Araştırma Makalesi
BibTex RIS Kaynak Göster

Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential

Yıl 2021, Cilt: 3 Sayı: 1, 1 - 12, 30.06.2021

Öz

The aim of brain–computer interface (BCI) is to support the daily life of individuals with severe disabilities. For practical BCI, ease of use is one of the most important factors, which is enhanced when fewer electrodes are used. However, using fewer electrode affect the performance of BCI negatively. In this study, a novel single-channel steady-state visual evoked potential (SSVEP) detection method with subject-specific sinusoids approach (SSSA) was developed to enhance the performance of single channel SSVEP based BCI, therefore, to assist the ease of use. For the SSSA, subject-specific sinusoids were defined from training data based on SSVEP frequency and phase features. To detect the SSVEP response, defined sinusoids were used as reference. To evaluate the detection performance of the developed method, it was compared with the well-known power spectral density analysis (PSDA), least absolute shrinkage and selection operator (LASSO) and advanced canonical correlation analysis (CCA) methods on a benchmark dataset. The experimental results showed significantly greater detection accuracy and information transfer rate (ITR) with the SSSA method compared to the PSDA, LASSO and advanced CCA methods. And it is worth to noting that subject-specific sinusoids better represent SSVEP response than template signals that used in advanced CCA. Also proposed method reached one of the highest ITRs reported with max 125 and average 81 bits/min ITRs for single-channel SSVEP based BCI.

