Araştırma Makalesi
BibTex RIS Kaynak Göster

Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi

Yıl 2024, Cilt: 6 Sayı: 2, 312 - 335, 31.08.2024
https://doi.org/10.47112/neufmbd.2024.50

Öz

Elektrik üretiminde yenilenebilir enerji kaynaklarının uygun sistemlerle entegre edilerek kullanım alanlarının genişletilmesi önemli bir husustur. Bu doğrultuda, ORÇ kullanımı düşük ve orta sıcaklıkta kaynaklardan elektrik üretiminde ön plana çıkmaktadır. Bu çalışma, jeotermal tabanlı geleneksel Organik Rankine çevriminin (ORÇ) enerji, ekserji ve eksergo-ekonomik analizlerini (3E) içermektedir. Eksergo-ekonomik analiz yöntemi olarak Modifiye Edilmiş Üretim Yapısı Analizi (MOPSA) yöntemi kullanılmıştır. MOPSA yöntemi, sistem bileşenlerinin önemli ekserji oranlarının maliyetlendirilmesine olanak tanıyan bir yöntemdir ve bu yönüyle diğer ekserji-ekonomik yöntemlerden ayrılmaktadır. Analizler sonucunda, önerilen sistemin toplam ekserji verimliliği (η_ex) %50.23 olarak bulunurken, en yüksek ekserji yıkımına sahip sistem bileşeni 43.97 kW değeri ile evaporatör olmuştur. Sistemin toplam ekserji yıkım değeri 70.67 kW olarak bulunmuş ve ekserji yıkımının birim maliyeti (c_s) 1.872 $/GJ olarak hesaplanmıştır. Önerilen sistemin toplam ürün birim maliyeti (〖c_(p,total)〗^MOPSA) 3.662 $/GJ'dür.

Etik Beyan

Çalışmamızda etik beyan ile ilgili bir husus yoktur.

Destekleyen Kurum

Destekleyen kurum yoktur.

Proje Numarası

Yok.

Teşekkür

Çalışma yazarların herhangi bir destek almadan bağımsız çalışmalarıdır.

