. Liu, Y. Gao, X. Zhang, C. Cao, D. Dai, Y. Deng, Surface Roughness Prediction and Process Parameter Optimization of Ti-6Al-4V by Magnetic Abrasive Finishing, The International Journal of Advanced Manufacturing Technology, 122(1) (2022), 219–233. Doi:10.1007/s00170-022-09354-2
  • İmalat İşlemleri, (Erişim: 11 Nisan 2023); https://www.fikriyat.com/akademik-haberler/2018/03/27/imalat-islemleri-ders-notlari
  • B. P. Kheelan, K. M. Patel, Magnetic Abrasive Finishing of AISI52100, International Journal of Trend in Research and Development, 1(1) (2014), 1-8. Doi: 10.1007/s00170-010-3102-8
  • T. Rasuljon, A. Sulaymanov, G. Madaminova, S.U Agzamov, Grinding of Materials: Main Characteristics, International Journal of Advance Scientific Research, 2(11) (2022), 25-34, Doi: 10.37547/ijasr-02-11-05
  • P. Gondi, G. Mattogno, A. Sili, G. Foderaro, Structural Characteristics at Surface and Barkhausen Noise in AISI 4340 Steel After Grinding, Nondestructive Testing and Evaluation, 10(1) (1993), 255-267. Doi: /10.1080/10589759308952800
  • Z.W. Zhong, V.C. Venkatesh, Recent Developments in Grinding of Advanced Materials, Int J Adv Manuf Technol, 41(1) (2009), 468–480 Doi:10.1007/s00170-008-1496-3
  • O. Adıyaman, V. Savaş, İkincil Dönel Eksenli ile Klasik Düzlem Yüzey Taşlama Mekanizmalarının Deneysel Araştırılması, Makine Teknolojileri Elektronik Dergisi, 11(4) (2014), 21-36. Doi: 10.29130/dubited.994072
  • T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, T. Matsuo, Study on Magnetic Abrasive Finishing, CIRP Annals, 39(1) (1990), 325-328. Doi: 10.1016/S0007-8506(07)61064-6
  • H. Dilipak, M. Gülesin, Torna Operasyonları için Uzman Sistem Tekniklerine Dayalı Kesici Seçimi, Mamkon'97, İ.T.Ü. Makine Fakültesi 1. Makina Mühendisliği Kongresi, İstanbul, Türkiye, 1997, 349-357.
  • H. Demir, Alüminyum Oksit Zımpara Taşlarıyla Silindirik Taşlamada Çeşitli Çelikler için Taşlama Oranlarının Belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Ankara, 1998.
  • Milli Eğitim Bakanlığı, Makine Teknolojisi, Temel Taşlama İşlemleri, 521MMI652 Ders modülü, (2012), 1-30. (Erişim: 11 Nisan 2023); http://www.megep.meb.gov.tr/mte_program_modul/moduller_pdf/Temel%20Ta%C5%9Flama%20%C4%B0%C5%9Flemleri.pdf
  • H. Demir, A. Güllü, Taşlamada Parametrelerin Etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 7(2) (2001), 189-198. (Erişim: 11 Nisan 2023); https://dergipark.org.tr/tr/pub/pajes/issue/20536/218801
  • M. C. Shaw, A Production Engineering Approach to Grinding Temperatures, Journal of Materials Processing Technology, Elsevier, 44(3-4) (1994), 59-169. Doi: 10.1016/0924-0136(94)90428-6
  • Anonim, 1977. TS 291. Taşlama Taşları, Türk Standartları, Ankara, (Erişim: 11 Nisan 2023); https://www.scribd.com/document/409306951/TS-291-14-ISO-603-11-2001-Ta%C5%9Flama-Ta%C5%9Flar%C4%B1-Boyutlar-Bolum-11
  • A. S. Khatri, Surface Topology and Forces in Grinding, MSC Thesis, Dalhousie University Master of Applied Science, Department of Mechanical Engineering, Canada, 2006. (Date of Access: 24 June 2023); https://www.collectionscanada.gc.ca/obj/thesescanada/vol2/002/MR27589.PDF?oclc_number=461541942
  • Y. Ma, Z. Liang, Z. Cai, R. Cai, Z. Su, Y. Du, T. Zhou, X. Wang, Grinding Damage in the Fabrication of Polycrystalline Cubic Boron Nitride Micro-drill, Journal of Manufacturing Processes, 101(1) (2023), 469-479. Doi: 10.1016/j.jmapro.2023.05.106
  • U. Köklü, Değişik Şekillerde Aralıklı (Kesikli) Yüzeylerin Taşlanmasında Oluşan Şekil Hatalarının Deneysel İncelenmesi, Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, İstanbul, Türkiye, 2009.
  • H. Deng, Z. Xu, Dressing Methods of Superabrasive Grinding Wheels: A Review, Journal of Manufacturing Processes, 45(2) (2019), 46-69. Doi: 10.1016/j.jmapro.2019.06.020
  • A. Azizi, S. M. Rezaei, A. Rahimi, Study on The Rotary Cup Dressing of CBN Grinding Wheel and The Grinding Performance, International Advance Manufacturing Technology, 47(9) (2010), 1053-1063. Doi: 10.1007/s00170-009-2227-0
  • B. Yastıkçı, Investigation of Tool Wear in Grinding Processes, Yüksek Lisans Tezi, Sabancı Üniversitesi Fen bilimleri Enstütüsü, Üretim Sistemleri Mühendisliği Anabilim Dalı, İstanbul, Türkiye, 2016.
  • Y. Tian, L. Li, B. Liu, J. Han, Z. Fan, Experimental Investigation on High-Shear and Low-Pressure Grinding Process for Inconel718 Super Alloy, The International Journal of Advanced Manufacturing Technology, 107(1) (2020), 3425–3435. Doi: 10.1007/s00170-020-05284-z
  • X. Zhu, W. Wang, R. Jiang, X. Liu, K. Lin, Performances of Ni3Al-based Intermetallic IC10 in Creep-feed Grinding, The International Journal of Advanced Manufacturing Technology, 108(5) (2020), 809–820, Doi:10.1007/s00170-020-05408-5
  • L. Singh, S. S. Khangura, P. S. Mishra, Performance of Abrasives Used in Magnetically Assisted Finishing: A State of The Art Review, Int. J Abras Technol., 3(3), (2010), 215–227. Doi: 10.1504/IJAT.2010.034052
  • S. Feygin, G. Kremen, L. Lgelstyn, Magnetic-Abrasive Powder and Method of Producing The Same, US Patent 5846270, 1998.
