BibTex RIS Kaynak Göster

Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine

Yıl 2013, Cilt: 2 Sayı: 2, 65 - 74, 22.01.2014
https://doi.org/10.17100/nevbiltek.210881

Öz

Bu çalışmada Dereceden Zweier matrisi olmak üzere  ve  ile
gösterilen interval değerli bulanık sayıların sırasıyla Zweier sıfıra yakınsak,
Zweier yakınsak ve Zweier sınırlı dizi kümeleri tanımlanarak bu kümelerin
topolojik ve kapsama gibi önemli özellikleri ele alındı.

Kaynakça

  • Matloka M.,” Sequence of fuzzy numbers”, BUSEFAL 28, 28, 28-37, 1986. [2] Nanda S.,” On sequence spaces of fuzzy numbers”, Fuzzy Sets and Systems, 33, 123-126, 1989. [3] TaloÖ., Başar, F., “Determination of the duals of classical sets of sequences of fuzzy numbers related matrix transformations”, Computers and Mathematics with Applications, 58, 717-733, 2009. [4]
  • Hong D.H., Moon E.L., Kim J.D., “A note on the core of fuzzy numbers”, Fuzzy Sets and
  • Systems, 98,331-335, 1998. [5]
  • Gorzalczany, B., “Aproximate inference with interval valued fuzzy sets”, Proc. Polish Symp., On
  • interval and Fuzzy Math., Poznan, Poland, 89-95, 1983. [6]
  • Turksen B., “Interval valued fuzzy sets based on normal forms”, Fuzzy Sets and Systems, 20,191210,1986. [7]
  • Chen Shi-Jay, Chen Shyi-Ming, “Handling information filtering problems based on interval
  • valued fuzzy numbers”, Journal of the Chinese Institute of Engineers, 29, No. 1, pp. 83-96, 2006. [8]
  • Guijun W. and Xiaoping L., “The applications of interval valued fuzzy numbers and interval
  • distribution numbers”, Fuzzy Sets and Systems, 98 (1998), 331-335. [9]
  • Meenakshi A.R., Kaliraja M.,” Regular interval valued fuzzy matrices”, Advanced in Fuzzy
  • Mathematics, 5, 7-15, 2010. [10]
  • Şengönül M., Zararsız Z., “Some additions to the fuzzy convergent and fuzzy bounded sequence
  • spaces of fuzzy numbers”, Hindawi Publishing Corporation Abstract and Applied Analysis,
  • Volume 2011, Article ID: 837584, Doi:10.1155/2011/837584. [11]
  • Zadeh L. A., “Fuzzy Sets”, Information and Control., 8, 338-353, 1965. [12]
  • Interval Talks at the International Conference on Information Processing and Management of
  • Uncertainty in Knowledge-Based Sytstems, IPMU' 2006, Paris, France, July 2-7, 2006. [13]
  • Klir G., and Yuan B.,” Fuzzy Sets and Fuzzy Logic”, Prentice Hall PTR, New Jersey, 07458. [14]
  • Li C., “Distance between interval-valued fuzzy sets”, The 28th North American Fuzzy
  • Information Processing Society Annual Conference, Cincinnati, Ohio, USA, 2009.
  • Şengönül M., “The interval valued fuzzy sequence spaces”, (under comminication).
  • Şengönül M., “On the Zweier sequence spaces of fuzzy numbers”, (under comminication ).

On the Sequence Spaces of Interval Valued Fuzzy Numbers which are Nonstandart

Yıl 2013, Cilt: 2 Sayı: 2, 65 - 74, 22.01.2014
https://doi.org/10.17100/nevbiltek.210881

Öz

In
this article some topological and algebraic properties of spaces of
 and
 which are convergent to , convergent and bounded sequence spaces
of interval valued fuzzy numbers are given, respectively. After that by taking
a non-negative, regular Zweier matrix
 and
, we have defined the sequence spaces of
 ve  called Zweier null, Zweier convergent and
Zweier bounded sequence sets of interval valued fuzzy numbers, respectively.
Finally some topological and inclusion problems on these spaces are given.