Kaynakça

  • A. Mahmoudi, M. Fazli, M.R. Morad, A recent review of waste heat recovery by Organic Rankine Cycle, Applied Thermal Engineering. 143 (2018) 660–675. doi:10.1016/j.applthermaleng.2018.07.136.
  • A.O. Özkan, H.B. Demir, Fotovoltaik panellerde sıcaklık ve zenit açısının panel güç üretimine etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 1(1) (2019) 1–9.
  • M.E. Boyacıoğlu, R. Şahin, A. Kahraman, S. Ata, ORÇ ile düşük sıcaklıklı ısı kaynaklarından elektrik üretilmesinde ıslak ve yeni nesil akışkanların çevresel ve termodinamik performanslarının karşılaştırılması, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 1 (2021) 13–23. doi:10.47112/neufmbd.2021.6.
  • R. Loni, O. Mahian, G. Najafi, A.Z. Sahin, F. Rajaee, A. Kasaeian, M. Mehrpooya, E. Bellos, W.G. le Roux, A critical review of power generation using geothermal-driven organic Rankine cycle, Thermal Science and Engineering Progress. 25 (2021). doi:10.1016/j.tsep.2021.101028.
  • Ş. Bülbül, E. Ayhan, H. Gökmeşe, Termik santral atığı olan kömür külünün sbr matrisli bileşiklere ilave edilmesinin mekanik özelliklere etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023) 135–146. doi:10.47112/neufmbd.2023.14
  • H.Y. Kwak, D.J. Kim, J.S. Jeon, Exergetic and thermoeconomic analyses of power plants, Energy. 28 (2003) 343–360. doi:10.1016/S0360-5442(02)00138-X.
  • C. Uysal, D.N. Ozen, H. Kurt, H.Y. Kwak, A comparative assessment of SPECO and MOPSA on costing of exergy destruction, International Journal of Exergy. 32 (2020) 62. doi: 10.1504/IJEX.2020.107744
  • P. Lu, X. Luo, J. Wang, J. Chen, Y. Liang, Z. Yang, C. Wang, Y. Chen, Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation, Energy Conversion and Management. 230 (2021) 113771. doi:10.1016/j.enconman.2020.113771.
  • Y. Zhao, B. Du, S. Chen, J. Zhao, Y. Gong, X. Bu, H. Li, L. Wang, Thermo-Economic comparison between organic Rankine cycle and binary-flashing cycle for geothermal energy, Frontiers in Earth Science. 9 (2021) 1–10. doi:10.3389/feart.2021.759872.
  • L. Wang, B.U. Xianbiao, L.I. Huashan, Thermo-economic ınvestigation of an enhanced geothermal system organic Rankine cycle and combined heating and power system, Acta Geologica Sinica (English Edition). 95 (2021) 1958–1966. doi:10.1111/1755-6724.14871.
  • Y. Chen, J. Xu, D. Zhao, J. Wang, P.D. Lund, Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump, Energy. 230 (2021) 120717. doi:10.1016/j.energy.2021.120717.
  • M. Aliahmadi, A. Moosavi, H. Sadrhosseini, Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, Energy Reports. 7 (2021) 300–313. doi:10.1016/j.egyr.2020.12.035.
  • S. Hu, Z. Yang, J. Li, Y. Duan, Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven method based on lifetime off-design operation, Energy Conversion and Management. 229 (2021) 113738. doi:10.1016/j.enconman.2020.113738.
  • A.K. Bett, S. Jalilinasrabady, Exergoeconomic Analysis for Optimized Combined Wet and Dry Cooling BinaryPower Plant at Olkaria I, Kenya, Geothermics. 95 (2021) 102160. doi:10.1016/j.geothermics.2021.102160.
  • P. Wang, Q. Li, C. Liu, R. Wang, Z. Luo, P. Zou, S. Wang, Comparative analysis of system performance of thermally integrated pumped thermal energy storage systems based on organic flash cycle and organic Rankine cycle, Energy Conversion and Management. 273 (2022) 116416. doi:10.1016/j.enconman.2022.116416.
  • C. Chen, F. Witte, I. Tuschy, O. Kolditz, H. Shao, Parametric optimization and comparative study of an organic Rankine cycle power plant for two-phase geothermal sources, Energy. 252 (2022). doi:10.1016/j.energy.2022.123910.
  • J. Li, Z. Yang, Z. Yu, J. Shen, Y. Duan, Influences of climatic environment on the geothermal power generation potential, Energy Conversion and Management. 268 (2022) 115980. doi:10.1016/j.enconman.2022.115980.
  • S. Khanmohammadi, M. Rahmani, F. Musharavati, S. Khanmohammadi, Q.V. Bach, Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit, Sustainable Energy Technologies and Assessments. 43 (2021) 100810. doi:10.1016/J.SETA.2020.100810.
  • B. Ruhani, S.A. Moghaddas, A. Kheradmand, Hydrogen production via renewable-based energy system: Thermoeconomic assessment and Long Short-Term Memory (LSTM) optimization approach, International Journal of Hydrogen Energy. 52 (2023) 505–519. doi:10.1016/j.ijhydene.2023.03.456.
  • Z. Yuan, G. Jun, Z. Yingxia, Z. Bo, L. Guanqun, T. Yuanjun, Y. Chao, Thermo-economic analysis of an enhanced gekothermal system for power generation based on organic Rankine cycle, 19 (2024), 24-32. doi: 10.1093/ijlct/ctad097
  • M.M. Abdelghafar, M.A. Hassan, H. Kayed, Comprehensive analysis of combined power cycles driven by sCO2-based concentrated solar power: Energy, exergy, and exergoeconomic perspectives, Energy Conversion and Management. 301 (2024) 118046. doi:10.1016/J.ENCONMAN.2023.118046.
  • H. Semmari, F. Bouaicha, S. Aberkane, A. Filali, D. Blessent, M. Badache, Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria, Energy. 290 (2024) 130323. doi:10.1016/j.energy.2024.130323.