  • S. R. Mulik, P. M. Pandey, Ultrasonic Assisted Magnetic Abrasive Finishing of Hardened AISI 52100 Steel Using Unbonded SiC Abrasives, International Journal of Refractory Metals and Hard Materials, 29 (1), (2011), 68-77. Doi: 10.1016/j.ijrmhm.2010.08.002
  • T. Mori, K. Hirota, Y. Kawashima, Clarification of Magnetic Abrasive Finishing Mechanism, Journal of Materials Processing Technology, 143 (1), (2003), 682–686. Doi: 10.1016/S0924-0136(03)00410-2
  • S. Kovaliova, V. Sepelak, et al., Mechanosynthesis of Composites in Chemically Non-reacting and Exothermically Reacting Systems for Magnetic Abrasive Media, Journal of Materials Science, 53 (1), (2018), 13560–13572. Doi: 10.1007/s10853-018-2463-5
  • L. Heng, Y. J. Kim, S. D. Mun, Review of Superfinishing by The Magnetic Abrasive Finishing Process, High Speed Machining, 3 (1), (2017), 42-55. Doi:10.1515/hsm-2017-0004
  • L. Heng, G. E. Yang, R. Wang, M. S. Kim, S. D. Mun, Effect of Carbon Nano Tube (CNT) Particles in Magnetic Abrasive Finishing of Mg Alloy Bars, Journal of Mechanical Science and Technology, 29 (12), (2015), 5325–5333. Doi:10.1007/s12206-015-1134-6
  • T. T. Öpöz, X. Chen, Experimental Investigation of Material Removal Mechanism in Single Grit Grinding, International Journal of Machine Tools & Manufacture, 63 (1), (2012), 32-40. Doi: 10.1016/j.ijmachtools.2012.07.010
  • Kuvars Kumu, (Erişim: 11 Nisan 2023); https://www.kuvarskumu.com/kuvarstozu/#:~:text=Kuvars%20Tozu%2C%20Kuvarsca%20zengin%20magmatik,bir%C3%A7ok%20alanda%20%C3%B6nemli%20rol%20oynar
  • V. K. Jain, et al., Effect of Working Gap and Circumferential Speed on The Performance of Magnetic Abrasive Finishing Process, Wear, 250 (1-2), (2001), 384-390. Doi:10.1016/S0043-1648(01)00642-1
  • N. K. Alkarkhi, M. Naif, Study on The Parameter Optimization in Magnetic Abrasive Polishing for Brass CUZN33 Plate Using Taguchi Method, The Iraqi Journal for Mechanical and Materials Engineering, 12 (3), (2012), 596-615. (Date of Access: 24 June 2023); https://www.iasj.net/iasj/article/64598
  • Z. Q. Liu, Y. Chen, Y. J. Li, X. Zhang, Comprehensive Performance Evaluation of the Magnetic Abrasive Particles, Int J. Adv. Manuf Technol., 68 (1-4), (2013), 631–640. Doi:10.1007/s00170-013-4783-6
  • Z. Song, Y. Zhao, G. Liu, Y. Gao, X Zhang, C. Cao, D. Dai, Y. Deng, Surface Roughness Prediction and Process Parameter Optimization of Ti‑6Al‑4V by Magnetic Abrasive Finishing, The International Journal of Advanced Manufacturing Technology, 122 (1), (2022), 219–233, Doi:10.1007/s00170-022-09354-2
  • H. Demir, A. Güllü, U. Şeker, Düzlem Taşlama İşleminde Taşlama Kuvvetlerinin Ölçülmesi İçin Bir Dinamometre Tasarımı ve İmalatı, Zonguldak Karaelmas Üniversitesi, Karabük Teknik Eğitim Fakültesi, Teknoloji Dergisi, 9(2), (2006), 111-118. (Erişim: 11 Nisan 2023); https://eds.p.ebscohost.com/eds/pdfviewer/pdfviewer?vid=0&sid=0bea71ac-4b2d-4107-9695-c1b6bcfaf3b2%40redis
  • S. C. Salmon, “Modern Grinding Process Technology”, McGraw-Hill, New York, 103-109, 1992.
  • J. S., Heo, Y. Koo, S. S. Choi, Grinding Characteristics of Conventional and ELID Methods in Difficult-to-Cut and Hardened Brittle Materials, Journal of Materials Processing Technology, 155–156 (1), (2004), 1196–1200. Doi:10.1016/j.jmatprotec.2004.04.394
  • D. Anderson, Thermal Modeling and Temperature Measurement of Dry Grinding, MSC Thesis, Dalhousie University, Canada, 2006.
  • S. Lachance, A. Warkentin, R. Bauer, Development of An Automated System for Measuring Grinding Wheel Wear Flats, Journal of Manufacturing Systems, 22 (2), (2003), 130-135. Doi: 10.1016/S0278-6125(03)90010-0
  • I. D. Marinescu, W.B. Rowe, B. Dimitrov, I. Inasaki, H. Ohmori “Tribology of Abrasive Machining Processes”, Elsevier, USA, 2nd ed., 2013.
  • O. Adiyaman, Z. Demir, Model and Formulation in Grinding Mechanism Having Advanced Secondary Rotational Axis, Measurement and Control, 52(5-6) (2019), 326–337. Doi: 10.1177/0020294019837988
  • O. Adiyaman, Z. Demir, V. Savas, Matematiksel Modelleme Yöntemiyle İkincil Dönel Eksenli Taşlamada Motor Gücünün Hesaplanmasının Araştırılması, 7th International Symposium On Machining, 3. November, Marmara University, Istanbul, Turkey, 2016, 91-103.
