Araştırma Makalesi
BibTex RIS Kaynak Göster

Gümüş Nanoparçacıklarına Çinko Katkılanmasının Toksik Organik Boyaların Bozunmasının Artırılmasına Etkilerinin İncelenmesi

Yıl 2025, Cilt: 7 Sayı: 1, 56 - 76

Öz

Bu çalışmada, gümüş nanoparçacıkların katalitik verimliliğini artırmak amacıyla, Çinko katkılı Gümüş Nanoparçacıklar (Zn katkılı Ag NP'ler) sentezlenmiştir. Polygonum cognatum özütü ile çinko katkılama oranı sistematik olarak değiştirilerek (çıplak Ag NP, %1,6 Zn katkılı Ag NP ve %9,0 Zn katkılı Ag NP) kontrollü bir yeşil sentez yapılmıştır. Endüktif Eşleşmiş Plazma Optik Emisyon Spektroskopisi (ICP-OES), Taramalı Geçirimli Elektron Mikroskopisi (STEM), Enerji Dağılımlı X-Işını Spektroskopisi (EDS), X-ışını Floresansı (XRF), X-ışını Kırınımı (XRD) ve Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR) analizleri, NP’lerin oluşumunu, elemental içeriğini, kristal yapısını ve Zn'nin Ag NP matrisine etkili bir şekilde dahil edildiğini doğrulamıştır. Yeşil sentezlenmiş Zn katkılı Ag NP'lerin, indirgeyici ajan olarak sodyum borohidrür (NaBH4) çözeltisi kullanılarak metil turuncusunun (MO) ve metilen mavisinin (MB) bozunmasındaki katalitik aktiviteleri araştırılmıştır. Sonuçlara göre, Zn katkılı Ag NP'ler çıplak Ag NP'lere kıyasla üstün katalitik performans sergilemiştir. Sonuçlar, %9,0 Zn katkılı Ag NP'nin MO'yu 15 dakika içinde 0,2199 dk-1 hız sabiti (kapp) ve 1,65 x 10-3 mol.g-1 dk-1 devir frekansı (TOF) ile %96,56 oranında parçaladığını göstermektedir. MB degradasyonunda parçalama yüzdesi, 0,4445 dk-1 kapp ve 2,54 x 10-3 mol.g-1dk-1 TOF ile 10 dakikada %98,38'e, ulaşmıştır. Her iki boya için de Zn katkılama miktarının %1,6'dan %9,0'a çıkarılması reaksiyon sürelerini büyük ölçüde kısaltmış ve bozunma verimliliğini artırmıştır. 9.0 % Zn katkılı Ag NP'lerin toksik organik boyaların hızlı ve verimli bir şekilde bozunması için oldukça etkili katalizörler olduğu bulunmuştur. Bu çalışmanın bulguları, çevresel arıtma ve diğer uygulamalar için daha etkili ve özelleştirilebilir katalitik malzemelerin geliştirilmesini sağlayacak olan çinko katkılama yoluyla gümüş nanopartiküllerin etkinliğinin ayarlanabilirliği hakkında değerli bilgiler sağlamaktadır.