  • A. Ahmadi, M. El Haj Assad, D.H. Jamali, R. Kumar, Z.X. Li, T. Salameh, M. Al-Shabi, M.A. Ehyaei, Applications of geothermal organic Rankine Cycle for electricity production, Journal of Cleaner Production. 274 (2020). doi:10.1016/j.jclepro.2020.122950.
  • E. Wang, H. Zhang, B. Fan, Y. Wu, Optimized performances comparison of organic Rankine cycles for low grade waste heat recovery, Journal of Mechanical Science and Technology. 26 (2012) 2301–2312. doi:10.1007/s12206-012-0603-4.
  • N.K. Choudhary, A.P. Deep, S. Karmakar, Thermodynamic analysis of ıntegrated gasification combined cycle ıntegrated with organic Rankine cycle for waste heat utilization, Waste and Biomass Valorization. (2024). doi:10.1007/s12649-023-02391-2.
  • M. Ranjbar Hasani, N. Nedaei, E. Assareh, S.M. Alirahmi, Thermo-economic appraisal and operating fluid selection of geothermal-driven ORC configurations integrated with PEM electrolyzer, Energy. 262 (2023) 125550. doi:10.1016/j.energy.2022.125550.
  • P. Wan, L. Gong, Z. Bai, Thermodynamic analysis of a geothermal-solar flash-binary hybrid power generation system, Energy Procedia. 158 (2019) 3–8. doi:10.1016/j.egypro.2019.01.023.
  • F. Mohammadkhani, N. Shokati, S.M.S. Mahmoudi, M. Yari, M.A. Rosen, Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles, Energy. 65 (2014) 533–543. doi:10.1016/j.energy.2013.11.002.
  • Y. Zhang, E. Yao, T. Wang, Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods, Journal of Energy Storage. 35 (2021) 102274. doi:10.1016/J.EST.2021.102274.
  • D.N. Ozen, C. Uysal, O. Balli, Thermoeconomic analysis of t56 turboprop engine under different load conditions, Isi Bilimi ve Teknigi Dergisi/ Journal of Thermal Science and Technology. 40 (2020) 251–265. doi:10.47480/isibted.817013.
  • D.N. Özen, B. Koçak, Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas, Energy. 248 (2022). doi:10.1016/j.energy.2022.123531.
  • Y. Zhang, T. Liang, C. Yang, X. Zhang, K. Yang, Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle, Energy Conversion and Management. 216 (2020). doi:10.1016/j.enconman.2020.112938.
  • D. Marmolejo-Correa, T. Gundersen, A comparison of exergy efficiency definitions with focus on low temperature processes, Energy. 44 (2012) 477–489. doi:10.1016/J.ENERGY.2012.06.001.
  • E. Hançer Güleryüz, D.N. Özen, Advanced exergy and exergo-economic analyses of an advanced adiabatic compressed air energy storage system, Journal of Energy Storage. 55 (2022). doi:10.1016/j.est.2022.105845.
  • Y. Mazloum, H. Sayah, M. Nemer, Exergy analysis and exergoeconomic optimization of a constant-pressure adiabatic compressed air energy storage system, Journal of Energy Storage. 14 (2017) 192–202. doi:10.1016/j.est.2017.10.006.
  • D.N. Ozen, İ. Uçar, Energy, exergy, and exergo-economic analysis of a novel combined power system using the cold energy of liquified natural gas (LNG), Environmental Progress and Sustainable Energy. 39 (2020) 1–16. doi:10.1002/ep.13377.
  • S. Hou, Y. Zhou, L. Yu, F. Zhang, S. Cao, Y. Wu, Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle, Energy Conversion and Management. 172 (2018) 457–471. doi:10.1016/j.enconman.2018.07.042.
  • C. Uysal, A new approach to advanced exergoeconomic analysis: The unit cost of entropy generation, Environmental Progress and Sustainable Energy. 39 (2020). doi:10.1002/ep.13297.
  • C. Uysal, H. Kurt, H.Y. Kwak, Exergetic and thermoeconomic analyses of a coal-fired power plant, International Journal of Thermal Sciences. 117 (2017) 106–120. doi:10.1016/j.ijthermalsci.2017.03.010.
  • D.N. Özen, E. Hançer Güleryüz, A.M. Acılar, Advanced exergo-economic analysis of an advanced adiabatic compressed air energy storage system with the modified productive structure analysis method and multi-objective optimization study, Journal of Energy Storage. 81 (2024). doi:10.1016/j.est.2023.110380.
  • Y. Aryanfar, M.E.H. Assad, A. Khosravi, R.S.M. Atiqure, S. Sharma, J.L.G. Alcaraz, R. Alayi, Energy, exergy and economic analysis of combined solar ORC-VCC power plant, International Journal of Low-Carbon Technologies. 17 (2022) 196–205. doi:10.1093/IJLCT/CTAB099.
  • A.D. Akbari, S.M.S. Mahmoudi, Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy. 78 (2014) 501–512. doi:10.1016/J.ENERGY.2014.10.037.
  • M. Khaljani, R. Khoshbakhti Saray, K. Bahlouli, Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, Energy Conversion and Management. 97 (2015) 154–165. doi:10.1016/J.ENCONMAN.2015.02.067.
  • J. Bao, Y. Lin, R. Zhang, N. Zhang, G. He, Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery, 126 (2017), 566-582.
  • M. Almahdi, I. Dincer, M.A. Rosen, A new solar based multigeneration system with hot and cold thermal storages and hydrogen production, Renewable Energy. 91 (2016) 302–314.
  • M. Hacıbeyoglu, M. Çelik, Ö. Erdaş Çiçek, K en yakın komşu algoritması ile binalarda enerji verimliliği tahmini, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023) 28–37. doi:10.47112/neufmbd.2023.10