Kaynakça

  • [1] E. Yin, Z. Zhou, J. Jiang, F. Chen, Y. Liu, D. Hu, A speedy hybrid BCI spelling approach combining P300 and SSVEP., IEEE transactions on bio-medical engineering. 61 (2014) 473–83. doi:10.1109/TBME.2013.2281976.
  • [2] T. Sakurada, T. Kawase, K. Takano, T. Komatsu, K. Kansaku, A BMI-based occupational therapy assist suit: asynchronous control by SSVEP., Frontiers in neuroscience. 7 (2013) 172. doi:10.3389/fnins.2013.00172.
  • [3] E. Pasqualotto, S. Federici, M.O. Belardinelli, Toward functioning and usable brain–computer interfaces (BCIs): A literature review, Disability and Rehabilitation: Assistive Technology. 7 (2012) 89–103. doi:10.3109/17483107.2011.589486.
  • [4] U. Chaudhary, B. Xia, S. Silvoni, L.G. Cohen, N. Birbaumer, Brain–Computer Interface–Based Communication in the Completely Locked-In State, PLOS Biology. 15 (2017) e1002593. doi:10.1371/journal.pbio.1002593.
  • [5] C. Guger, R. Spataro, B.Z. Allison, A. Heilinger, R. Ortner, W. Cho, V. La Bella, Complete Locked-in and Locked-in Patients: Command Following Assessment and Communication with Vibro-Tactile P300 and Motor Imagery Brain-Computer Interface Tools, Frontiers in Neuroscience. 11 (2017). doi:10.3389/fnins.2017.00251.
  • [6] H.-J. Hwang, C.-H. Han, J.-H. Lim, Y.-W. Kim, S.-I. Choi, K.-O. An, J.-H. Lee, H.-S. Cha, S. Hyun Kim, C.-H. Im, Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies, Psychophysiology. 54 (2017) 444–451. doi:10.1111/psyp.12793.
  • [7] D. Lesenfants, D. Habbal, Z. Lugo, M. Lebeau, P. Horki, E. Amico, C. Pokorny, F. Gómez, A. Soddu, G. Müller-Putz, S. Laureys, Q. Noirhomme, An independent SSVEP-based brain-computer interface in locked-in syndrome., Journal of neural engineering. 11 (2014) 035002. doi:10.1088/1741-2560/11/3/035002.
  • [8] N. Morikawa, T. Tanaka, M.R. Islam, Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials, Journal of Neuroscience Methods. 304 (2018) 1–10. doi:10.1016/j.jneumeth.2018.04.001.
  • [9] S.-C. Chen, Y.-J. Chen, I.A.E. Zaeni, C.-M. Wu, A Single-Channel SSVEP-Based BCI with a Fuzzy Feature Threshold Algorithm in a Maze Game, International Journal of Fuzzy Systems. 19 (2017) 553–565. doi:10.1007/s40815-016-0289-3.
  • [10] H.J. Hwang, J.H. Lim, Y.J. Jung, H. Choi, S.W. Lee, C.H. Im, Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard, Journal of Neuroscience Methods. 208 (2012) 59–65. doi:10.1016/j.jneumeth.2012.04.011.
  • [11] X. Gao, D. Xu, M. Cheng, S. Gao, A BCI-based environmental controller for the motion-disabled, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 11 (2003) 137–140. doi:10.1109/TNSRE.2003.814449.
  • [12] L. Angrisani, P. Arpaia, D. Casinelli, N. Moccaldi, A Single-Channel SSVEP-Based Instrument with Off-The-Shelf Components for Trainingless Brain-Computer Interfaces, IEEE Transactions on Instrumentation and Measurement. 68 (2019) 3616–3625. doi:10.1109/TIM.2018.2882115.
  • [13] A. Bisht, S. Srivastava, G. Purushothaman, A new 360° rotating type stimuli for improved SSVEP based brain computer interface, Biomedical Signal Processing and Control. 57 (2020). doi:10.1016/j.bspc.2019.101778.
  • [14] Y. Zhang, G. Zhou, J. Jin, M. Wang, X. Wang, A. Cichocki, L1-regularized multiway canonical correlation analysis for SSVEP-based BCI, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 21 (2013) 887–896. doi:10.1109/TNSRE.2013.2279680.
  • [15] C. Farmaki, M. Krana, M. Pediaditis, E. Spanakis, V. Sakkalis, Single-channel SSVEP-Based BCI for robotic car navigation in real world conditions, içinde: Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, 2019: ss. 638–643. doi:10.1109/BIBE.2019.00120.
  • [16] X. Chai, Z. Zhang, K. Guan, Y. Lu, G. Liu, T. Zhang, H. Niu, A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis, Biomedical Signal Processing and Control. 56 (2020). doi:10.1016/j.bspc.2019.101687.
  • [17] A. Luo, T.J. Sullivan, A user-friendly SSVEP-based brain-computer interface using a time-domain classifier, Journal of neural engineering. 7 (2010) 26010. doi:10.1088/1741-2560/7/2/026010.