Kaynakça

  • B. Akgayev, S. Akbayrak, M. Yılmaz, M.S. Büker, V. Unsur, Assessing the feasibility of photovoltaic systems in Türkiye: Technical and economic analysis of on-grid, off-grid, and utility-scale PV ınstallations, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 69-92. doi:10.47112/neufmbd.2024.33
  • M. Ismail, K. Akhtar, M.I. Khan, T. Kamal, M.A. Khan, M.A. Asiri, S.B. Khan, Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bioremediation, Current pharmaceutical design. 25(34) (2019), 3645-3663. doi:10.2174/1381612825666191021142026
  • M.A. Al-Nuaim, A.A. Alwasiti, Z.Y. Shnain, The photocatalytic process in the treatment of polluted water, Chemical papers. 77(2) (2023), 677-701. doi:10.1007/s11696-022-02468-7
  • M. Priyadarshanee, U. Mahto, S. Das, Mechanism of toxicity and adverse health effects of environmental pollutants, In Microbial biodegradation and bioremediation. (2022), 33-53. Elsevier. doi:10.1016/B978-0-323-85455-9.00024-2
  • S. Bulbul, E. Ayhan, H. Gökmeşe, Termik santral atığı olan kömür külünün SBR matrisli bileşiklere ilave edilmesinin mekanik özelliklere etkisi, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 96-107. doi:10.47112/neufmbd.2023.14
  • M.A. Al-Nuaim, A.A. Alwasiti, Z.Y. Shnain, The photocatalytic process in the treatment of polluted water, Chemical papers, 77(2) (2023) 677-701. doi:10.1007/s11696-022-02468-7
  • A. Saravanan, P.S. Kumar, D.V.N. Vo, S. Jeevanantham, S. Karishma, P.R.A. Yaashikaa, review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes, Journal of Hazardous Materials. 419 (2021), 126451. doi:10.1016/j.jhazmat.2021.126451
  • D. Astruc, Introduction: nanoparticles in catalysis, Chemical reviews. 120(2) (2020), 461-463. doi: 10.1021/acs.chemrev.8b00696
  • A. Dhaka, S.C. Mali, S. Sharma, R.A. Trivedi, review on biological synthesis of silver nanoparticles and their potential applications, Results in Chemistry. (2023), 101108. doi:10.1016/j.rechem.2023.101108
  • B. Mekuye, The Impact of size on the optical properties of silver nanoparticles based on dielectric function, Nanotechnology and Nanomaterials Annual Volume (2023). doi:10.5772/intechopen.113976
  • W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, E. Górecka, Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial, Nature communications. 6(1) (2015), 6590. doi:10.1038/ncomms7590
  • G. Palani, H. Trilaksana, R.M. Sujatha, K. Kannan, S. Rajendran, K. Korniejenko, M. Uthayakumar, Silver nanoparticles for wastewater management, Molecules. 28(8) (2023), 3520. doi:10.3390/molecules28083520
  • M.A. Kareem, I.T. Bello, H.A. Shittu, P. Sivaprakash, O. Adedokun, S. Arumugam, Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles, Cleaner Materials. 3 (2022), 100041. doi:10.1016/j.clema.2022.100041
  • V. Vinitha, M. Preeyanghaa, V. Vinesh, R. Dhanalakshmi, B. Neppolian, V. Sivamurugan, Two is better than one: Catalytic, sensing and optical applications of doped zinc oxide nanostructures, Emergent Materials. 4 (2021), 1093-1124. doi:10.1007/s42247-021-00262-x
  • D. Ntemogiannis, M. Tsarmpopoulou, A. Stamatelatos, S. Grammatikopoulos, V. Karoutsos, D.I. Anyfantis, P. Poulopoulos, ZnO Matrices as a platform for tunable localized surface plasmon resonances of silver nanoparticles, Coatings. 14(1) (2024), 69. doi:10.3390/coatings14010069
  • S. Lv, Y. Du, F. Wu, Y Cai, T. Zhou, Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling, Nanoscale Advances. 4(12) (2022), 2608-2631. doi:10.1039/D2NA00140C
  • Y. Li, Q. Liao, W. Hou, L. Qin, Silver-based surface plasmon sensors: fabrication and applications, International Journal of Molecular Sciences. 24(4) (2023), 4142. doi:10.3390/ijms24044142
  • E. Vanags, I. Bite, L. Ignatane, R. Ignatans, A. Trausa, C.F. Tipaldi, K. Smits, Zinc Oxide Tetrapods Doped with Silver Nanoparticles as a Promising Substrate for the Detection of Biomolecules via Surface-Enhanced Raman Spectroscopy, ChemEngineering. 8(1) (2024), 19. doi:10.3390/chemengineering8010019
  • S. Raha, M. Ahmaruzzaman, ZnO nanostructured materials and their potential applications: progress, challenges, and perspectives, Nanoscale Advances. 4(8) (2022), 1868-1925. doi: 10.1039/D1NA00880C
  • H. Li, P. Wang, J. Qian, Y. Li, Q. Yuan, L. Du, Y. Chen, Zn-doped MnCe catalyst designed and applied for indoor low concentration formaldehyde removal and simultaneous antibacterial, Materials Chemistry and Physics. 305 (2023), 127946. 2023.127946. doi: 10.1016/j.matchemphys
  • Y. Sun, W. Zhang, Q. Li, H. Liu, X. Wang, Preparations and applications of zinc oxide based photocatalytic materials, Advanced Sensor and Energy Materials. (2023), 100069. doi:10.1016/j.asems.2023.100069
  • J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M.C. Alvarez Galvan, R. Schlögl, M. Behrens, Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO: M (M= Al, Ga, Mg) catalysts, ACS catalysis. 5(6) (2015), 3260-3270. doi:10.1021/acscatal.5b00188
  • M.L. Sun, Z.P. Hu, H.Y. Wang, Y.J. Suo, Z.Y. Yuan, Design strategies of stable catalysts for propane dehydrogenation to propylene, ACS Catalysis. 13(7) (2023), 4719-4741. doi:10.1021/acscatal.3c00103
  • N.A. Erfan, M.S. Mahmoud, H.Y. Kim, N.A. Barakat, Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO2 photocatalysis for effective water photo splitting reaction, Frontiers in Chemistry. (2023), 11. doi:10.3389/fchem.2023.1301172
  • T. Mao, M. Liu, L. Lin, Y. Cheng, C.A Fang, study on doping and compound of zinc oxide photocatalysts, Polymers. 14(21) (2022), 4484. doi:10.3390/polym14214484
  • I.H. Ifijen, M. Maliki, B. Anegbe, Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: A detailed review, OpenNano. 8 (2022), 100082. doi: 10.1016/j.onano.2022.100082
  • D. Gupta, A. Boora, A Thakur, T.K. Gupta, Green and sustainable synthesis of nanomaterials: recent advancements and limitations, Environmental Research. 231 (2023), 116316. doi:10.1016/j.envres.2023.116316
  • P. Szczyglewska, A. Feliczak-Guzik, I. Nowak, Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles, Molecules. 28(13) (2023), 4932. doi:10.3390/molecules28134932
  • V. Harish, M.M. Ansari, D. Tewari, A.B. Yadav, N. Sharma, S. Bawarig, A. Barhoum, Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review, Journal of the Taiwan Institute of Chemical Engineers. 149 (2023), 105010. doi:10.1016/j.jtice.2023.105010
  • Y. T. Gebreslassie, F.G. Gebremeskel, Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications, Biotechnology Reports. (2024), e00828. doi:10.1016/j.btre.2024.
  • A.R. Bagheri, N. Aramesh, M.S. Hasnain, A.K. Nayak, R.S. Varma, Greener fabrication of metal nanoparticles using plant materials: A review, Chemical Physics Impact. 7 (2023), 100255. doi:10.1016/j.chphi.2023.100255
  • A.M.E. Shafey, Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review, Green Processing and Synthesis. 9(1) (2020), 304-339. doi:10.1515/gps-2020-0031
  • N.M. Ishak, S.K. Kamarudin, S.N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Materials Research Express. 6(11) (2019), 112004. doi:10.1088/2053-1591/ab4458
  • S. Gözcü, R.A. Uğan, H. Özbek, B. Gündoğdu, Z. Güvenalp, Evaluation of antidiabetic and antioxidant effects of Polygonum cognatum Meisn. and phytochemical analysis of effective extracts, Biomedical Chromatography. 38(3) (2024), e5809. doi:10.1002/bmc.5809
  • N. Eruygur, E. Ucar, M. Ataş, M. Ergul, M. Ergul, F. Sozmen, Determination of biological activity of Tragopogon porrifolius and Polygonum cognatum consumed intensively by people in Sivas, Toxicology reports. 7 (2020), 59-66. doi:10.1016/j.toxrep.2019.12.002
  • F. Demirgül, M. Divriklioğlu-Kundak, O. Sağdiç, Bioactive properties, antibacterial activity, and color features of Polygonum cognatum: The effects of frozen storage and cooking process, Food Science and Technology. 42 (2022), e00322. doi:10.1590/fst.00322
  • R. Akpınar, G. Yıldırım Baştemur, B. Bıçak, N.O. Sanli, E. Mertoğlu Kamalı, M. Pekmez, S. Perçin Özkorucuklu, Phytochemical profiling, in vitro biological activities, and in silico (molecular docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn, Journal of Separation Science. 47(1) (2024), 2300750. doi:10.1002/jssc.202300750
  • A. Yıldırım, A. Mavi, A. Kara, Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts, Journal of the Science of Food and Agriculture. 83(1) (2003), 64-69. doi:10.1002/jsfa.1288
  • M. Pehlivan, H.İ.K. Çöven, B. Çerçi, A. Eldem, T. Öz, N. Savlak, İ. Pirim, The cytotoxic effect of Polygonium cognatum and chemotherapeutic effect of doxorubicin on glioblastoma cells, European Journal of Therapeutics. 27(1) (2021), 50-54. doi:10.5152/eurjther.2021.20085
  • A.Q. Malik, T.U.G.,Mir, D. Kumar, I.A. Mir, A. Rashid, M. Ayoub, S. Shukla, A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins, Environmental Science and Pollution Research. 30(27) (2023), 69796-69823. doi:10.1007/s11356-023-27437-9
  • B. Mahesh, A comprehensive review on current trends in greener and sustainable synthesis of ferrite nanoparticles and their promising applications, Results in Engineering. (2023), 101702. doi:10.1016/j.rineng.2023.101702
  • A. Saravanan, P.S. Kumar, S. Karishma, D.V.N. Vo, S. Jeevanantham, P.R. Yaashikaa, C.S. George, A review on biosynthesis of metal nanoparticles and its environmental applications, Chemosphere. 264 (2021), 128580. doi:10.1016/j.chemosphere.2020.128580
  • B. Mahesh, A comprehensive review on current trends in greener and sustainable synthesis of ferrite nanoparticles and their promising applications, Results in Engineering. (2023), 101702. doi:10.1016/j.rineng.2023.101702
  • A.B. Daphedar, S. Kakkalameli, B. Faniband, M. Bilal, R.N. Bhargava, L.F.R. Ferreira, S. I. Mulla, Decolorization of various dyes by microorganisms and green-synthesized nanoparticles: current and future perspective, Environmental Science and Pollution Research. 30(60) (2023), 124638-124653. doi:10.1007/s11356-022-21196-9
  • S.S. Emmanuel, A.A. Adesibikan, O.D. Saliu, E.A. Opatola, Greenly biosynthesized bimetallic nanoparticles for ecofriendly degradation of notorious dye pollutants: A review, Plant Nano Biology. 3 (2023), 100024. doi:10.1016/j.plana.2023.100024
  • N.T. T. Nguyen, L.M. Nguyen, T.T.T. Nguyen, R.K. Liew, D.T.C. Nguyen, T. Van Tran, Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review, Science of the Total Environment. 827 (2022), 154160. doi:10.1016/j.scitotenv.2022.154160
  • M. Yilmaz, A. Yilmaz, A. Karaman, F. Aysin, O. Aksakal, Monitoring Chemically and Green-Synthesized Silver nanoparticles in maize seedlings via Surface-Enhanced Raman Spectroscopy (SERS) and their phytotoxicity evaluation, Talanta. (225) (2021), 121952. doi:10.1016/j.talanta.2020.121952. doi:10.1016/j.talanta.2020.121952
  • Ö. Kaplan, N. Gökşen Tosun, Biosynthesis of ıron, copper and silver nanoparticles using Polygonum cognatum and tragopogon porrifolius extracts and evaluation of their antimicrobial potentials, Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 11(4) (2023), 2155–2167. doi:10.29130/dubited.1093468
  • N. Gürsoy, S. Elagöz, E. Gölge, Polygonum cognatum Meissn. ve funguslu ortamda sentezlenen gümüş nanopartiküllerinin (agnp) antimikrobiyal özelliklerinin araştırılması, Türk Tarım ve Doğa Bilimleri Dergisi. 7 (1) (2020), 221–230. doi: 10.30910/turkjans.680075
  • H. Meskher, S.B. Belhaouari, K. Deshmukh, C.M. Hussain, F.A Sharifianjazi, Magnetite composite of molecularly ımprinted polymer and reduced graphene oxide for sensitive and selective electrochemical detection of catechol in water and milk samples: An artificial neural network (ANN) application, Journal of The Electrochemical Society. 170(4) (2023), 047502. doi:10.1149/1945-7111/acc97c