Exergo-economic Analysis of an Geothermal Based Organic Rankine Cycle

Yıl 2024, Cilt: 6 Sayı: 2, 312 - 335, 31.08.2024
https://doi.org/10.47112/neufmbd.2024.50

Öz

It is important to improve the utilization of renewable energy sources in electricity generation by integrating them with appropriate plants. In this regard, the use of organic Rankine cycle (ORÇ) comes to the forefront in electricity generation from low and medium temperature sources. This study presents energy, exergy and exergoeconomic analyzes (3E) of a geothermal-based conventional ORÇ. Modified Productive Structure Analysis (MOPSA) method was used as the exergo-economic analysis method. The MOPSA method is a method that allows costing the major exergy rate of plant elements, and in this respect it stands out from other exergoeconomic methods. As a result of the analyses, the overall exergy efficiency (η_ex) of the proposed plant was found to be 50.23%, while the plant element with the highest exergy destruction rate (〖Ex ̇〗_(D,k)) was the evaporator with a value of 43.97 kW. The total exergy destruction rate of the plant was found to be 70.67 kW and the unit cost of the exergy destruction (c_s) was calculated as 1.872 $/GJ. The total product unit cost (〖c_(p,total)〗^MOPSA) of the proposed plant is $3.662/GJ.

Proje Numarası

Yok.