  • C. Xian, Y. Shi, X. Lin, D. Liu, 2020. Force Modeling for Polishing Aero-engine Blades with Abrasive Cloth Wheels, The International Journal of Advanced Manufacturing Technology, 106(1) (2020), 5255–5267. Doi: 10.1007/s00170-020-05016-3
  • Q. Meng, B. Guo, Q. Zhao, H. Nan Li, M. J. Jackson, B. S. Linke, X. Luo, Modelling of Grinding Mechanics: A Review, Chinese Journal of Aeronautics, In Press, Corrected Proof, (2022), Doi: 10.1016/j.cja.2022.10.006
  • R. L. Hecker, S. Y. Liang, X. J. Wu, et al. Grinding Force and Power Modeling Based on Chip Thickness Analysis, The International Journal of Advanced Manufacturing Technology., 33(5) (2007), 449–459. Doi: 10.1007/s00170-006-0473-y
  • R.L. Hecker, I.M. Ramoneda, S.Y. Liang, Analysis of Wheel Topography and Grit Force for Grinding Process Modeling, Journal of Manufacturing Processes, 5(1) (2003), 13–23. Doi: 10.1016/S1526-6125(03)70036-X
  • H. Jamshidi, M. Gurtan, E. Budak, Identification of Active Number of Grits and Its Effects on Mechanics and Dynamics of Abrasive Processes, Journal of Materials Processing Technology, 273(116239) (2019), 1-12. Doi: 10.1016/j.jmatprotec.2019.05.020
  • H. Nan Li, T. Biao Yu, Z. Wang, L. Da Zhu, W. Shan Wang, Detailed Modeling of Cutting Forces in Grinding Process Considering Variable Stages of Grain-workpiece Micro Interactions, International Journal of Mechanical Sciences, 126(1) (2016), 1-45. Doi:10.1016/j.ijmecsci.2016.11.016
  • C. Qian, Z. Fan, Y. Tian, Y. Liu, J. Han, J. Wang, A Review on Magnetic Abrasive Finishing, The International Journal of Advanced Manufacturing Technology, 112(11) (2021), 619–634. Doi:10.1007/s00170-020-06363-x
  • B. Girma, S. Joshi, M. V. G. S. Raghuram, An Experimental Analysis of Magnetic Abrasives Finishing of Plane Surfaces, Machining Science and Technology, 10(3) (2006), 323–340. Doi: 10.1080/10910340600902140
  • P. Singh, P. S. Samra, L. Singh, Internal Finishing of Cylindrical Pipes Using Sintered Magnetic Abrasives, International Journal of Engineering Science and Technology, 3(7) (2011), 5747-5753.
  • M. R. Smolkin, R. D. Smolkin, Calculation and Analysis of The Magnetic Force Acting on A Particle in The Magnetic Field of Separator Analysis of The Equations Used in The Magnetic Methods of Separation, IEEE Transactions on Magnetics, 42(11) (2006), 3682–3693. Doi: 10.1109/TMAG.2006.88068889
  • K. B. Judal, V. Yadava, Modeling and Simulation of Cylindrical Electro-Chemical Magnetic Abrasive Machining of AISI-420 Magnetic Steel, Journal of Materials Processing Technology, 213(12) (2013), 2089–2100. Doi: 10.1016/j.jmatprotec.2013.06.011
  • A. R. Chaudhari, K. B. Judal, Development and Experimentation of Modified Electro-chemical Magnetic Abrasive Finishing, Materials and Manufacturing Processes, 37(4) (2022), 448-457, Doi: 10.1080/10426914.2021.2016822
  • M. R. Smolkin, R. D. Smolkin, Calculation and Analysis of the Magnetic Force Acting on a Particle in the Magnetic Field of Separator, Analysis of the Equations Used in the Magnetic Methods of Separation, IEEE Transactions on Magnetics, 42(11) (2006), 3682–3693.
  • Y. Chen, A. Shimamoto, X. Gao, M.M. Zhang, Study of Friction Coefficient and Friction Force on Magnetic Abrasive Finishing, Materials Science Forum, 675(1) (2011), 663-666. Doi:10.4028/www.scientific.net/MSF.675-677.663
  • H. Jamshidi, E. Budak, An Analytical Grinding Force Model Based on Individual Grit Interaction, Journal of Materials Processing Technology, 283(116700) (2020), 1-15. Doi: 10.1016/j.jmatprotec.2020.116700

Yüzey Pürüzlülüğünün Giderilmesinde Taşlama ve Manyetik Aşındırıcılar ile İşleme Yöntemlerinin Etkileri

Yıl 2023, , 111 - 134, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.13

Öz

Manyetik aşındırıcı yöntem (MAİ), metal yüzeyinin yüzey pürüzlülüklerinin azaltılmasında ve yüzeyinin parlatılmasında kullanılan özel bir işleme tekniğidir. Hassas ve karmaşık geometrilere sahip parçaların işlenmesi için etkili bir şekilde kullanılabilir. Freze ve torna işlemlerinden sonra metal yüzeyin parlatılmasında geleneksel taşlama yöntemi kullanılırken Son 10 yılda MAİ yöntemi denenmeye başlanmıştır. MAİ yöntemi, aşındırıcı taneler bir taşıyıcı aparatın içindeki mıknatıslar ile manyetik olarak uyarılır ve işlenecek malzemenin yüzeyine yaklaştırılır. Manyetik alanın etkisiyle aşındırıcı taneler, malzemenin yüzeyini etkileyerek istenilen şekil, pürüzsüzlük ve parlaklık elde etmeye yardımcı olur. Literatürde şimdiye kadar karşılaştırılması yapılmamış MAİ ve taşlama yöntemlerinin, iş parçasının yüzey pürüzlülük değerlerine olan etkileri araştırılmıştır. MAİ yönteminde manyetik alan yardımı ile aşındırıcı tozlar, esnek fırça haline gelirken taşlama yönteminde ise aşındırıcı tozlar zımpara taşında yapışkan ile bir arada tutularak esneklik özelliği olmamasıdır. Inconel718 nikel alaşımının taşlama yöntemi ile yüzey parlatma işleminden önce Ra: 0,473 µm iken Ti-6Al-4V alaşımın MAİ yönteminden önce Ra: 0,153 µm değeri olmaktadır. Yüzeyi işleyen yöntemleri kendi içinde değerlendirildiğinde, Inconel718’de Ra: 0,153 µm 'ye düşmüştür. Ti-6Al-4V’de ise Ra: 0,117 µm'ye düşmüştür. MAİ yönteminin alternatif yöntem olacağı görülmüştür. Bu yöntemle, karmaşık ve hassas iş parçalarının işlenmesini kolaylaşacaktır. İki yöntem için kullanılan kesme kuvvetinin matematiksel modellemeleri incelenmiştir. Çalışmanın temellendirildiği fikirde literatür bulguları uyumlu bulunmuştur.