  • M.E. Pekdemir, S. Pekdemir, Ş. İnci, S. Kırbağ, M. Çiftci, Thermal, Magnetic properties and antimicrobial effects of magnetic ıron oxide nanoparticles treated with Polygonum cognatum, Iranian Journal of Science and Technology, Transactions of Civil Engineering. 45 (5) (2021), 1579–1586. doi:10.1007/s40995-021-01167-4
  • R. Abaid, M. Malik, M.A. Iqbal, M. Malik, Z. Shahwani, T.Z. Ali, K. Morsy, R.Y. Capangpangan, A.C. Alguno, J.R. Choi, Biosynthesizing Cassia fistula extract-mediated silver nanoparticles for MCF-7 cell lines anti-cancer assay, ACS Omega. 8(19) (2023), 17317–17326. doi:10.1021/acsomega.3c02225
  • T.C. Kömürcü, N. Bilgiçli, Yumurtalı ve yumurtasız formüle edilen madımak (Polygonum cognatum) tozu ilaveli eriştelerin fonksiyonel içeriği ve duyusal özellikleri, Necmettin Erbakan University Journal of Science and Engineering. 6(1), (2024), 124-138. doi:10.47112/neufmbd.2024.37
  • P.N.V.K. Pallela, S. Ummey, L.K. Ruddaraju, S.V.N. Pammi, S.G Yoon, Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity, Microbial Pathogenesis. 124 (2018), 63-69. doi:10.1016/j.micpath.2018.08.026
  • D. Nayak, S. Ashe, P.R. Rauta, M. Kumari, B. Nayak, Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma, Materials Science and Engineering:C. 58 (2016), 44-52. doi:10.1016/j.msec.2015.08.022
  • J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research. 11 (2009), 77-89. doi:10.1007/s11051-008-9446-4
  • X. Yin, W. Que, D. Fei, F. Shen, Q. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties, Journal of Alloys and Compounds. 524 (2012), 13-21. doi:10.1016/j.jallcom.2012.02.052
  • N. Bhattacharjee, I. Som, R. Saha, S.A Mondal, critical review on novel eco-friendly green approach to synthesize zinc oxide nanoparticles for photocatalytic degradation of water pollutants, International Journal of Environmental Analytical Chemistry. 104(3) (2024), 489-516. doi:10.1080/03067319.2021.2022130
  • H. Jan, M. Shah, H. Usman, M.A. Khan, M. Zia, C. Hano, B.H. Abbasi, Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora), Frontiers in Materials. 7 (2020), 249. doi:10.3389/fmats.2020.00249
  • A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Advances in colloid and interface science. 249 (2017), 37-52. doi:10.1016/j.cis.2017.07.033
  • M. Bandeira, M. Giovanela, M. Roesch-Ely, D.M. Devine, J. da Silva Crespo, Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation, Sustainable Chemistry and Pharmacy. 15 (2020), 100223. doi:10.1016/j.scp.2020.100223
  • N. Singh, F.Z. Haque, Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique, Optik. 127(1) (2016). 174-177. doi:10.1016/j.ijleo.2015.09.024
  • T. Parsai, A. Kumar, Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles, Chemosphere. 235 (2019), 457-469. doi:10.1016/j.chemosphere.2019.06.171
  • H. Veisi, S. Azizi, P. Mohammadi, Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water, Journal of Cleaner Production. 170 (2018), 1536-1543. doi:10.1016/j.jclepro.2017.09.265
  • A. Dandia, S.L. Gupta, A. Indora, P. Saini, V. Parewa, K.S. Rathore, Ag NPs decked GO composite as a competent and reusable catalyst for ‘ON WATER’chemoselective synthesis of pyrano [2, 3-c: 6, 5-c′] dipyrazol]-2-ones, Tetrahedron Letters. 58(12) (2017), 1170-1175. doi:10.1016/j.tetlet.2017.02.014
  • S.K. Pandey, M.K. Tripathi, V. Ramanathan, P.K. Mishra, D. Tiwary, Enhanced photocatalytic efficiency of hydrothermally synthesized g-C3N4/NiO heterostructure for mineralization of malachite green dye, Journal of Materials Research and Technology. 11 (2021), 970-981. doi:10.1016/j.jmrt.2021.01.059
  • C.W. Lou, A.P. Chen, T.T Lic, J.H. Lin, Antimicrobial activity of UV-induced chitosan capped silver nanoparticles, Materials Letters. 128 (2014), 248-252. doi:10.1016/j.matlet.2014.04.145
  • M. Zafar, T. Iqbal, Green synthesis of silver and zinc oxide nanoparticles for novel application to enhance shelf life of fruits. Biomass Conversion and Biorefinery. 14(4) (2024), 5611-5626. doi:10.1007/s13399-022-02730-8
  • N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R., Mehta, A. Fatma, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloids and Surfaces B: Biointerfaces. 81(1) (2010), 81-86. doi:10.1016/j.colsurfb.2010.06.029
  • D.R. Mota, W.D.S. Martini, D.S. Pellosi, Influence of Ag size and shape in dye photodegradation using silver nanoparticle/ZnO nanohybrids and polychromatic light, Environmental Science and Pollution Research. 30(20) (2023), 57667-57682. doi:10.1007/s11356-023-26580-7
  • M.U. Rashid, S.J. Shah, S. Attacha, L. Khan, J. Saeed, S.T. Shah, H.I. Mohamed, Green Synthesis and characterization of zinc oxide nanoparticles using Citrus limetta peels extract and their antibacterial activity against brown and soft rot pathogens and antioxidant potential, Waste and Biomass Valorization. (2024), 1-16. doi:10.1007/s12649-023-02389-w
  • P. Perumal, N.A. Sathakkathulla, K. Kumaran, R. Ravikumar, J.J. Selvaraj, V. Nagendran, S. Rathinasamy, Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells, Scientific Reports. 14(1) (2024), 2204. doi:10.1038/s41598-024-52217-x
  • P. Ramesh, A. Rajendran, M. Ashokkumar, Biosynthesis of zinc oxide nanoparticles from Phyllanthus niruri plant extract for photocatalytic and antioxidant activities, International Journal of Environmental Analytical Chemistry. 104(7) (2024), 1561-1572. doi:10.1080/03067319.2022.2041004
  • P.A. Luque, H.E. Garrafa-Gálvez, C.A. García-Maro, C.A. Soto-Robles, Study of the optical properties of ZnO semiconductor nanoparticles using Origanum vulgare and its effect in Rhodamine B degradation, Optik. 258 (2022), 168937. doi: 10.1016/j.ijleo.2022.168937
  • Md.R. Khan, S.M. Hoque, K.F.B. Hossain, Md.A.B. Siddique, Md.K. Uddin, Md.M. Rahman, Green synthesis of silver nanoparticles using Ipomoea aquatica leaf extract and its cytotoxicity and antibacterial activity assay, Green Chemistry Letters and Reviews. 13(4) (2020), 303-315. doi:10.1080/17518253.2020.1839573
  • K.J. Rao, S. Paria, Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract, Materials Research Bulletin. 48(2) (2013), 628-634. doi: 10.1016/j.materresbull.2012.11.035
  • D.A. Kumar, V. Palanichamy, S.M. Roopan, Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 127 (2014), 168-171. doi: 10.1016/j.saa.2014.02.058
  • J.A. Garibay-Alvarado, M.A. Ruiz-Esparza-Rodríguez, E.A. Zaragoza-Contreras, S.Y. Reyes-López, Ag nanoparticle-decorated SiO2–Al2O3–ZrO2 composites as a low-cost substrate for enhanced signal ınfrared spectroscopy, ACS Applied Nano Materials. 7(5) (2024). 4658-4666. doi:10.1021/acsanm.3c03464
  • L. Gharibshahi, E. Saion, E. Gharibshahi, A.H. Shaari, K.A. Matori, Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method, Materials. 10(4) (2017), 402. doi:10.3390/ma10040402
  • R.B. Patil, A.D. Chougale, Analytical methods for the identification and characterization of silver nanoparticles: A brief review, Materials Today: Proceedings. 47 (2021), 5520-5532. doi:10.1016/j.matpr.2021.03.384
  • S.K. Rout, B.C. Tripathy, P. Padhi, B.R. Kar, K.G. Mishra, A green approach to produce silver nano particles coated agro waste fibers for special applications, Surfaces and Interfaces. 7 (2017), 87-98. doi:10.1016/j.surfin.2017.03.004
  • S. Ahmad, A. Yousaf, M.N. Tahir, A.A. Isab, M. Monim-ul-Mehboob, W. Linert, M. Saleem, Structural characterization and antimicrobial activity of a silver (I) complex of arginine, Journal of Structural Chemistry. 56 (2015), 1653-1657. doi:10.1134/S0022476615080302
  • V.P. Singh, D. Das, C. Rath, Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles, Materials Research Bulletin. 48(2) (2013), 682-686. doi:10.1016/j.materresbull.2012.11.026
  • A.M. Mostafa Mwafy, A. Eman, A.M. Khalil, A. Toghan, E.A. Alashkar, ZnO/Ag multilayer for enhancing the catalytic activity against 4-Nitrophenol, Journal of Materials Science: Materials in Electronics. 34(4) (2023), 300. doi:10.1007/s10854-022-09631-6
  • Y. Sun, W. Zhang, Q. Li, H. Liu, X. Wang, Preparations and applications of Zinc Oxide based photocatalytic materials, Advanced Sensor and Energy Materials. 2(3) (2023), 100069. doi: 10.1016/j.asems.2023.100069
  • J. Bednář, L. Svoboda, Z. Rybková, R. Dvorský, K. Malachová, T. Stachurová, D. Matýsek, V. Foldyna, Antimicrobial synergistic effect between Ag and Zn in Ag-ZnO·mSiO2 silicate composite with high specific surface area, Nanomaterials (Basel). 9(9) (2019), 1265. doi: 10.3390/nano9091265
  • M. Şahin, Y. Arslan, F. Tomul, B. Yıldırım, H. Genç, Green synthesis of silver nanoparticles using Lathyrus brachypterus extract for efficient catalytic reduction of methylene blue, methyl orange, methyl red and investigation of a kinetic model, Reaction Kinetics, Mechanisms and Catalysis. 135(6) (2022), 3303-3315. doi:10.1007/s11144-022-02299-3
  • M. Rafique, I. Sadaf, M.B. Tahir, M.S. Rafique, G. Nabi, et al. Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications, Materials Science and Engineering: C. 99 (2019), 1313–1324. doi:10.1016/j.msec.2019.02.059
  • H.T. Kahraman, Synthesis of silver nanoparticles using Alchemilla vulgaris and Helichrysum arenarium for methylene blue and 4-nitrophenol degradation and antibacterial applications, Biomass Conversion and Biorefinery. (2024), 1-12. doi:10.1007/s13399-024-05314-w
  • K. Naseem, M. Zia Ur Rehman, A. Ahmad, D. Dubal, T.S. AlGarni, Plant extract induced biogenic preparation of silver nanoparticles and their potential as catalyst for degradation of toxic dyes, Coatings. 10 (2020), 1235. doi:10.3390/coatings10121235
  • P.K. Pandey, J. Sarkar, S. Srivastava, Catalytic dye degradation of textile dye methylene blue by using silver nanoparticles fabricated by sustainable approach, Engineering Proceedings. 37(1) (2023), 16. doi:10.3390/ECP2023-14684
  • A. Yeganeh‐Faal, M. Bordbar, N. Negahdar, M. Nasrollahzadeh, Green synthesis of the Ag/ZnO nanocomposite using Valeriana officinalis L. root extract: application as a reusable catalyst for the reduction of organic dyes in a very short time, Iet Nanobiotechnology. 11(6) (2017), 669-676. doi:10.1049/iet-nbt.2016.0198
  • R. Rajasekar, R. Thanasamy, M. Samuel, T.N.J.I. Edison, N. Raman, Ecofriendly synthesis of silver nanoparticles using Heterotheca subaxillaris flower and its catalytic performance on reduction of methyl orange, Biochemical Engineering Journal. 187 (2022), 108447. doi:10.1016/j.bej.2022.108447
  • K. Nagaraj, P. Thangamuniyandi, S. Kamalesu, M. Dixitkumar, A.K. Saini, S.K. Sharma, C. Karuppiah, Silver nanoparticles using Cassia alata and its catalytic reduction activities of rhodamine6G, methyl orange and methylene blue dyes, Inorganic Chemistry Communications. 155 (2023), 110985. doi:10.1016/j.inoche.2023.110985
  • D. Khwannimit, R. Maungchang, P. Rattanakit, Green synthesis of silver nanoparticles using Clitoria ternatea flower: an efficient catalyst for removal of methyl orange, International Journal of Environmental Analytical Chemistry. 102(17) (2022), 5247-5263. doi:10.1080/03067319.2020.1793974
  • V.V. Konduri, N.K. Kalagatur, L. Gunti, U.K. Mangamuri, V.R. Kalagadda, S. Poda, S.B.N. Krishna, Green synthesis of silver nanoparticles from Hibiscus tiliaceus L. Leaves and their applications in dye degradation, antioxidant, antimicrobial, and anticancer activities, South African Journal of Botany. 168 (2024), 476-487. doi:10.1016/j.sajb.2024.03.035
  • B.U. Hijazi, M. Faraj, R. Mhanna, M.H. El-Dakdouki, Biosynthesis of silver nanoparticles as a reliable alternative for the catalytic degradation of organic dyes and antibacterial applications, Current Research in Green and Sustainable Chemistry. 8 (2024), 100408. doi:10.1016/j.crgsc.2024.100408

Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes

Yıl 2025, Cilt: 7 Sayı: 1, 56 - 76

Öz

Zinc doped Silver Nanoparticles (Zn doped Ag NPs) were synthesized in this study to improve catalytic efficiency of Ag NPs. A controlled green synthesis was achieved with Polygonum cognatum extract by systematically varying zinc doping ratio (bare Ag NP, 1.6% Zn-doped Ag NP, and 9.0% Zn-doped Ag NP). Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Scanning Transmission Electron Microscopy (STEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Fluorescence (XRF), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) analyses verified the NP formation, its elemental content, crystal structure and successful incorporation of Zn into the Ag NP matrix. The catalytic activity of green synthesized Zn doped Ag NPs was investigated in the degradation of methyl orange (MO) and methylene blue (MB) using sodium borohydride (NaBH4) as a reducing agent. According to results, Zn doped Ag NPs exhibited superior catalytic performance compared to bare Ag NPs. The results indicate that the 9.0% Zn-doped Ag NP degraded MO 96.56% in 15 minutes at a rate constant (kapp) of 0.2199 min⁻¹ and turnover frequency (TOF) of 1.65 x 10⁻³ mol.g⁻¹ min⁻¹. In MB degradation, it reached 98.38% in 10 minutes with a kapp of 0.4445 min⁻1 and a TOF of 2.54 x 10-3 mol.g-1 min-1. For both dyes, increasing the doping amount of Zn from 1.6% to 9.0% greatly shortened reaction times and improved degradation efficiency. 9.0% Zn doped Ag NPs were found highly effective catalysts for the rapid and efficient degradation of toxic organic dyes. The findings of this study provide valuable insights into the tunability of silver nanoparticles’ activity through zinc doping, which will enable the development of more effective and customizable catalytic materials for environmental treatment and other applications.