Kaynakça

  • A. Mahmoudi, M. Fazli, M.R. Morad, A recent review of waste heat recovery by Organic Rankine Cycle, Applied Thermal Engineering. 143 (2018) 660–675. doi:10.1016/j.applthermaleng.2018.07.136.
  • A.O. Özkan, H.B. Demir, Fotovoltaik panellerde sıcaklık ve zenit açısının panel güç üretimine etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 1(1) (2019) 1–9.
  • M.E. Boyacıoğlu, R. Şahin, A. Kahraman, S. Ata, ORÇ ile düşük sıcaklıklı ısı kaynaklarından elektrik üretilmesinde ıslak ve yeni nesil akışkanların çevresel ve termodinamik performanslarının karşılaştırılması, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 1 (2021) 13–23. doi:10.47112/neufmbd.2021.6.
  • R. Loni, O. Mahian, G. Najafi, A.Z. Sahin, F. Rajaee, A. Kasaeian, M. Mehrpooya, E. Bellos, W.G. le Roux, A critical review of power generation using geothermal-driven organic Rankine cycle, Thermal Science and Engineering Progress. 25 (2021). doi:10.1016/j.tsep.2021.101028.
  • Ş. Bülbül, E. Ayhan, H. Gökmeşe, Termik santral atığı olan kömür külünün sbr matrisli bileşiklere ilave edilmesinin mekanik özelliklere etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023) 135–146. doi:10.47112/neufmbd.2023.14
  • H.Y. Kwak, D.J. Kim, J.S. Jeon, Exergetic and thermoeconomic analyses of power plants, Energy. 28 (2003) 343–360. doi:10.1016/S0360-5442(02)00138-X.
  • C. Uysal, D.N. Ozen, H. Kurt, H.Y. Kwak, A comparative assessment of SPECO and MOPSA on costing of exergy destruction, International Journal of Exergy. 32 (2020) 62. doi: 10.1504/IJEX.2020.107744
  • P. Lu, X. Luo, J. Wang, J. Chen, Y. Liang, Z. Yang, C. Wang, Y. Chen, Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation, Energy Conversion and Management. 230 (2021) 113771. doi:10.1016/j.enconman.2020.113771.
  • Y. Zhao, B. Du, S. Chen, J. Zhao, Y. Gong, X. Bu, H. Li, L. Wang, Thermo-Economic comparison between organic Rankine cycle and binary-flashing cycle for geothermal energy, Frontiers in Earth Science. 9 (2021) 1–10. doi:10.3389/feart.2021.759872.
  • L. Wang, B.U. Xianbiao, L.I. Huashan, Thermo-economic ınvestigation of an enhanced geothermal system organic Rankine cycle and combined heating and power system, Acta Geologica Sinica (English Edition). 95 (2021) 1958–1966. doi:10.1111/1755-6724.14871.
  • Y. Chen, J. Xu, D. Zhao, J. Wang, P.D. Lund, Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump, Energy. 230 (2021) 120717. doi:10.1016/j.energy.2021.120717.
  • M. Aliahmadi, A. Moosavi, H. Sadrhosseini, Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, Energy Reports. 7 (2021) 300–313. doi:10.1016/j.egyr.2020.12.035.
  • S. Hu, Z. Yang, J. Li, Y. Duan, Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven method based on lifetime off-design operation, Energy Conversion and Management. 229 (2021) 113738. doi:10.1016/j.enconman.2020.113738.
  • A.K. Bett, S. Jalilinasrabady, Exergoeconomic Analysis for Optimized Combined Wet and Dry Cooling BinaryPower Plant at Olkaria I, Kenya, Geothermics. 95 (2021) 102160. doi:10.1016/j.geothermics.2021.102160.
  • P. Wang, Q. Li, C. Liu, R. Wang, Z. Luo, P. Zou, S. Wang, Comparative analysis of system performance of thermally integrated pumped thermal energy storage systems based on organic flash cycle and organic Rankine cycle, Energy Conversion and Management. 273 (2022) 116416. doi:10.1016/j.enconman.2022.116416.
  • C. Chen, F. Witte, I. Tuschy, O. Kolditz, H. Shao, Parametric optimization and comparative study of an organic Rankine cycle power plant for two-phase geothermal sources, Energy. 252 (2022). doi:10.1016/j.energy.2022.123910.
  • J. Li, Z. Yang, Z. Yu, J. Shen, Y. Duan, Influences of climatic environment on the geothermal power generation potential, Energy Conversion and Management. 268 (2022) 115980. doi:10.1016/j.enconman.2022.115980.
  • S. Khanmohammadi, M. Rahmani, F. Musharavati, S. Khanmohammadi, Q.V. Bach, Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit, Sustainable Energy Technologies and Assessments. 43 (2021) 100810. doi:10.1016/J.SETA.2020.100810.
  • B. Ruhani, S.A. Moghaddas, A. Kheradmand, Hydrogen production via renewable-based energy system: Thermoeconomic assessment and Long Short-Term Memory (LSTM) optimization approach, International Journal of Hydrogen Energy. 52 (2023) 505–519. doi:10.1016/j.ijhydene.2023.03.456.
  • Z. Yuan, G. Jun, Z. Yingxia, Z. Bo, L. Guanqun, T. Yuanjun, Y. Chao, Thermo-economic analysis of an enhanced gekothermal system for power generation based on organic Rankine cycle, 19 (2024), 24-32. doi: 10.1093/ijlct/ctad097
  • M.M. Abdelghafar, M.A. Hassan, H. Kayed, Comprehensive analysis of combined power cycles driven by sCO2-based concentrated solar power: Energy, exergy, and exergoeconomic perspectives, Energy Conversion and Management. 301 (2024) 118046. doi:10.1016/J.ENCONMAN.2023.118046.
  • H. Semmari, F. Bouaicha, S. Aberkane, A. Filali, D. Blessent, M. Badache, Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria, Energy. 290 (2024) 130323. doi:10.1016/j.energy.2024.130323.