Kaynakça

  • Talaş Kaldırma Yöntemlerinin Sınıflandırılması, (Erişim: 11 Nisan 2023); https://docplayer.biz.tr/4688114-Talasli-imalat-talas-kaldirma-yontemlerinin-siniflandirilmasi-1-geleneksek-talasli-imalat-1a-tornalama-ve-iliskili-operasyonlar.html
  • M. P. Groover, 21. Chapter; Theory of Metal Machining, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 7th ed., New Jersey, USA: John Wiley & Sons, (2020), 485-500. ISBN: 978-0470-467002. (Date of Access: 24 June 2023); https://www.fcusd.org/cms/lib/CA01001934/Centricity/Domain/4529/Fundamentals%20of%20Modern%20Manufacturing%20Materials%20%20Processes%20and%20Systems%20%204th%20Edition.pdf
  • Talaşlı İmalat, (Erişim: 11 Nisan 2023); http://web.hitit.edu.tr/dosyalar/materyaller/eminerdin@hititedutr110520185B2N4W5Y.pdf
  • V. K. Jain, V. Sidpara, M.R. Sankar, M. Das, Nano-Finishing Techniques: A Review, Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 226(1) (2011), 327-346. Doi: 10.1177/0954406211426948
  • H. Demir, A. Güllü, U. Şeker, Düzlem Taşlama İşleminde Taşlama Kuvvetlerinin Ölçülmesi için Bir Dinamometre Tasarımı ve İmalatı, Teknoloji, 9(2) (2006), 111-118. Doi: 10.12739/NWSA.2017.12.4.2A0127
  • R. Rekha, S. Vinoth Kumar, V. Aravinth Raj, B. Aswin Baboo, P. Gokul Raj, A. Jai Vignesh, Optimization of Cylindrical Grinding Process Parameters on Austenitic Stainless Steel 304 Using Taguchi Based Grey Relational Analysis, Materials Today: Proceedings, 72(4) (2023), 2569-2573, Doi: 10.1016/j.matpr.2022.10.120
  • S. Jha, V. K. Jain, 8. Chapter; Nano-Finishing Techniques, Micro-manufacturing and Nanotechnology, Springer Publishing, Berlin, Heidelberg, (2006), 171-195. (Date of Access: 24 June 2023); https://link.springer.com/chapter/10.1007/3-540-29339-6_8
  • H. K. Tonshoff, B. Karpuschewski, T. Mandrysch, Grinding Process Achievements and Their Consequences on Machine Tools Chalenges and Opportunities, Annals of CIRP, 47(2) (1998), 651-668. Doi: 10.1016/S0007-8506(07)63247-8
  • H. Ding, J. Yang, W. Wang, J. Guo, Q. Liu, Characterization and Formation Mechanisms of Rail Chips from Facing Grinding by Abrasive Wheel, Journal of Manufacturing Processes, 73(1) (2022), 544-554. Doi: 10.1016/j.jmapro.2021.11.032
  • V. Gopan, K. L. D. Wins, A. Surendran, Integrated ANN-GA Approach for Predictive Modeling and Optimization of Grinding Parameters with Surface Roughness as the Response, Materials Today: Proceedings, 5(5) (2018), 12133-12141. Doi: 10.1016/j.matpr.2018.02.191
  • O. Adıyaman, F. Sönmez, Yeni Tip Taşlama Yönteminde Taşlama Parametrelerinin Deneysel Tasarım Yöntemi ile Yüzey Pürüzlülüğü Üzerine Etkisinin İncelenmesi, BEÜ Fen Bilimleri Dergisi, 9(1) (2020), 215-225. Doi: 10.17798/bitlisfen.544248
  • O. Adıyaman, Geliştirilen İkincil Dönel Eksenli Taşlama Mekanizması ile Düzlem Yüzey Taşlama İşleminde Kesme Parametrelerinin Araştırılması, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Elazığ, Türkiye, 2015.
  • J. Zhang, J. Liu, S. Yang, C. Ju, J. Li, Z. Qiao, A Model for Material Removal of Robot-Assisted Blade Polishing Using Abrasive Cloth Wheel, The International Journal of Advanced Manufacturing Technology, 123(7-8) (2022), 1-13. Doi: 10.1007/s00170-022-10239-7
  • S. Cai, W. Liu, J. Song, K. Deng, Y. Tang, Research and Progress on Truing and Sharpening Process of Diamond Abrasive Grinding Tools, Applied Sciences, 12(9) (2022), 4683-4694. Doi: 10.3390/app12094683
  • L. Lv, Z. Deng, T. Liu, Z. Li, W. Liu, Intelligent Technology in Grinding Process Driven by Data: A Review, Journal of Manufacturing Processes, 58(17) (2020), 1039-1051. Doi: 10.1016/j.jmapro.2020.09.018
  • M. Zeyveli, A. Güldaş, Taşlama Operasyonları için Uzman Sistem Destekli Zımpara Taşı Seçimi, Teknoloji, 7(2) (2004), 241-249. (Erişim: 11 Nisan 2023); https://jestech.karabuk.edu.tr/arsiv/1302-0056/2004/Cilt%287%29/Sayi%282%29/241-249.pdf
  • Md Amir, R. Sharma, V. Mishra, S. Wazed Ali, G. S. Khan, Polishing Performance of Magnetic Nanocomposites Based Nanoabrasive, Materials Today Proceedings, 56(1) (2022), 549-554. Doi: 10.1016/j.matpr.2022.02.276
  • A. Wahab Hashmi, H. Singh Mali, et al., Understanding the Mechanism of Abrasive-Based Finishing Processes Using Mathematical Modeling and Numerical Simulation, Metals, 12(8) (2022), 3-65. Doi: 10.3390/met12081328
  • Fundamentals of Hard Turning, (Date of Access: 24 June 2023); http://cdn2.hubspot.net/hub/139128/file-17761415- pdf/docs/gos_wp_hardturning_f.pdf4
  • Taşlama İşlemleri, (Erişim: 11 Nisan 2023); https://tf.selcuk.edu.tr/dosyalar/files/033003/5_taslama_islemleri.pdf
  • Ö. Salman, Manyetik Aşındırıcılar ile Yüzey İşleme, Makine Teknolojileri Elektronik Dergisi, 11(1) (2014), 1-10. (Erişim: 11 Nisan 2023); https://docplayer.biz.tr/15702465-Manyetik-asindiricilar-ile-yuzey-isleme.html
  • V. K. Jain, Magnetic Field Assisted Abrasive Based Micro/Nano Finishing, Journal of Materials Processing Technology, 209(20) (2009), 6022-6038. Doi: 10.1016/j.jmatprotec.2009.08.015
  • H. Demir, Alüminyum Oksit Zımpara Taşlarıyla Silindirik Taşlamada Çeşitli Çelikler için Taşlama Oranlarının Belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Ankara, Türkiye, 1998.