  • [18] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, S. Gao, High-speed spelling with a noninvasive brain–computer interface, Proceedings of the National Academy of Sciences. 112 (2015) 1–10. doi:10.1073/pnas.1508080112.
  • [19] M. Nakanishi, Y. Wang, Y.-T. Wang, T.-P. Jung, A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials, PloS one. 10 (2015) e0140703. doi:10.1371/journal.pone.0140703.
  • [20] D. Kim, W. Byun, Y. Ku, J.H. Kim, High-speed visual target identification for low-cost wearable brain-computer interfaces, IEEE Access. 7 (2019) 55169–55179. doi:10.1109/ACCESS.2019.2912997.
  • [21] S. Ajami, A. Mahnam, V. Abootalebi, Development of a practical high frequency brain–computer interface based on steady-state visual evoked potentials using a single channel of EEG, Biocybernetics and Biomedical Engineering. 38 (2018) 106–114. doi:10.1016/j.bbe.2017.10.004.
  • [22] C. Jia, X. Gao, B. Hong, S. Gao, Frequency and phase mixed coding in SSVEP-based brain--computer interface., IEEE transactions on bio-medical engineering. 58 (2011) 200–206. doi:10.1109/TBME.2010.2068571.
  • [23] F.-B. Vialatte, M. Maurice, J. Dauwels, A. Cichocki, Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives, Progress in Neurobiology. 90 (2010) 418–438. doi:10.1016/j.pneurobio.2009.11.005.
  • [24] A.T. Sozer, Enhanced Single Channel SSVEP Detection Method on Benchmark Dataset, içinde: 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2018, IEEE, 2018: ss. 1–4. doi:10.1109/ICEEE.2018.8533933.
  • [25] Y. Zhang, J. Jin, X. Qing, B. Wang, X. Wang, LASSO based stimulus frequency recognition model for SSVEP BCIs, Biomedical Signal Processing and Control. 7 (2012) 104–111. doi:10.1016/j.bspc.2011.02.002.
  • [26] R.M.G. Tello, S.M.T. Muller, T. Bastos-Filho, A. Ferreira, A comparison of techniques and technologies for SSVEP classification, içinde: 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), IEEE, 2014: ss. 1–6. doi:10.1109/BRC.2014.6880956.
  • [27] Z. Lin, C. Zhang, W. Wu, X. Gao, Frequency recognition based on canonical correlation analysis for SSVEP-Based BCIs, IEEE Transactions on Biomedical Engineering. 54 (2007) 1172–1176. doi:10.1109/TBME.2006.889197.
  • [28] Y. Wang, X. Chen, X. Gao, S. Gao, A Benchmark Dataset for SSVEP-Based Brain–Computer Interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 25 (2017) 1746–1752. doi:10.1109/TNSRE.2016.2627556.
  • [29] G. Bin, X. Gao, Z. Yan, B. Hong, S. Gao, An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method, Journal of Neural Engineering. 6 (2009) 046002. doi:10.1088/1741-2560/6/4/046002.
  • [30] J. Pan, X. Gao, F. Duan, Z. Yan, S. Gao, Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis., Journal of neural engineering. 8 (2011) 036027. doi:10.1088/1741-2560/8/3/036027.
  • [31] T.H. Nguyen, W.Y. Chung, A single-channel SSVEP-based BCI speller using deep learning, IEEE Access. 7 (2019) 1752–1763. doi:10.1109/ACCESS.2018.2886759.
  • [32] Q. Gao, Y. Zhang, Z. Wang, E. Dong, X. Song, Y. Song, Channel Projection-Based CCA Target Identification Method for an SSVEP-Based BCI System of Quadrotor Helicopter Control, Computational Intelligence and Neuroscience. 2019 (2019). doi:10.1155/2019/2361282.
  • [33] A.T. Sözer, C.B. Fidan, Novel spatial filter for SSVEP-based BCI: A generated reference filter approach, Computers in Biology and Medicine. 96 (2018) 98–105. doi:10.1016/j.compbiomed.2018.02.019.
  • [34] Y. Wang, R. Wang, X. Gao, B. Hong, S. Gao, A practical VEP-based brain-computer interface, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14 (2006) 234–239. doi:10.1109/TNSRE.2006.875576.
  • [35] A.T. Sözer, C.B. Fidan, Novel Detection Features for SSVEP Based BCI: Coefficient of Variation and Variation Speed, BRAIN: Broad Research in Artificial Intelligence and Neuroscience. 8 (2017) 144–150. https://www.edusoft.ro/brain/index.php/brain/article/view/694/782.