  • A. Ahmadi, M. El Haj Assad, D.H. Jamali, R. Kumar, Z.X. Li, T. Salameh, M. Al-Shabi, M.A. Ehyaei, Applications of geothermal organic Rankine Cycle for electricity production, Journal of Cleaner Production. 274 (2020). doi:10.1016/j.jclepro.2020.122950.
  • E. Wang, H. Zhang, B. Fan, Y. Wu, Optimized performances comparison of organic Rankine cycles for low grade waste heat recovery, Journal of Mechanical Science and Technology. 26 (2012) 2301–2312. doi:10.1007/s12206-012-0603-4.
  • N.K. Choudhary, A.P. Deep, S. Karmakar, Thermodynamic analysis of ıntegrated gasification combined cycle ıntegrated with organic Rankine cycle for waste heat utilization, Waste and Biomass Valorization. (2024). doi:10.1007/s12649-023-02391-2.
  • M. Ranjbar Hasani, N. Nedaei, E. Assareh, S.M. Alirahmi, Thermo-economic appraisal and operating fluid selection of geothermal-driven ORC configurations integrated with PEM electrolyzer, Energy. 262 (2023) 125550. doi:10.1016/j.energy.2022.125550.
  • P. Wan, L. Gong, Z. Bai, Thermodynamic analysis of a geothermal-solar flash-binary hybrid power generation system, Energy Procedia. 158 (2019) 3–8. doi:10.1016/j.egypro.2019.01.023.
  • F. Mohammadkhani, N. Shokati, S.M.S. Mahmoudi, M. Yari, M.A. Rosen, Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles, Energy. 65 (2014) 533–543. doi:10.1016/j.energy.2013.11.002.
  • Y. Zhang, E. Yao, T. Wang, Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods, Journal of Energy Storage. 35 (2021) 102274. doi:10.1016/J.EST.2021.102274.
  • D.N. Ozen, C. Uysal, O. Balli, Thermoeconomic analysis of t56 turboprop engine under different load conditions, Isi Bilimi ve Teknigi Dergisi/ Journal of Thermal Science and Technology. 40 (2020) 251–265. doi:10.47480/isibted.817013.
  • D.N. Özen, B. Koçak, Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas, Energy. 248 (2022). doi:10.1016/j.energy.2022.123531.
  • Y. Zhang, T. Liang, C. Yang, X. Zhang, K. Yang, Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle, Energy Conversion and Management. 216 (2020). doi:10.1016/j.enconman.2020.112938.
  • D. Marmolejo-Correa, T. Gundersen, A comparison of exergy efficiency definitions with focus on low temperature processes, Energy. 44 (2012) 477–489. doi:10.1016/J.ENERGY.2012.06.001.
  • E. Hançer Güleryüz, D.N. Özen, Advanced exergy and exergo-economic analyses of an advanced adiabatic compressed air energy storage system, Journal of Energy Storage. 55 (2022). doi:10.1016/j.est.2022.105845.
  • Y. Mazloum, H. Sayah, M. Nemer, Exergy analysis and exergoeconomic optimization of a constant-pressure adiabatic compressed air energy storage system, Journal of Energy Storage. 14 (2017) 192–202. doi:10.1016/j.est.2017.10.006.
  • D.N. Ozen, İ. Uçar, Energy, exergy, and exergo-economic analysis of a novel combined power system using the cold energy of liquified natural gas (LNG), Environmental Progress and Sustainable Energy. 39 (2020) 1–16. doi:10.1002/ep.13377.
  • S. Hou, Y. Zhou, L. Yu, F. Zhang, S. Cao, Y. Wu, Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle, Energy Conversion and Management. 172 (2018) 457–471. doi:10.1016/j.enconman.2018.07.042.
  • C. Uysal, A new approach to advanced exergoeconomic analysis: The unit cost of entropy generation, Environmental Progress and Sustainable Energy. 39 (2020). doi:10.1002/ep.13297.
  • C. Uysal, H. Kurt, H.Y. Kwak, Exergetic and thermoeconomic analyses of a coal-fired power plant, International Journal of Thermal Sciences. 117 (2017) 106–120. doi:10.1016/j.ijthermalsci.2017.03.010.
  • D.N. Özen, E. Hançer Güleryüz, A.M. Acılar, Advanced exergo-economic analysis of an advanced adiabatic compressed air energy storage system with the modified productive structure analysis method and multi-objective optimization study, Journal of Energy Storage. 81 (2024). doi:10.1016/j.est.2023.110380.
  • Y. Aryanfar, M.E.H. Assad, A. Khosravi, R.S.M. Atiqure, S. Sharma, J.L.G. Alcaraz, R. Alayi, Energy, exergy and economic analysis of combined solar ORC-VCC power plant, International Journal of Low-Carbon Technologies. 17 (2022) 196–205. doi:10.1093/IJLCT/CTAB099.
  • A.D. Akbari, S.M.S. Mahmoudi, Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy. 78 (2014) 501–512. doi:10.1016/J.ENERGY.2014.10.037.
  • M. Khaljani, R. Khoshbakhti Saray, K. Bahlouli, Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, Energy Conversion and Management. 97 (2015) 154–165. doi:10.1016/J.ENCONMAN.2015.02.067.
  • J. Bao, Y. Lin, R. Zhang, N. Zhang, G. He, Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery, 126 (2017), 566-582.
  • M. Almahdi, I. Dincer, M.A. Rosen, A new solar based multigeneration system with hot and cold thermal storages and hydrogen production, Renewable Energy. 91 (2016) 302–314.
  • M. Hacıbeyoglu, M. Çelik, Ö. Erdaş Çiçek, K en yakın komşu algoritması ile binalarda enerji verimliliği tahmini, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023) 28–37. doi:10.47112/neufmbd.2023.10
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Makaleler
Yazarlar