  • M. J. Jackson, C. J. Davis, M. P. Hitchiner, B. Mills, High-Speed Grinding with CBN Grinding Wheels – Applications and Future Technology, Journal of Materials Processing Technology, 110(1) (2001), 78-88. Doi: 10.1016/S0924-0136(00)00869-4
  • L. Slătineanu, O. Dodun, G. Nagîț, M. Coteață, I. Beșliu, A Review on Magnetic Abrasive Machining, Romanian Association of Nonconventional Technologies Review, 21(2) (2017), 10-21. (Date of Access: 24 June 2023); http://www.revtn.ro/index.php/revtn/article/view/184
  • H. Demir, A. Güllü, Taşlamada Parametrelerin Etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 7(2) (2001), 189-198. (Erişim: 11 Nisan 2023); https://dergipark.org.tr/tr/pub/pajes/issue/20536/218801
  • H. Demir, A. Güllü, Taş Dokusunun Yüzey Pürüzlülüğü ve Taşlama Kuvvetlerine Etkilerinin İncelenmesi, Gazi Üniversitesi Mühendislik ve Mimimarlık Fakültesi Dergisi, 23(1) (2008), 77-83. (Erişim: 11 Nisan 2023); https://dergipark.org.tr/tr/download/article-file/75510
  • H. Demir, A. Güllü, İ. Çiftci, U. Şeker, An Investigation into the Influences of Grain Size and Grinding Parameters on Surface Roughness and Grinding Forces when Grinding, Strojniški vestnik - Journal of Mechanical Engineering, 56(7-8) (2010), 447-454. (Date of Access: 24 June 2023); https://www.sv-jme.eu/article/an-investigation-into-the-influences-of-grain-size-and-grinding-parameters-on-surface-roughness-and-grinding-forces-when-grinding/
  • X. Chen, W. Brian, Analysis and Similation of The Grinding Process, Part III: Comparasion With Experiment, International Journal of Machine Tools&Manufacture, Pergaman, 36(8) (1996b) 897-906. (Date of Access: 24 June 2023); https://researchonline.ljmu.ac.uk/id/eprint/7083/9/Analysis%20of%20grinding%20surface%20creation%20by%20single%20grit%20approach.pdf
  • H. Masoumi, S. M. Safavi, M. Salehi, Grinding Force, Specific Energy and Material Removal Mechanism in Grinding of HVOF-Sprayed WC–Co–Cr Coating, Materials and Manufacturing Processes, 29(3) (2014), 321-330. Doi:10.1080/10426914.2013.872261
  • E. Brinksmeier, J. C. Aurich, et al., Advances in Modeling and Simulation of Grinding Processes, CIRP Annals, 55(2) (2006), 667-696. Doi: 10.1016/j.cirp.2006.10.003
  • J. Kopac, P. Krajnik, High-Performance Grinding—A Review, Journal of Materials Processing Technology, 175(1–3) (2006), 278-284. Doi: 10.1016/j.jmatprotec.2005.04.010
  • Y. Li, Y. Liu, Y.Tian, Y. Wang, J. Wang, Application of Improved Fireworks Algorithm in Grinding Surface Roughness Online Monitoring, Journal of Manufacturing Processes, 74(1) (2022), 400-412. Doi: 10.1016/j.jmapro.2021.12.046
  • Ş. Baday, H. Başak, F. Sönmez, The Assessment of Cutting Force with Taguchi Design in Medium Carbon Steel–Applied Spheroidization Heat Treatment, Measurement and Control, 50(4) (2017), 89-96. Doi: 10.1177/0020294017713767
  • A. Kumar Singh, A. Kumar, V. Sharma, P. Kala, Sustainable Techniques in Grinding: State of The Art Review, Journal of Cleaner Production, 269(1) (2020), 121876-121892. Doi: 10.1016/j.jclepro.2020.121876
  • F. Hashimoto, H. Yamaguchi, P. Krajnik, K. Wegener, R. Chaudhari, H. W. Hoffmeister, F. Kuster, Abrasive Fine-Finishing Technology, CIRP Ann.-Manufacturing Technology, 65(2) (2016), 597-620. Doi: 10.1016/j.cirp.2016.06.003
  • M. Çelik, Manyetik Aşındırıcılarla İşleme Yönteminde İç Yüzeylerin İşlenebilirliğinin Araştırılması, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği İmalat Teknolojileri Anabilim Dalı, Elazığ, Türkiye, 2017.
  • Aşınma Çeşitleri, (Erişim: 11 Nisan 2023); https://insapedia.com/asinma-nedir-asinma-cesitleri-ve-etki-eden-faktorler/
  • B. Singh, C. Kalra Singh, Optimization of Magnetic Abrasive Finishing Parameters During Finishing of Brass Tube, International Research Journal of Enginerring and Technology (IRJET), 2(4) (2015), 1810-1817. Doi: 10.1007/978-81-322-1859-3_25
  • B. Girma, S. S. Joshi, M. V. G. S. Raghuram, An Experimental Analysis of Magnetic Abrasives Finishing of Plane Surfaces, Machining Science and Technology, 10(3) (2006), 323–340. Doi: 10.1080/10910340600902140
  • M. Sharma, D. P. Singh, To Study the Effect of Various Parameters on Magnetic Abrasive Finishing, International Journal of Research in Mechanical Engineering & Technology-IJRMET, 3(2) (2013), 212-215. (Date of Access: 24 June 2023); https://typeset.io/pdf/to-study-the-effect-of-various-parameters-on-magnetic-2fporjl33p.pdf
  • M. Çelik, Elektro-erozyon Yöntemiyle İşlenmiş Ti6Al4V Alaşımının Yüzey Kalitesinin Manyetik Aşındırıcılarla İşleme Yöntemiyle İyileştirilmesi, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, İmalat Mühendisliği Anabilim Dalı, Ankara, 2021.