Kaynakça

  • B. Akgayev, S. Akbayrak, M. Yılmaz, M.S. Büker, V. Unsur, Assessing the feasibility of photovoltaic systems in Türkiye: Technical and economic analysis of on-grid, off-grid, and utility-scale PV ınstallations, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 69-92. doi:10.47112/neufmbd.2024.33
  • M. Ismail, K. Akhtar, M.I. Khan, T. Kamal, M.A. Khan, M.A. Asiri, S.B. Khan, Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bioremediation, Current pharmaceutical design. 25(34) (2019), 3645-3663. doi:10.2174/1381612825666191021142026
  • M.A. Al-Nuaim, A.A. Alwasiti, Z.Y. Shnain, The photocatalytic process in the treatment of polluted water, Chemical papers. 77(2) (2023), 677-701. doi:10.1007/s11696-022-02468-7
  • M. Priyadarshanee, U. Mahto, S. Das, Mechanism of toxicity and adverse health effects of environmental pollutants, In Microbial biodegradation and bioremediation. (2022), 33-53. Elsevier. doi:10.1016/B978-0-323-85455-9.00024-2
  • S. Bulbul, E. Ayhan, H. Gökmeşe, Termik santral atığı olan kömür külünün SBR matrisli bileşiklere ilave edilmesinin mekanik özelliklere etkisi, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 96-107. doi:10.47112/neufmbd.2023.14
  • M.A. Al-Nuaim, A.A. Alwasiti, Z.Y. Shnain, The photocatalytic process in the treatment of polluted water, Chemical papers, 77(2) (2023) 677-701. doi:10.1007/s11696-022-02468-7
  • A. Saravanan, P.S. Kumar, D.V.N. Vo, S. Jeevanantham, S. Karishma, P.R.A. Yaashikaa, review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes, Journal of Hazardous Materials. 419 (2021), 126451. doi:10.1016/j.jhazmat.2021.126451
  • D. Astruc, Introduction: nanoparticles in catalysis, Chemical reviews. 120(2) (2020), 461-463. doi: 10.1021/acs.chemrev.8b00696
  • A. Dhaka, S.C. Mali, S. Sharma, R.A. Trivedi, review on biological synthesis of silver nanoparticles and their potential applications, Results in Chemistry. (2023), 101108. doi:10.1016/j.rechem.2023.101108
  • B. Mekuye, The Impact of size on the optical properties of silver nanoparticles based on dielectric function, Nanotechnology and Nanomaterials Annual Volume (2023). doi:10.5772/intechopen.113976
  • W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, E. Górecka, Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial, Nature communications. 6(1) (2015), 6590. doi:10.1038/ncomms7590
  • G. Palani, H. Trilaksana, R.M. Sujatha, K. Kannan, S. Rajendran, K. Korniejenko, M. Uthayakumar, Silver nanoparticles for wastewater management, Molecules. 28(8) (2023), 3520. doi:10.3390/molecules28083520
  • M.A. Kareem, I.T. Bello, H.A. Shittu, P. Sivaprakash, O. Adedokun, S. Arumugam, Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles, Cleaner Materials. 3 (2022), 100041. doi:10.1016/j.clema.2022.100041
  • V. Vinitha, M. Preeyanghaa, V. Vinesh, R. Dhanalakshmi, B. Neppolian, V. Sivamurugan, Two is better than one: Catalytic, sensing and optical applications of doped zinc oxide nanostructures, Emergent Materials. 4 (2021), 1093-1124. doi:10.1007/s42247-021-00262-x
  • D. Ntemogiannis, M. Tsarmpopoulou, A. Stamatelatos, S. Grammatikopoulos, V. Karoutsos, D.I. Anyfantis, P. Poulopoulos, ZnO Matrices as a platform for tunable localized surface plasmon resonances of silver nanoparticles, Coatings. 14(1) (2024), 69. doi:10.3390/coatings14010069
  • S. Lv, Y. Du, F. Wu, Y Cai, T. Zhou, Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling, Nanoscale Advances. 4(12) (2022), 2608-2631. doi:10.1039/D2NA00140C
  • Y. Li, Q. Liao, W. Hou, L. Qin, Silver-based surface plasmon sensors: fabrication and applications, International Journal of Molecular Sciences. 24(4) (2023), 4142. doi:10.3390/ijms24044142
  • E. Vanags, I. Bite, L. Ignatane, R. Ignatans, A. Trausa, C.F. Tipaldi, K. Smits, Zinc Oxide Tetrapods Doped with Silver Nanoparticles as a Promising Substrate for the Detection of Biomolecules via Surface-Enhanced Raman Spectroscopy, ChemEngineering. 8(1) (2024), 19. doi:10.3390/chemengineering8010019
  • S. Raha, M. Ahmaruzzaman, ZnO nanostructured materials and their potential applications: progress, challenges, and perspectives, Nanoscale Advances. 4(8) (2022), 1868-1925. doi: 10.1039/D1NA00880C
  • H. Li, P. Wang, J. Qian, Y. Li, Q. Yuan, L. Du, Y. Chen, Zn-doped MnCe catalyst designed and applied for indoor low concentration formaldehyde removal and simultaneous antibacterial, Materials Chemistry and Physics. 305 (2023), 127946. 2023.127946. doi: 10.1016/j.matchemphys
  • Y. Sun, W. Zhang, Q. Li, H. Liu, X. Wang, Preparations and applications of zinc oxide based photocatalytic materials, Advanced Sensor and Energy Materials. (2023), 100069. doi:10.1016/j.asems.2023.100069
  • J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M.C. Alvarez Galvan, R. Schlögl, M. Behrens, Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO: M (M= Al, Ga, Mg) catalysts, ACS catalysis. 5(6) (2015), 3260-3270. doi:10.1021/acscatal.5b00188
  • M.L. Sun, Z.P. Hu, H.Y. Wang, Y.J. Suo, Z.Y. Yuan, Design strategies of stable catalysts for propane dehydrogenation to propylene, ACS Catalysis. 13(7) (2023), 4719-4741. doi:10.1021/acscatal.3c00103
  • N.A. Erfan, M.S. Mahmoud, H.Y. Kim, N.A. Barakat, Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO2 photocatalysis for effective water photo splitting reaction, Frontiers in Chemistry. (2023), 11. doi:10.3389/fchem.2023.1301172
  • T. Mao, M. Liu, L. Lin, Y. Cheng, C.A Fang, study on doping and compound of zinc oxide photocatalysts, Polymers. 14(21) (2022), 4484. doi:10.3390/polym14214484
  • I.H. Ifijen, M. Maliki, B. Anegbe, Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: A detailed review, OpenNano. 8 (2022), 100082. doi: 10.1016/j.onano.2022.100082
  • D. Gupta, A. Boora, A Thakur, T.K. Gupta, Green and sustainable synthesis of nanomaterials: recent advancements and limitations, Environmental Research. 231 (2023), 116316. doi:10.1016/j.envres.2023.116316
  • P. Szczyglewska, A. Feliczak-Guzik, I. Nowak, Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles, Molecules. 28(13) (2023), 4932. doi:10.3390/molecules28134932
  • V. Harish, M.M. Ansari, D. Tewari, A.B. Yadav, N. Sharma, S. Bawarig, A. Barhoum, Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review, Journal of the Taiwan Institute of Chemical Engineers. 149 (2023), 105010. doi:10.1016/j.jtice.2023.105010
  • Y. T. Gebreslassie, F.G. Gebremeskel, Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications, Biotechnology Reports. (2024), e00828. doi:10.1016/j.btre.2024.
  • A.R. Bagheri, N. Aramesh, M.S. Hasnain, A.K. Nayak, R.S. Varma, Greener fabrication of metal nanoparticles using plant materials: A review, Chemical Physics Impact. 7 (2023), 100255. doi:10.1016/j.chphi.2023.100255
  • A.M.E. Shafey, Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review, Green Processing and Synthesis. 9(1) (2020), 304-339. doi:10.1515/gps-2020-0031
  • N.M. Ishak, S.K. Kamarudin, S.N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Materials Research Express. 6(11) (2019), 112004. doi:10.1088/2053-1591/ab4458
  • S. Gözcü, R.A. Uğan, H. Özbek, B. Gündoğdu, Z. Güvenalp, Evaluation of antidiabetic and antioxidant effects of Polygonum cognatum Meisn. and phytochemical analysis of effective extracts, Biomedical Chromatography. 38(3) (2024), e5809. doi:10.1002/bmc.5809
  • N. Eruygur, E. Ucar, M. Ataş, M. Ergul, M. Ergul, F. Sozmen, Determination of biological activity of Tragopogon porrifolius and Polygonum cognatum consumed intensively by people in Sivas, Toxicology reports. 7 (2020), 59-66. doi:10.1016/j.toxrep.2019.12.002
  • F. Demirgül, M. Divriklioğlu-Kundak, O. Sağdiç, Bioactive properties, antibacterial activity, and color features of Polygonum cognatum: The effects of frozen storage and cooking process, Food Science and Technology. 42 (2022), e00322. doi:10.1590/fst.00322