Tek Kanallı Durağan Hal Görsel Uyandırılmış Potansiyel Temelli Beyin-Bilgisayar Arayüzü İçin Deneğe Özgü Sinüzoit Yaklaşımı

Yıl 2021, Cilt: 3 Sayı: 1, 1 - 12, 30.06.2021

Öz

Beyin-bilgisayar arayüzünün (BBA) amacı, ciddi engelli bireylerin günlük yaşamlarını desteklemektir. Pratik BBA için en önemli faktörlerden biri olan kullanım kolaylığı, az sayıda elektrot kullanıldığında artmaktadır. Ancak az sayıda elektrot kullanılması BBA performansını olumsuz yönde etkiler. Bu çalışmada, tek kanallı durağan hal görsel uyarılmış potansiyel (DHGUP) temelli BBA’nın performansını artırmak ve böylece kullanım kolaylığını desteklemek için, deneğe özgü sinüzoit yaklaşımı (DÖSY) ile yeni bir tek kanallı DHGUP algılama yöntemi geliştirilmiştir. DÖSY’de deneğe özgü sinüzoitler, eğitim aşamasında DHGUP’nin frekans ve faz özelliklerinden faydalanılarak tanımlanmıştır. Tanımlanan bu sinüzoitler, test aşamasında, DHGUP yanıtının tespitinde referans olarak kullanılmıştır. Geliştirilen yöntemin tespit performansı, bir kıyaslama veri setinde, iyi bilinen güç spektral yoğunluk analizi (GSYA), minimum mutlak büzülme ve seçim operatörü (MMBSO) ve gelişmiş kanonik korelasyon analizi (KKA) yöntemleri ile karşılaştırılarak test edilmiştir. Deneysel sonuçlar, DÖSY yöntemiyle, GSYA, MMBSO ve gelişmiş KKA yöntemlerine kıyasla önemli ölçüde daha yüksek tespit doğruluğu ve bilgi aktarım hızı (BAH) göstermiştir. Ve deneğe özgü sinüzoitlerin gelişmiş KKA’da kullanılan şablon sinyallerden daha iyi DHGUP yanıtını temsil ettiği gösterilmiştir. Ek olarak önerilen yöntem, tek kanallı DHGUP tabanlı BBA için maksimum 125 ve ortalama 81 bit / dak BAH ile, bildirilen en yüksek BAH değerlerinden birine ulaşmıştır.