  • M. Fox, K. Agrawal, T. Shinmura, R. Komanduri, Magnetic Abrasive Machining of Rollers, Annals of the CIRP, 43(1) (1994), 181-184. Doi: 10.1016/S0007-8506(07)62191-X
  • X. Sun, Y. Zou, Development of Magnetic Abrasive Finishing Combined with Electrolytic Process for Finishing SUS304 Stainless Steel Plane, The International Journal of Advanced Manufacturing Technology, 92(1) (2017), 3373–3384. Doi:10.1007/s00170-017-0408-9
  • T. Mori, K. Hikota, Y. Kawashim, Clarification of Magnetic Abrasive Finishing Mechanism, Journal of Material Processing Technology, 143(20) (2003), 682-686. Doi:10.1016/S0924-0136(03)00410-2
  • H. Yamaguchi, T. Shinmura, M. Takenaga, Development of a New Precision Internal Machining Process Using an Alternating Magnetic Field, Precision Engineering, 27(1) (2003), 51-58. Doi:10.1016/S0141-6359(02)00177-0
  • Z. Song, Y. Zhao, G. Liu, Y. Gao, X. Zhang, C. Cao, D. Dai, Y. Deng, Surface Roughness Prediction and Process Parameter Optimization of Ti-6Al-4V by Magnetic Abrasive Finishing, The International Journal of Advanced Manufacturing Technology, 122(1) (2022), 219–233. Doi:10.1007/s00170-022-09354-2
  • İmalat İşlemleri, (Erişim: 11 Nisan 2023); https://www.fikriyat.com/akademik-haberler/2018/03/27/imalat-islemleri-ders-notlari
  • B. P. Kheelan, K. M. Patel, Magnetic Abrasive Finishing of AISI52100, International Journal of Trend in Research and Development, 1(1) (2014), 1-8. Doi: 10.1007/s00170-010-3102-8
  • T. Rasuljon, A. Sulaymanov, G. Madaminova, S.U Agzamov, Grinding of Materials: Main Characteristics, International Journal of Advance Scientific Research, 2(11) (2022), 25-34, Doi: 10.37547/ijasr-02-11-05
  • P. Gondi, G. Mattogno, A. Sili, G. Foderaro, Structural Characteristics at Surface and Barkhausen Noise in AISI 4340 Steel After Grinding, Nondestructive Testing and Evaluation, 10(1) (1993), 255-267. Doi: /10.1080/10589759308952800
  • Z.W. Zhong, V.C. Venkatesh, Recent Developments in Grinding of Advanced Materials, Int J Adv Manuf Technol, 41(1) (2009), 468–480 Doi:10.1007/s00170-008-1496-3
  • O. Adıyaman, V. Savaş, İkincil Dönel Eksenli ile Klasik Düzlem Yüzey Taşlama Mekanizmalarının Deneysel Araştırılması, Makine Teknolojileri Elektronik Dergisi, 11(4) (2014), 21-36. Doi: 10.29130/dubited.994072
  • T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, T. Matsuo, Study on Magnetic Abrasive Finishing, CIRP Annals, 39(1) (1990), 325-328. Doi: 10.1016/S0007-8506(07)61064-6
  • H. Dilipak, M. Gülesin, Torna Operasyonları için Uzman Sistem Tekniklerine Dayalı Kesici Seçimi, Mamkon'97, İ.T.Ü. Makine Fakültesi 1. Makina Mühendisliği Kongresi, İstanbul, Türkiye, 1997, 349-357.
  • H. Demir, Alüminyum Oksit Zımpara Taşlarıyla Silindirik Taşlamada Çeşitli Çelikler için Taşlama Oranlarının Belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Ankara, 1998.
  • Milli Eğitim Bakanlığı, Makine Teknolojisi, Temel Taşlama İşlemleri, 521MMI652 Ders modülü, (2012), 1-30. (Erişim: 11 Nisan 2023); http://www.megep.meb.gov.tr/mte_program_modul/moduller_pdf/Temel%20Ta%C5%9Flama%20%C4%B0%C5%9Flemleri.pdf
  • H. Demir, A. Güllü, Taşlamada Parametrelerin Etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 7(2) (2001), 189-198. (Erişim: 11 Nisan 2023); https://dergipark.org.tr/tr/pub/pajes/issue/20536/218801
  • M. C. Shaw, A Production Engineering Approach to Grinding Temperatures, Journal of Materials Processing Technology, Elsevier, 44(3-4) (1994), 59-169. Doi: 10.1016/0924-0136(94)90428-6
  • Anonim, 1977. TS 291. Taşlama Taşları, Türk Standartları, Ankara, (Erişim: 11 Nisan 2023); https://www.scribd.com/document/409306951/TS-291-14-ISO-603-11-2001-Ta%C5%9Flama-Ta%C5%9Flar%C4%B1-Boyutlar-Bolum-11
  • A. S. Khatri, Surface Topology and Forces in Grinding, MSC Thesis, Dalhousie University Master of Applied Science, Department of Mechanical Engineering, Canada, 2006. (Date of Access: 24 June 2023); https://www.collectionscanada.gc.ca/obj/thesescanada/vol2/002/MR27589.PDF?oclc_number=461541942
  • Y. Ma, Z. Liang, Z. Cai, R. Cai, Z. Su, Y. Du, T. Zhou, X. Wang, Grinding Damage in the Fabrication of Polycrystalline Cubic Boron Nitride Micro-drill, Journal of Manufacturing Processes, 101(1) (2023), 469-479. Doi: 10.1016/j.jmapro.2023.05.106
  • U. Köklü, Değişik Şekillerde Aralıklı (Kesikli) Yüzeylerin Taşlanmasında Oluşan Şekil Hatalarının Deneysel İncelenmesi, Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, İstanbul, Türkiye, 2009.
  • H. Deng, Z. Xu, Dressing Methods of Superabrasive Grinding Wheels: A Review, Journal of Manufacturing Processes, 45(2) (2019), 46-69. Doi: 10.1016/j.jmapro.2019.06.020
  • A. Azizi, S. M. Rezaei, A. Rahimi, Study on The Rotary Cup Dressing of CBN Grinding Wheel and The Grinding Performance, International Advance Manufacturing Technology, 47(9) (2010), 1053-1063. Doi: 10.1007/s00170-009-2227-0
  • B. Yastıkçı, Investigation of Tool Wear in Grinding Processes, Yüksek Lisans Tezi, Sabancı Üniversitesi Fen bilimleri Enstütüsü, Üretim Sistemleri Mühendisliği Anabilim Dalı, İstanbul, Türkiye, 2016.
  • Y. Tian, L. Li, B. Liu, J. Han, Z. Fan, Experimental Investigation on High-Shear and Low-Pressure Grinding Process for Inconel718 Super Alloy, The International Journal of Advanced Manufacturing Technology, 107(1) (2020), 3425–3435. Doi: 10.1007/s00170-020-05284-z
  • X. Zhu, W. Wang, R. Jiang, X. Liu, K. Lin, Performances of Ni3Al-based Intermetallic IC10 in Creep-feed Grinding, The International Journal of Advanced Manufacturing Technology, 108(5) (2020), 809–820, Doi:10.1007/s00170-020-05408-5
  • L. Singh, S. S. Khangura, P. S. Mishra, Performance of Abrasives Used in Magnetically Assisted Finishing: A State of The Art Review, Int. J Abras Technol., 3(3), (2010), 215–227. Doi: 10.1504/IJAT.2010.034052
  • S. Feygin, G. Kremen, L. Lgelstyn, Magnetic-Abrasive Powder and Method of Producing The Same, US Patent 5846270, 1998.