  • R. Akpınar, G. Yıldırım Baştemur, B. Bıçak, N.O. Sanli, E. Mertoğlu Kamalı, M. Pekmez, S. Perçin Özkorucuklu, Phytochemical profiling, in vitro biological activities, and in silico (molecular docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn, Journal of Separation Science. 47(1) (2024), 2300750. doi:10.1002/jssc.202300750
  • A. Yıldırım, A. Mavi, A. Kara, Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts, Journal of the Science of Food and Agriculture. 83(1) (2003), 64-69. doi:10.1002/jsfa.1288
  • M. Pehlivan, H.İ.K. Çöven, B. Çerçi, A. Eldem, T. Öz, N. Savlak, İ. Pirim, The cytotoxic effect of Polygonium cognatum and chemotherapeutic effect of doxorubicin on glioblastoma cells, European Journal of Therapeutics. 27(1) (2021), 50-54. doi:10.5152/eurjther.2021.20085
  • A.Q. Malik, T.U.G.,Mir, D. Kumar, I.A. Mir, A. Rashid, M. Ayoub, S. Shukla, A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins, Environmental Science and Pollution Research. 30(27) (2023), 69796-69823. doi:10.1007/s11356-023-27437-9
  • B. Mahesh, A comprehensive review on current trends in greener and sustainable synthesis of ferrite nanoparticles and their promising applications, Results in Engineering. (2023), 101702. doi:10.1016/j.rineng.2023.101702
  • A. Saravanan, P.S. Kumar, S. Karishma, D.V.N. Vo, S. Jeevanantham, P.R. Yaashikaa, C.S. George, A review on biosynthesis of metal nanoparticles and its environmental applications, Chemosphere. 264 (2021), 128580. doi:10.1016/j.chemosphere.2020.128580
  • B. Mahesh, A comprehensive review on current trends in greener and sustainable synthesis of ferrite nanoparticles and their promising applications, Results in Engineering. (2023), 101702. doi:10.1016/j.rineng.2023.101702
  • A.B. Daphedar, S. Kakkalameli, B. Faniband, M. Bilal, R.N. Bhargava, L.F.R. Ferreira, S. I. Mulla, Decolorization of various dyes by microorganisms and green-synthesized nanoparticles: current and future perspective, Environmental Science and Pollution Research. 30(60) (2023), 124638-124653. doi:10.1007/s11356-022-21196-9
  • S.S. Emmanuel, A.A. Adesibikan, O.D. Saliu, E.A. Opatola, Greenly biosynthesized bimetallic nanoparticles for ecofriendly degradation of notorious dye pollutants: A review, Plant Nano Biology. 3 (2023), 100024. doi:10.1016/j.plana.2023.100024
  • N.T. T. Nguyen, L.M. Nguyen, T.T.T. Nguyen, R.K. Liew, D.T.C. Nguyen, T. Van Tran, Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review, Science of the Total Environment. 827 (2022), 154160. doi:10.1016/j.scitotenv.2022.154160
  • M. Yilmaz, A. Yilmaz, A. Karaman, F. Aysin, O. Aksakal, Monitoring Chemically and Green-Synthesized Silver nanoparticles in maize seedlings via Surface-Enhanced Raman Spectroscopy (SERS) and their phytotoxicity evaluation, Talanta. (225) (2021), 121952. doi:10.1016/j.talanta.2020.121952. doi:10.1016/j.talanta.2020.121952
  • Ö. Kaplan, N. Gökşen Tosun, Biosynthesis of ıron, copper and silver nanoparticles using Polygonum cognatum and tragopogon porrifolius extracts and evaluation of their antimicrobial potentials, Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 11(4) (2023), 2155–2167. doi:10.29130/dubited.1093468
  • N. Gürsoy, S. Elagöz, E. Gölge, Polygonum cognatum Meissn. ve funguslu ortamda sentezlenen gümüş nanopartiküllerinin (agnp) antimikrobiyal özelliklerinin araştırılması, Türk Tarım ve Doğa Bilimleri Dergisi. 7 (1) (2020), 221–230. doi: 10.30910/turkjans.680075
  • H. Meskher, S.B. Belhaouari, K. Deshmukh, C.M. Hussain, F.A Sharifianjazi, Magnetite composite of molecularly ımprinted polymer and reduced graphene oxide for sensitive and selective electrochemical detection of catechol in water and milk samples: An artificial neural network (ANN) application, Journal of The Electrochemical Society. 170(4) (2023), 047502. doi:10.1149/1945-7111/acc97c
  • M.E. Pekdemir, S. Pekdemir, Ş. İnci, S. Kırbağ, M. Çiftci, Thermal, Magnetic properties and antimicrobial effects of magnetic ıron oxide nanoparticles treated with Polygonum cognatum, Iranian Journal of Science and Technology, Transactions of Civil Engineering. 45 (5) (2021), 1579–1586. doi:10.1007/s40995-021-01167-4
  • R. Abaid, M. Malik, M.A. Iqbal, M. Malik, Z. Shahwani, T.Z. Ali, K. Morsy, R.Y. Capangpangan, A.C. Alguno, J.R. Choi, Biosynthesizing Cassia fistula extract-mediated silver nanoparticles for MCF-7 cell lines anti-cancer assay, ACS Omega. 8(19) (2023), 17317–17326. doi:10.1021/acsomega.3c02225
  • T.C. Kömürcü, N. Bilgiçli, Yumurtalı ve yumurtasız formüle edilen madımak (Polygonum cognatum) tozu ilaveli eriştelerin fonksiyonel içeriği ve duyusal özellikleri, Necmettin Erbakan University Journal of Science and Engineering. 6(1), (2024), 124-138. doi:10.47112/neufmbd.2024.37
  • P.N.V.K. Pallela, S. Ummey, L.K. Ruddaraju, S.V.N. Pammi, S.G Yoon, Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity, Microbial Pathogenesis. 124 (2018), 63-69. doi:10.1016/j.micpath.2018.08.026
  • D. Nayak, S. Ashe, P.R. Rauta, M. Kumari, B. Nayak, Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma, Materials Science and Engineering:C. 58 (2016), 44-52. doi:10.1016/j.msec.2015.08.022
  • J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research. 11 (2009), 77-89. doi:10.1007/s11051-008-9446-4
  • X. Yin, W. Que, D. Fei, F. Shen, Q. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties, Journal of Alloys and Compounds. 524 (2012), 13-21. doi:10.1016/j.jallcom.2012.02.052
  • N. Bhattacharjee, I. Som, R. Saha, S.A Mondal, critical review on novel eco-friendly green approach to synthesize zinc oxide nanoparticles for photocatalytic degradation of water pollutants, International Journal of Environmental Analytical Chemistry. 104(3) (2024), 489-516. doi:10.1080/03067319.2021.2022130
  • H. Jan, M. Shah, H. Usman, M.A. Khan, M. Zia, C. Hano, B.H. Abbasi, Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora), Frontiers in Materials. 7 (2020), 249. doi:10.3389/fmats.2020.00249
  • A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Advances in colloid and interface science. 249 (2017), 37-52. doi:10.1016/j.cis.2017.07.033
  • M. Bandeira, M. Giovanela, M. Roesch-Ely, D.M. Devine, J. da Silva Crespo, Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation, Sustainable Chemistry and Pharmacy. 15 (2020), 100223. doi:10.1016/j.scp.2020.100223
  • N. Singh, F.Z. Haque, Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique, Optik. 127(1) (2016). 174-177. doi:10.1016/j.ijleo.2015.09.024
  • T. Parsai, A. Kumar, Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles, Chemosphere. 235 (2019), 457-469. doi:10.1016/j.chemosphere.2019.06.171
  • H. Veisi, S. Azizi, P. Mohammadi, Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water, Journal of Cleaner Production. 170 (2018), 1536-1543. doi:10.1016/j.jclepro.2017.09.265
  • A. Dandia, S.L. Gupta, A. Indora, P. Saini, V. Parewa, K.S. Rathore, Ag NPs decked GO composite as a competent and reusable catalyst for ‘ON WATER’chemoselective synthesis of pyrano [2, 3-c: 6, 5-c′] dipyrazol]-2-ones, Tetrahedron Letters. 58(12) (2017), 1170-1175. doi:10.1016/j.tetlet.2017.02.014
  • S.K. Pandey, M.K. Tripathi, V. Ramanathan, P.K. Mishra, D. Tiwary, Enhanced photocatalytic efficiency of hydrothermally synthesized g-C3N4/NiO heterostructure for mineralization of malachite green dye, Journal of Materials Research and Technology. 11 (2021), 970-981. doi:10.1016/j.jmrt.2021.01.059
  • C.W. Lou, A.P. Chen, T.T Lic, J.H. Lin, Antimicrobial activity of UV-induced chitosan capped silver nanoparticles, Materials Letters. 128 (2014), 248-252. doi:10.1016/j.matlet.2014.04.145
  • M. Zafar, T. Iqbal, Green synthesis of silver and zinc oxide nanoparticles for novel application to enhance shelf life of fruits. Biomass Conversion and Biorefinery. 14(4) (2024), 5611-5626. doi:10.1007/s13399-022-02730-8