Kaynakça

  • Matloka M.,” Sequence of fuzzy numbers”, BUSEFAL 28, 28, 28-37, 1986. [2] Nanda S.,” On sequence spaces of fuzzy numbers”, Fuzzy Sets and Systems, 33, 123-126, 1989. [3] TaloÖ., Başar, F., “Determination of the duals of classical sets of sequences of fuzzy numbers related matrix transformations”, Computers and Mathematics with Applications, 58, 717-733, 2009. [4]
  • Hong D.H., Moon E.L., Kim J.D., “A note on the core of fuzzy numbers”, Fuzzy Sets and
  • Systems, 98,331-335, 1998. [5]
  • Gorzalczany, B., “Aproximate inference with interval valued fuzzy sets”, Proc. Polish Symp., On
  • interval and Fuzzy Math., Poznan, Poland, 89-95, 1983. [6]
  • Turksen B., “Interval valued fuzzy sets based on normal forms”, Fuzzy Sets and Systems, 20,191210,1986. [7]
  • Chen Shi-Jay, Chen Shyi-Ming, “Handling information filtering problems based on interval
  • valued fuzzy numbers”, Journal of the Chinese Institute of Engineers, 29, No. 1, pp. 83-96, 2006. [8]
  • Guijun W. and Xiaoping L., “The applications of interval valued fuzzy numbers and interval
  • distribution numbers”, Fuzzy Sets and Systems, 98 (1998), 331-335. [9]
  • Meenakshi A.R., Kaliraja M.,” Regular interval valued fuzzy matrices”, Advanced in Fuzzy
  • Mathematics, 5, 7-15, 2010. [10]
  • Şengönül M., Zararsız Z., “Some additions to the fuzzy convergent and fuzzy bounded sequence
  • spaces of fuzzy numbers”, Hindawi Publishing Corporation Abstract and Applied Analysis,
  • Volume 2011, Article ID: 837584, Doi:10.1155/2011/837584. [11]
  • Zadeh L. A., “Fuzzy Sets”, Information and Control., 8, 338-353, 1965. [12]
  • Interval Talks at the International Conference on Information Processing and Management of
  • Uncertainty in Knowledge-Based Sytstems, IPMU' 2006, Paris, France, July 2-7, 2006. [13]
  • Klir G., and Yuan B.,” Fuzzy Sets and Fuzzy Logic”, Prentice Hall PTR, New Jersey, 07458. [14]
  • Li C., “Distance between interval-valued fuzzy sets”, The 28th North American Fuzzy
  • Information Processing Society Annual Conference, Cincinnati, Ohio, USA, 2009.
  • Şengönül M., “The interval valued fuzzy sequence spaces”, (under comminication).
  • Şengönül M., “On the Zweier sequence spaces of fuzzy numbers”, (under comminication ).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Matematik
Yazarlar

Zarife Zararsız

Yayımlanma Tarihi 22 Ocak 2014
Yayımlandığı Sayı Yıl 2013 Cilt: 2 Sayı: 2

Kaynak Göster

APA Zararsız, Z. (2014). Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine. Nevşehir Bilim Ve Teknoloji Dergisi, 2(2), 65-74. https://doi.org/10.17100/nevbiltek.210881
AMA Zararsız Z. Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine. Nevşehir Bilim ve Teknoloji Dergisi. Ocak 2014;2(2):65-74. doi:10.17100/nevbiltek.210881
Chicago Zararsız, Zarife. “Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine”. Nevşehir Bilim Ve Teknoloji Dergisi 2, sy. 2 (Ocak 2014): 65-74. https://doi.org/10.17100/nevbiltek.210881.
EndNote Zararsız Z (01 Ocak 2014) Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine. Nevşehir Bilim ve Teknoloji Dergisi 2 2 65–74.
IEEE Z. Zararsız, “Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine”, Nevşehir Bilim ve Teknoloji Dergisi, c. 2, sy. 2, ss. 65–74, 2014, doi: 10.17100/nevbiltek.210881.
ISNAD Zararsız, Zarife. “Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine”. Nevşehir Bilim ve Teknoloji Dergisi 2/2 (Ocak 2014), 65-74. https://doi.org/10.17100/nevbiltek.210881.
JAMA Zararsız Z. Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine. Nevşehir Bilim ve Teknoloji Dergisi. 2014;2:65–74.
MLA Zararsız, Zarife. “Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 2, sy. 2, 2014, ss. 65-74, doi:10.17100/nevbiltek.210881.
Vancouver Zararsız Z. Standart Olmayan Tipten İnterval Değerli Fuzzy Sayıların Dizi Uzayları Üzerine. Nevşehir Bilim ve Teknoloji Dergisi. 2014;2(2):65-74.

Dergimizin tarandığı indeksler


12300          20980     2097822081