  • S. R. Mulik, P. M. Pandey, Ultrasonic Assisted Magnetic Abrasive Finishing of Hardened AISI 52100 Steel Using Unbonded SiC Abrasives, International Journal of Refractory Metals and Hard Materials, 29 (1), (2011), 68-77. Doi: 10.1016/j.ijrmhm.2010.08.002
  • T. Mori, K. Hirota, Y. Kawashima, Clarification of Magnetic Abrasive Finishing Mechanism, Journal of Materials Processing Technology, 143 (1), (2003), 682–686. Doi: 10.1016/S0924-0136(03)00410-2
  • S. Kovaliova, V. Sepelak, et al., Mechanosynthesis of Composites in Chemically Non-reacting and Exothermically Reacting Systems for Magnetic Abrasive Media, Journal of Materials Science, 53 (1), (2018), 13560–13572. Doi: 10.1007/s10853-018-2463-5
  • L. Heng, Y. J. Kim, S. D. Mun, Review of Superfinishing by The Magnetic Abrasive Finishing Process, High Speed Machining, 3 (1), (2017), 42-55. Doi:10.1515/hsm-2017-0004
  • L. Heng, G. E. Yang, R. Wang, M. S. Kim, S. D. Mun, Effect of Carbon Nano Tube (CNT) Particles in Magnetic Abrasive Finishing of Mg Alloy Bars, Journal of Mechanical Science and Technology, 29 (12), (2015), 5325–5333. Doi:10.1007/s12206-015-1134-6
  • T. T. Öpöz, X. Chen, Experimental Investigation of Material Removal Mechanism in Single Grit Grinding, International Journal of Machine Tools & Manufacture, 63 (1), (2012), 32-40. Doi: 10.1016/j.ijmachtools.2012.07.010
  • Kuvars Kumu, (Erişim: 11 Nisan 2023); https://www.kuvarskumu.com/kuvarstozu/#:~:text=Kuvars%20Tozu%2C%20Kuvarsca%20zengin%20magmatik,bir%C3%A7ok%20alanda%20%C3%B6nemli%20rol%20oynar
  • V. K. Jain, et al., Effect of Working Gap and Circumferential Speed on The Performance of Magnetic Abrasive Finishing Process, Wear, 250 (1-2), (2001), 384-390. Doi:10.1016/S0043-1648(01)00642-1
  • N. K. Alkarkhi, M. Naif, Study on The Parameter Optimization in Magnetic Abrasive Polishing for Brass CUZN33 Plate Using Taguchi Method, The Iraqi Journal for Mechanical and Materials Engineering, 12 (3), (2012), 596-615. (Date of Access: 24 June 2023); https://www.iasj.net/iasj/article/64598
  • Z. Q. Liu, Y. Chen, Y. J. Li, X. Zhang, Comprehensive Performance Evaluation of the Magnetic Abrasive Particles, Int J. Adv. Manuf Technol., 68 (1-4), (2013), 631–640. Doi:10.1007/s00170-013-4783-6
  • Z. Song, Y. Zhao, G. Liu, Y. Gao, X Zhang, C. Cao, D. Dai, Y. Deng, Surface Roughness Prediction and Process Parameter Optimization of Ti‑6Al‑4V by Magnetic Abrasive Finishing, The International Journal of Advanced Manufacturing Technology, 122 (1), (2022), 219–233, Doi:10.1007/s00170-022-09354-2
  • H. Demir, A. Güllü, U. Şeker, Düzlem Taşlama İşleminde Taşlama Kuvvetlerinin Ölçülmesi İçin Bir Dinamometre Tasarımı ve İmalatı, Zonguldak Karaelmas Üniversitesi, Karabük Teknik Eğitim Fakültesi, Teknoloji Dergisi, 9(2), (2006), 111-118. (Erişim: 11 Nisan 2023); https://eds.p.ebscohost.com/eds/pdfviewer/pdfviewer?vid=0&sid=0bea71ac-4b2d-4107-9695-c1b6bcfaf3b2%40redis
  • S. C. Salmon, “Modern Grinding Process Technology”, McGraw-Hill, New York, 103-109, 1992.
  • J. S., Heo, Y. Koo, S. S. Choi, Grinding Characteristics of Conventional and ELID Methods in Difficult-to-Cut and Hardened Brittle Materials, Journal of Materials Processing Technology, 155–156 (1), (2004), 1196–1200. Doi:10.1016/j.jmatprotec.2004.04.394
  • D. Anderson, Thermal Modeling and Temperature Measurement of Dry Grinding, MSC Thesis, Dalhousie University, Canada, 2006.
  • S. Lachance, A. Warkentin, R. Bauer, Development of An Automated System for Measuring Grinding Wheel Wear Flats, Journal of Manufacturing Systems, 22 (2), (2003), 130-135. Doi: 10.1016/S0278-6125(03)90010-0
  • I. D. Marinescu, W.B. Rowe, B. Dimitrov, I. Inasaki, H. Ohmori “Tribology of Abrasive Machining Processes”, Elsevier, USA, 2nd ed., 2013.
  • O. Adiyaman, Z. Demir, Model and Formulation in Grinding Mechanism Having Advanced Secondary Rotational Axis, Measurement and Control, 52(5-6) (2019), 326–337. Doi: 10.1177/0020294019837988
  • O. Adiyaman, Z. Demir, V. Savas, Matematiksel Modelleme Yöntemiyle İkincil Dönel Eksenli Taşlamada Motor Gücünün Hesaplanmasının Araştırılması, 7th International Symposium On Machining, 3. November, Marmara University, Istanbul, Turkey, 2016, 91-103.