  • N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R., Mehta, A. Fatma, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloids and Surfaces B: Biointerfaces. 81(1) (2010), 81-86. doi:10.1016/j.colsurfb.2010.06.029
  • D.R. Mota, W.D.S. Martini, D.S. Pellosi, Influence of Ag size and shape in dye photodegradation using silver nanoparticle/ZnO nanohybrids and polychromatic light, Environmental Science and Pollution Research. 30(20) (2023), 57667-57682. doi:10.1007/s11356-023-26580-7
  • M.U. Rashid, S.J. Shah, S. Attacha, L. Khan, J. Saeed, S.T. Shah, H.I. Mohamed, Green Synthesis and characterization of zinc oxide nanoparticles using Citrus limetta peels extract and their antibacterial activity against brown and soft rot pathogens and antioxidant potential, Waste and Biomass Valorization. (2024), 1-16. doi:10.1007/s12649-023-02389-w
  • P. Perumal, N.A. Sathakkathulla, K. Kumaran, R. Ravikumar, J.J. Selvaraj, V. Nagendran, S. Rathinasamy, Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells, Scientific Reports. 14(1) (2024), 2204. doi:10.1038/s41598-024-52217-x
  • P. Ramesh, A. Rajendran, M. Ashokkumar, Biosynthesis of zinc oxide nanoparticles from Phyllanthus niruri plant extract for photocatalytic and antioxidant activities, International Journal of Environmental Analytical Chemistry. 104(7) (2024), 1561-1572. doi:10.1080/03067319.2022.2041004
  • P.A. Luque, H.E. Garrafa-Gálvez, C.A. García-Maro, C.A. Soto-Robles, Study of the optical properties of ZnO semiconductor nanoparticles using Origanum vulgare and its effect in Rhodamine B degradation, Optik. 258 (2022), 168937. doi: 10.1016/j.ijleo.2022.168937
  • Md.R. Khan, S.M. Hoque, K.F.B. Hossain, Md.A.B. Siddique, Md.K. Uddin, Md.M. Rahman, Green synthesis of silver nanoparticles using Ipomoea aquatica leaf extract and its cytotoxicity and antibacterial activity assay, Green Chemistry Letters and Reviews. 13(4) (2020), 303-315. doi:10.1080/17518253.2020.1839573
  • K.J. Rao, S. Paria, Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract, Materials Research Bulletin. 48(2) (2013), 628-634. doi: 10.1016/j.materresbull.2012.11.035
  • D.A. Kumar, V. Palanichamy, S.M. Roopan, Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 127 (2014), 168-171. doi: 10.1016/j.saa.2014.02.058
  • J.A. Garibay-Alvarado, M.A. Ruiz-Esparza-Rodríguez, E.A. Zaragoza-Contreras, S.Y. Reyes-López, Ag nanoparticle-decorated SiO2–Al2O3–ZrO2 composites as a low-cost substrate for enhanced signal ınfrared spectroscopy, ACS Applied Nano Materials. 7(5) (2024). 4658-4666. doi:10.1021/acsanm.3c03464
  • L. Gharibshahi, E. Saion, E. Gharibshahi, A.H. Shaari, K.A. Matori, Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method, Materials. 10(4) (2017), 402. doi:10.3390/ma10040402
  • R.B. Patil, A.D. Chougale, Analytical methods for the identification and characterization of silver nanoparticles: A brief review, Materials Today: Proceedings. 47 (2021), 5520-5532. doi:10.1016/j.matpr.2021.03.384
  • S.K. Rout, B.C. Tripathy, P. Padhi, B.R. Kar, K.G. Mishra, A green approach to produce silver nano particles coated agro waste fibers for special applications, Surfaces and Interfaces. 7 (2017), 87-98. doi:10.1016/j.surfin.2017.03.004
  • S. Ahmad, A. Yousaf, M.N. Tahir, A.A. Isab, M. Monim-ul-Mehboob, W. Linert, M. Saleem, Structural characterization and antimicrobial activity of a silver (I) complex of arginine, Journal of Structural Chemistry. 56 (2015), 1653-1657. doi:10.1134/S0022476615080302
  • V.P. Singh, D. Das, C. Rath, Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles, Materials Research Bulletin. 48(2) (2013), 682-686. doi:10.1016/j.materresbull.2012.11.026
  • A.M. Mostafa Mwafy, A. Eman, A.M. Khalil, A. Toghan, E.A. Alashkar, ZnO/Ag multilayer for enhancing the catalytic activity against 4-Nitrophenol, Journal of Materials Science: Materials in Electronics. 34(4) (2023), 300. doi:10.1007/s10854-022-09631-6
  • Y. Sun, W. Zhang, Q. Li, H. Liu, X. Wang, Preparations and applications of Zinc Oxide based photocatalytic materials, Advanced Sensor and Energy Materials. 2(3) (2023), 100069. doi: 10.1016/j.asems.2023.100069
  • J. Bednář, L. Svoboda, Z. Rybková, R. Dvorský, K. Malachová, T. Stachurová, D. Matýsek, V. Foldyna, Antimicrobial synergistic effect between Ag and Zn in Ag-ZnO·mSiO2 silicate composite with high specific surface area, Nanomaterials (Basel). 9(9) (2019), 1265. doi: 10.3390/nano9091265
  • M. Şahin, Y. Arslan, F. Tomul, B. Yıldırım, H. Genç, Green synthesis of silver nanoparticles using Lathyrus brachypterus extract for efficient catalytic reduction of methylene blue, methyl orange, methyl red and investigation of a kinetic model, Reaction Kinetics, Mechanisms and Catalysis. 135(6) (2022), 3303-3315. doi:10.1007/s11144-022-02299-3
  • M. Rafique, I. Sadaf, M.B. Tahir, M.S. Rafique, G. Nabi, et al. Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications, Materials Science and Engineering: C. 99 (2019), 1313–1324. doi:10.1016/j.msec.2019.02.059
  • H.T. Kahraman, Synthesis of silver nanoparticles using Alchemilla vulgaris and Helichrysum arenarium for methylene blue and 4-nitrophenol degradation and antibacterial applications, Biomass Conversion and Biorefinery. (2024), 1-12. doi:10.1007/s13399-024-05314-w
  • K. Naseem, M. Zia Ur Rehman, A. Ahmad, D. Dubal, T.S. AlGarni, Plant extract induced biogenic preparation of silver nanoparticles and their potential as catalyst for degradation of toxic dyes, Coatings. 10 (2020), 1235. doi:10.3390/coatings10121235
  • P.K. Pandey, J. Sarkar, S. Srivastava, Catalytic dye degradation of textile dye methylene blue by using silver nanoparticles fabricated by sustainable approach, Engineering Proceedings. 37(1) (2023), 16. doi:10.3390/ECP2023-14684
  • A. Yeganeh‐Faal, M. Bordbar, N. Negahdar, M. Nasrollahzadeh, Green synthesis of the Ag/ZnO nanocomposite using Valeriana officinalis L. root extract: application as a reusable catalyst for the reduction of organic dyes in a very short time, Iet Nanobiotechnology. 11(6) (2017), 669-676. doi:10.1049/iet-nbt.2016.0198
  • R. Rajasekar, R. Thanasamy, M. Samuel, T.N.J.I. Edison, N. Raman, Ecofriendly synthesis of silver nanoparticles using Heterotheca subaxillaris flower and its catalytic performance on reduction of methyl orange, Biochemical Engineering Journal. 187 (2022), 108447. doi:10.1016/j.bej.2022.108447
  • K. Nagaraj, P. Thangamuniyandi, S. Kamalesu, M. Dixitkumar, A.K. Saini, S.K. Sharma, C. Karuppiah, Silver nanoparticles using Cassia alata and its catalytic reduction activities of rhodamine6G, methyl orange and methylene blue dyes, Inorganic Chemistry Communications. 155 (2023), 110985. doi:10.1016/j.inoche.2023.110985
  • D. Khwannimit, R. Maungchang, P. Rattanakit, Green synthesis of silver nanoparticles using Clitoria ternatea flower: an efficient catalyst for removal of methyl orange, International Journal of Environmental Analytical Chemistry. 102(17) (2022), 5247-5263. doi:10.1080/03067319.2020.1793974
  • V.V. Konduri, N.K. Kalagatur, L. Gunti, U.K. Mangamuri, V.R. Kalagadda, S. Poda, S.B.N. Krishna, Green synthesis of silver nanoparticles from Hibiscus tiliaceus L. Leaves and their applications in dye degradation, antioxidant, antimicrobial, and anticancer activities, South African Journal of Botany. 168 (2024), 476-487. doi:10.1016/j.sajb.2024.03.035
  • B.U. Hijazi, M. Faraj, R. Mhanna, M.H. El-Dakdouki, Biosynthesis of silver nanoparticles as a reliable alternative for the catalytic degradation of organic dyes and antibacterial applications, Current Research in Green and Sustainable Chemistry. 8 (2024), 100408. doi:10.1016/j.crgsc.2024.100408
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektroanalitik Kimya, Kataliz ve Reaksiyon Mekanizmaları, İnorganik Yeşil Kimya, Nanokimya
Bölüm Makaleler
Yazarlar