Kaynakça

  • [1] E. Yin, Z. Zhou, J. Jiang, F. Chen, Y. Liu, D. Hu, A speedy hybrid BCI spelling approach combining P300 and SSVEP., IEEE transactions on bio-medical engineering. 61 (2014) 473–83. doi:10.1109/TBME.2013.2281976.
  • [2] T. Sakurada, T. Kawase, K. Takano, T. Komatsu, K. Kansaku, A BMI-based occupational therapy assist suit: asynchronous control by SSVEP., Frontiers in neuroscience. 7 (2013) 172. doi:10.3389/fnins.2013.00172.
  • [3] E. Pasqualotto, S. Federici, M.O. Belardinelli, Toward functioning and usable brain–computer interfaces (BCIs): A literature review, Disability and Rehabilitation: Assistive Technology. 7 (2012) 89–103. doi:10.3109/17483107.2011.589486.
  • [4] U. Chaudhary, B. Xia, S. Silvoni, L.G. Cohen, N. Birbaumer, Brain–Computer Interface–Based Communication in the Completely Locked-In State, PLOS Biology. 15 (2017) e1002593. doi:10.1371/journal.pbio.1002593.
  • [5] C. Guger, R. Spataro, B.Z. Allison, A. Heilinger, R. Ortner, W. Cho, V. La Bella, Complete Locked-in and Locked-in Patients: Command Following Assessment and Communication with Vibro-Tactile P300 and Motor Imagery Brain-Computer Interface Tools, Frontiers in Neuroscience. 11 (2017). doi:10.3389/fnins.2017.00251.
  • [6] H.-J. Hwang, C.-H. Han, J.-H. Lim, Y.-W. Kim, S.-I. Choi, K.-O. An, J.-H. Lee, H.-S. Cha, S. Hyun Kim, C.-H. Im, Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies, Psychophysiology. 54 (2017) 444–451. doi:10.1111/psyp.12793.
  • [7] D. Lesenfants, D. Habbal, Z. Lugo, M. Lebeau, P. Horki, E. Amico, C. Pokorny, F. Gómez, A. Soddu, G. Müller-Putz, S. Laureys, Q. Noirhomme, An independent SSVEP-based brain-computer interface in locked-in syndrome., Journal of neural engineering. 11 (2014) 035002. doi:10.1088/1741-2560/11/3/035002.
  • [8] N. Morikawa, T. Tanaka, M.R. Islam, Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials, Journal of Neuroscience Methods. 304 (2018) 1–10. doi:10.1016/j.jneumeth.2018.04.001.
  • [9] S.-C. Chen, Y.-J. Chen, I.A.E. Zaeni, C.-M. Wu, A Single-Channel SSVEP-Based BCI with a Fuzzy Feature Threshold Algorithm in a Maze Game, International Journal of Fuzzy Systems. 19 (2017) 553–565. doi:10.1007/s40815-016-0289-3.
  • [10] H.J. Hwang, J.H. Lim, Y.J. Jung, H. Choi, S.W. Lee, C.H. Im, Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard, Journal of Neuroscience Methods. 208 (2012) 59–65. doi:10.1016/j.jneumeth.2012.04.011.
  • [11] X. Gao, D. Xu, M. Cheng, S. Gao, A BCI-based environmental controller for the motion-disabled, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 11 (2003) 137–140. doi:10.1109/TNSRE.2003.814449.
  • [12] L. Angrisani, P. Arpaia, D. Casinelli, N. Moccaldi, A Single-Channel SSVEP-Based Instrument with Off-The-Shelf Components for Trainingless Brain-Computer Interfaces, IEEE Transactions on Instrumentation and Measurement. 68 (2019) 3616–3625. doi:10.1109/TIM.2018.2882115.
  • [13] A. Bisht, S. Srivastava, G. Purushothaman, A new 360° rotating type stimuli for improved SSVEP based brain computer interface, Biomedical Signal Processing and Control. 57 (2020). doi:10.1016/j.bspc.2019.101778.
  • [14] Y. Zhang, G. Zhou, J. Jin, M. Wang, X. Wang, A. Cichocki, L1-regularized multiway canonical correlation analysis for SSVEP-based BCI, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 21 (2013) 887–896. doi:10.1109/TNSRE.2013.2279680.
  • [15] C. Farmaki, M. Krana, M. Pediaditis, E. Spanakis, V. Sakkalis, Single-channel SSVEP-Based BCI for robotic car navigation in real world conditions, içinde: Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, 2019: ss. 638–643. doi:10.1109/BIBE.2019.00120.
  • [16] X. Chai, Z. Zhang, K. Guan, Y. Lu, G. Liu, T. Zhang, H. Niu, A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis, Biomedical Signal Processing and Control. 56 (2020). doi:10.1016/j.bspc.2019.101687.
  • [17] A. Luo, T.J. Sullivan, A user-friendly SSVEP-based brain-computer interface using a time-domain classifier, Journal of neural engineering. 7 (2010) 26010. doi:10.1088/1741-2560/7/2/026010.
  • [18] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, S. Gao, High-speed spelling with a noninvasive brain–computer interface, Proceedings of the National Academy of Sciences. 112 (2015) 1–10. doi:10.1073/pnas.1508080112.
  • [19] M. Nakanishi, Y. Wang, Y.-T. Wang, T.-P. Jung, A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials, PloS one. 10 (2015) e0140703. doi:10.1371/journal.pone.0140703.
  • [20] D. Kim, W. Byun, Y. Ku, J.H. Kim, High-speed visual target identification for low-cost wearable brain-computer interfaces, IEEE Access. 7 (2019) 55169–55179. doi:10.1109/ACCESS.2019.2912997.