  • C. Xian, Y. Shi, X. Lin, D. Liu, 2020. Force Modeling for Polishing Aero-engine Blades with Abrasive Cloth Wheels, The International Journal of Advanced Manufacturing Technology, 106(1) (2020), 5255–5267. Doi: 10.1007/s00170-020-05016-3
  • Q. Meng, B. Guo, Q. Zhao, H. Nan Li, M. J. Jackson, B. S. Linke, X. Luo, Modelling of Grinding Mechanics: A Review, Chinese Journal of Aeronautics, In Press, Corrected Proof, (2022), Doi: 10.1016/j.cja.2022.10.006
  • R. L. Hecker, S. Y. Liang, X. J. Wu, et al. Grinding Force and Power Modeling Based on Chip Thickness Analysis, The International Journal of Advanced Manufacturing Technology., 33(5) (2007), 449–459. Doi: 10.1007/s00170-006-0473-y
  • R.L. Hecker, I.M. Ramoneda, S.Y. Liang, Analysis of Wheel Topography and Grit Force for Grinding Process Modeling, Journal of Manufacturing Processes, 5(1) (2003), 13–23. Doi: 10.1016/S1526-6125(03)70036-X
  • H. Jamshidi, M. Gurtan, E. Budak, Identification of Active Number of Grits and Its Effects on Mechanics and Dynamics of Abrasive Processes, Journal of Materials Processing Technology, 273(116239) (2019), 1-12. Doi: 10.1016/j.jmatprotec.2019.05.020
  • H. Nan Li, T. Biao Yu, Z. Wang, L. Da Zhu, W. Shan Wang, Detailed Modeling of Cutting Forces in Grinding Process Considering Variable Stages of Grain-workpiece Micro Interactions, International Journal of Mechanical Sciences, 126(1) (2016), 1-45. Doi:10.1016/j.ijmecsci.2016.11.016
  • C. Qian, Z. Fan, Y. Tian, Y. Liu, J. Han, J. Wang, A Review on Magnetic Abrasive Finishing, The International Journal of Advanced Manufacturing Technology, 112(11) (2021), 619–634. Doi:10.1007/s00170-020-06363-x
  • B. Girma, S. Joshi, M. V. G. S. Raghuram, An Experimental Analysis of Magnetic Abrasives Finishing of Plane Surfaces, Machining Science and Technology, 10(3) (2006), 323–340. Doi: 10.1080/10910340600902140
  • P. Singh, P. S. Samra, L. Singh, Internal Finishing of Cylindrical Pipes Using Sintered Magnetic Abrasives, International Journal of Engineering Science and Technology, 3(7) (2011), 5747-5753.
  • M. R. Smolkin, R. D. Smolkin, Calculation and Analysis of The Magnetic Force Acting on A Particle in The Magnetic Field of Separator Analysis of The Equations Used in The Magnetic Methods of Separation, IEEE Transactions on Magnetics, 42(11) (2006), 3682–3693. Doi: 10.1109/TMAG.2006.88068889
  • K. B. Judal, V. Yadava, Modeling and Simulation of Cylindrical Electro-Chemical Magnetic Abrasive Machining of AISI-420 Magnetic Steel, Journal of Materials Processing Technology, 213(12) (2013), 2089–2100. Doi: 10.1016/j.jmatprotec.2013.06.011
  • A. R. Chaudhari, K. B. Judal, Development and Experimentation of Modified Electro-chemical Magnetic Abrasive Finishing, Materials and Manufacturing Processes, 37(4) (2022), 448-457, Doi: 10.1080/10426914.2021.2016822
  • M. R. Smolkin, R. D. Smolkin, Calculation and Analysis of the Magnetic Force Acting on a Particle in the Magnetic Field of Separator, Analysis of the Equations Used in the Magnetic Methods of Separation, IEEE Transactions on Magnetics, 42(11) (2006), 3682–3693.
  • Y. Chen, A. Shimamoto, X. Gao, M.M. Zhang, Study of Friction Coefficient and Friction Force on Magnetic Abrasive Finishing, Materials Science Forum, 675(1) (2011), 663-666. Doi:10.4028/www.scientific.net/MSF.675-677.663
  • H. Jamshidi, E. Budak, An Analytical Grinding Force Model Based on Individual Grit Interaction, Journal of Materials Processing Technology, 283(116700) (2020), 1-15. Doi: 10.1016/j.jmatprotec.2020.116700
Toplam 104 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuba Demirel 0000-0002-5760-3705

Erken Görünüm Tarihi 14 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Kabul Tarihi 26 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Demirel, T. (2023). Yüzey Pürüzlülüğünün Giderilmesinde Taşlama ve Manyetik Aşındırıcılar ile İşleme Yöntemlerinin Etkileri. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 5(2), 111-134. https://doi.org/10.47112/neufmbd.2023.13
AMA Demirel T. Yüzey Pürüzlülüğünün Giderilmesinde Taşlama ve Manyetik Aşındırıcılar ile İşleme Yöntemlerinin Etkileri. NEU Fen Muh Bil Der. Aralık 2023;5(2):111-134. doi:10.47112/neufmbd.2023.13
Chicago Demirel, Tuba. “Yüzey Pürüzlülüğünün Giderilmesinde Taşlama Ve Manyetik Aşındırıcılar Ile İşleme Yöntemlerinin Etkileri”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 5, sy. 2 (Aralık 2023): 111-34. https://doi.org/10.47112/neufmbd.2023.13.
EndNote Demirel T (01 Aralık 2023) Yüzey Pürüzlülüğünün Giderilmesinde Taşlama ve Manyetik Aşındırıcılar ile İşleme Yöntemlerinin Etkileri. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 2 111–134.
IEEE T. Demirel, “Yüzey Pürüzlülüğünün Giderilmesinde Taşlama ve Manyetik Aşındırıcılar ile İşleme Yöntemlerinin Etkileri”, NEU Fen Muh Bil Der, c. 5, sy. 2, ss. 111–134, 2023, doi: 10.47112/neufmbd.2023.13.
ISNAD Demirel, Tuba. “Yüzey Pürüzlülüğünün Giderilmesinde Taşlama Ve Manyetik Aşındırıcılar Ile İşleme Yöntemlerinin Etkileri”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5/2 (Aralık 2023), 111-134. https://doi.org/10.47112/neufmbd.2023.13.
JAMA Demirel T. Yüzey Pürüzlülüğünün Giderilmesinde Taşlama ve Manyetik Aşındırıcılar ile İşleme Yöntemlerinin Etkileri. NEU Fen Muh Bil Der. 2023;5:111–134.
MLA Demirel, Tuba. “Yüzey Pürüzlülüğünün Giderilmesinde Taşlama Ve Manyetik Aşındırıcılar Ile İşleme Yöntemlerinin Etkileri”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 5, sy. 2, 2023, ss. 111-34, doi:10.47112/neufmbd.2023.13.
Vancouver Demirel T. Yüzey Pürüzlülüğünün Giderilmesinde Taşlama ve Manyetik Aşındırıcılar ile İşleme Yöntemlerinin Etkileri. NEU Fen Muh Bil Der. 2023;5(2):111-34.


32206                   17157           17158