Merve Akbayrak 0000-0003-3283-2146

Ümran Ata 0000-0002-1071-6059

Tuğba Nur Aslan 0000-0002-5516-3603

Erken Görünüm Tarihi 12 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 8 Mayıs 2024
Kabul Tarihi 2 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Akbayrak, M., Ata, Ü., & Aslan, T. N. (2025). Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(1), 56-76.
AMA Akbayrak M, Ata Ü, Aslan TN. Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes. NEU Fen Muh Bil Der. Ocak 2025;7(1):56-76.
Chicago Akbayrak, Merve, Ümran Ata, ve Tuğba Nur Aslan. “Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, sy. 1 (Ocak 2025): 56-76.
EndNote Akbayrak M, Ata Ü, Aslan TN (01 Ocak 2025) Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 1 56–76.
IEEE M. Akbayrak, Ü. Ata, ve T. N. Aslan, “Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes”, NEU Fen Muh Bil Der, c. 7, sy. 1, ss. 56–76, 2025.
ISNAD Akbayrak, Merve vd. “Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/1 (Ocak 2025), 56-76.
JAMA Akbayrak M, Ata Ü, Aslan TN. Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes. NEU Fen Muh Bil Der. 2025;7:56–76.
MLA Akbayrak, Merve vd. “Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 7, sy. 1, 2025, ss. 56-76.
Vancouver Akbayrak M, Ata Ü, Aslan TN. Influence of Zinc Doping Ratio on Silver Nanoparticles Synthesized via Green Method for Enhanced Catalytic Degradation of Toxic Organic Dyes. NEU Fen Muh Bil Der. 2025;7(1):56-7.


32206                   17157           17158