Esra Hançer Güleryüz 0000-0002-6772-9985

Dilek Nur Özen 0000-0002-8622-4990

Proje Numarası Yok.
Erken Görünüm Tarihi 31 Ağustos 2024
Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 23 Şubat 2024
Kabul Tarihi 7 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Hançer Güleryüz, E., & Özen, D. N. (2024). Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(2), 312-335. https://doi.org/10.47112/neufmbd.2024.50
AMA Hançer Güleryüz E, Özen DN. Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi. NEU Fen Muh Bil Der. Ağustos 2024;6(2):312-335. doi:10.47112/neufmbd.2024.50
Chicago Hançer Güleryüz, Esra, ve Dilek Nur Özen. “Jeotermal Temelli Bir Organik Rankine Çevriminin Eksergo-Ekonomik Analizi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, sy. 2 (Ağustos 2024): 312-35. https://doi.org/10.47112/neufmbd.2024.50.
EndNote Hançer Güleryüz E, Özen DN (01 Ağustos 2024) Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 2 312–335.
IEEE E. Hançer Güleryüz ve D. N. Özen, “Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi”, NEU Fen Muh Bil Der, c. 6, sy. 2, ss. 312–335, 2024, doi: 10.47112/neufmbd.2024.50.
ISNAD Hançer Güleryüz, Esra - Özen, Dilek Nur. “Jeotermal Temelli Bir Organik Rankine Çevriminin Eksergo-Ekonomik Analizi”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/2 (Ağustos 2024), 312-335. https://doi.org/10.47112/neufmbd.2024.50.
JAMA Hançer Güleryüz E, Özen DN. Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi. NEU Fen Muh Bil Der. 2024;6:312–335.
MLA Hançer Güleryüz, Esra ve Dilek Nur Özen. “Jeotermal Temelli Bir Organik Rankine Çevriminin Eksergo-Ekonomik Analizi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 6, sy. 2, 2024, ss. 312-35, doi:10.47112/neufmbd.2024.50.
Vancouver Hançer Güleryüz E, Özen DN. Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi. NEU Fen Muh Bil Der. 2024;6(2):312-35.


32206                   17157           17158