  • [21] S. Ajami, A. Mahnam, V. Abootalebi, Development of a practical high frequency brain–computer interface based on steady-state visual evoked potentials using a single channel of EEG, Biocybernetics and Biomedical Engineering. 38 (2018) 106–114. doi:10.1016/j.bbe.2017.10.004.
  • [22] C. Jia, X. Gao, B. Hong, S. Gao, Frequency and phase mixed coding in SSVEP-based brain--computer interface., IEEE transactions on bio-medical engineering. 58 (2011) 200–206. doi:10.1109/TBME.2010.2068571.
  • [23] F.-B. Vialatte, M. Maurice, J. Dauwels, A. Cichocki, Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives, Progress in Neurobiology. 90 (2010) 418–438. doi:10.1016/j.pneurobio.2009.11.005.
  • [24] A.T. Sozer, Enhanced Single Channel SSVEP Detection Method on Benchmark Dataset, içinde: 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2018, IEEE, 2018: ss. 1–4. doi:10.1109/ICEEE.2018.8533933.
  • [25] Y. Zhang, J. Jin, X. Qing, B. Wang, X. Wang, LASSO based stimulus frequency recognition model for SSVEP BCIs, Biomedical Signal Processing and Control. 7 (2012) 104–111. doi:10.1016/j.bspc.2011.02.002.
  • [26] R.M.G. Tello, S.M.T. Muller, T. Bastos-Filho, A. Ferreira, A comparison of techniques and technologies for SSVEP classification, içinde: 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC), IEEE, 2014: ss. 1–6. doi:10.1109/BRC.2014.6880956.
  • [27] Z. Lin, C. Zhang, W. Wu, X. Gao, Frequency recognition based on canonical correlation analysis for SSVEP-Based BCIs, IEEE Transactions on Biomedical Engineering. 54 (2007) 1172–1176. doi:10.1109/TBME.2006.889197.
  • [28] Y. Wang, X. Chen, X. Gao, S. Gao, A Benchmark Dataset for SSVEP-Based Brain–Computer Interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 25 (2017) 1746–1752. doi:10.1109/TNSRE.2016.2627556.
  • [29] G. Bin, X. Gao, Z. Yan, B. Hong, S. Gao, An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method, Journal of Neural Engineering. 6 (2009) 046002. doi:10.1088/1741-2560/6/4/046002.
  • [30] J. Pan, X. Gao, F. Duan, Z. Yan, S. Gao, Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis., Journal of neural engineering. 8 (2011) 036027. doi:10.1088/1741-2560/8/3/036027.
  • [31] T.H. Nguyen, W.Y. Chung, A single-channel SSVEP-based BCI speller using deep learning, IEEE Access. 7 (2019) 1752–1763. doi:10.1109/ACCESS.2018.2886759.
  • [32] Q. Gao, Y. Zhang, Z. Wang, E. Dong, X. Song, Y. Song, Channel Projection-Based CCA Target Identification Method for an SSVEP-Based BCI System of Quadrotor Helicopter Control, Computational Intelligence and Neuroscience. 2019 (2019). doi:10.1155/2019/2361282.
  • [33] A.T. Sözer, C.B. Fidan, Novel spatial filter for SSVEP-based BCI: A generated reference filter approach, Computers in Biology and Medicine. 96 (2018) 98–105. doi:10.1016/j.compbiomed.2018.02.019.
  • [34] Y. Wang, R. Wang, X. Gao, B. Hong, S. Gao, A practical VEP-based brain-computer interface, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14 (2006) 234–239. doi:10.1109/TNSRE.2006.875576.
  • [35] A.T. Sözer, C.B. Fidan, Novel Detection Features for SSVEP Based BCI: Coefficient of Variation and Variation Speed, BRAIN: Broad Research in Artificial Intelligence and Neuroscience. 8 (2017) 144–150. https://www.edusoft.ro/brain/index.php/brain/article/view/694/782.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdullah Talha Sözer 0000-0002-7855-6119

Yayımlanma Tarihi 30 Haziran 2021
Kabul Tarihi 24 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Sözer, A. T. (2021). Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 3(1), 1-12.
AMA Sözer AT. Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential. NEU Fen Muh Bil Der. Haziran 2021;3(1):1-12.
Chicago Sözer, Abdullah Talha. “Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 3, sy. 1 (Haziran 2021): 1-12.
EndNote Sözer AT (01 Haziran 2021) Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 3 1 1–12.
IEEE A. T. Sözer, “Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential”, NEU Fen Muh Bil Der, c. 3, sy. 1, ss. 1–12, 2021.
ISNAD Sözer, Abdullah Talha. “Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 3/1 (Haziran 2021), 1-12.
JAMA Sözer AT. Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential. NEU Fen Muh Bil Der. 2021;3:1–12.
MLA Sözer, Abdullah Talha. “Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 3, sy. 1, 2021, ss. 1-12.
Vancouver Sözer AT. Subject-Specific Sinusoid Approach for A Brain–Computer Interface Based on Single-Channel Steady-State Visual Evoked Potential. NEU Fen Muh Bil Der. 2021;3(1):1-12.


32206                   17157           17158