Konferans Bildirisi
BibTex RIS Kaynak Göster

ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi

Yıl 2019, - Cilt:8 - IMSMATEC Özel Sayı, 63 - 70, 15.12.2019
https://doi.org/10.17100/nevbiltek.632795

Öz

Zeolitler,
simektit grubunun mikro gözenekli üyeleridir ve endüstriyel uygulamalarda geniş
kullanım alanı bulurlar. Zeolitlerin yüzey, morfolojik, mineralojik ve
fizikokimyasal özellikleri farklı aletli analiz teknikleri ile incelenmiştir.
Yüzey fonksiyonel grupları Fourier dönüşümlü kızılötesi (FTIR) spektrumları ile
belirlenmiştir. Malzemelerin morfolojisi ve yüzey fonksiyonel grupları taramalı
elektron mikroskobu (SEM) görüntüleri ve X ışını kırınım desenleri yardımıyla
analiz edilmiştir. Zeolitin, Brunauer-Emmett-Teller (BET) yüzey alanı, gözenek
hacmi, gözenek büyüklüğü dağılımı ve ortalama gözenek çapı da dâhil gözenek
özellikleri, -196 C de N2
atmosferinde fiziksel adsorpsiyon ile belirlenmiştir. Zeolit yüzeyini
karakterize etmek için ters gaz kromatografisi (TGK) uygulanmıştır.

 ZSM-5 zeoliti, Yüzey özellikleri, Morfolojik
özellikler, Fizikokimyasal özellikler

Destekleyen Kurum

Eskişehir Osmangazi University

Proje Numarası

2017-1426

Kaynakça

  • [1] Xu, H.Y.;Wu, L.C.; Shi, T.N.; Liu,W.C.; Qi, S.Y. “Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash” Science China Technological Sciences, 57, 1127–1134, 2014.
  • [2] Flanigen E.M., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. J.C., Elsevier Science B.V., Amsterdam. 2001, p 11-37.
  • [3] Kunkeler P.J., Downing R.S., van Bekkum, H., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. Elsevier Science B.V., Amsterdam. 2001, p 987.
  • [4] Maesen T., Marcus, B., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. Elsevier Science B.V., Amsterdam. 2001, p 1.
  • [5] Russel J.D., Fraser, A.R., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, (Wilson, M.J. editor). Chapman & Hall, New York, 1994, p 11-67.
  • [6] Fripiat,J.J., Advanced Technique for Clay Mineral Analysis, Elsevier, New York, 1982.
  • [7] Gates W.P., Komadel P., Madejova J., Bujdak J., Stucki J.W., Kirkpatrick R.J., “Electronic Properties of Reduced-charge Montmorillonites” Applied Clay Science, 16, 257–271, 2000.
  • [8] Brunauer S., Emmett P.H., Teller E., “Adsorption of Gases in Multimolecular Layers” Journal of American Chemical Society, 60, 309–319, 1938.
  • [9] Song K., Sandi G., “Characterization of Montmorillonite Surfaces after Organosilane Modification” Clays Clay Miner., 49, 119–125, 2001.
  • [10] Valverde J. L., Canizares P., Sunkou M. R., Moliuna C. B., “Enhanced Thermal stability of A1-pillared Smectites Modified with Ce and La” Clays Clay Miner., 48, 424–432, 2000.
  • [11] Cordeiro N., Gouveia C., John M.J., “Investigation of Surface Properties of Physico-Chemically Modified Natural Fibres Using Inverse Gas Chromatography” Industrial Crops and Products, 33, 108-115, 2011.
  • [12] Vaculícová L., Plevová E., “Identification of clay minerals and micas in sedimentary rocks” Acta Geodynamica et Geomaterialia, 2, 167–175, 2005.
  • [13] Farmer V.C., Russell J.D., “Effects of particle size and structure on the vibrational frequencies of layer silicates” Spectrochimica Acta 22, 389-98, 1966.
  • [14] Ali M.A., Brisdon B., Thomas W.J., “Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios” Applied Catalyst A, 252, 149-162, 2003.
  • [15] Leinonen H., Lehto J., “Purification of metal finishing waste waters with zeolites and activated carbons” Waste Management and Research, 19, 45-57, 2001.
  • [16] Shirazi L., Jamshidi E., Ghasemi M.R., “The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size” Crystal Research and Technology, 43(12), 1300–1306, 2008.
  • [17] Yang G.H., Tsubaki N., Shamoto J., Yoneyama Y., Zhang Y., “Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis” Journal of American Chemical Society, 132, 8129–8136, 2010.
  • [18] Bao J., Yang G.H., Okada C., Yoneyama Y., Tsubaki N., “H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas” Applied Catalyst A, 394, 195–200, 2011.
  • [19] Abdelrahman E.A., “Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media” Journal of Molecular Liquid, 253, 72–82, 2018.
  • [20] Liu M., Li J., Jia W., Qin M., Wang Y., Tong K., Chen H., “Seed-induced synthesis of hierarchical ZSM-5 nanosheets in the presence of hexadecyl trimethyl ammonium bromide” RSC Advances, 5, 9237–9240, 2015.
  • [21] Ho R., Heng J.Y.Y., “A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids” KONA Powder Part Journal, 30, 164–180, 2013.

Inverse Gas Chromatographic Determination of the Surface Properties of ZSM-5 Zeolite

Yıl 2019, - Cilt:8 - IMSMATEC Özel Sayı, 63 - 70, 15.12.2019
https://doi.org/10.17100/nevbiltek.632795

Öz

Zeolites are microporous
members of the smectite group and are widely used in industrial applications.
The surface, morphological mineralogical and physico-chemical properties of
zeolites are studied by different instrumental analysis
techniques.
The surface
functional groups were determined by Fourier transform infrared (FTIR) spectra.
The morphology and surface
functional groups of the materials have been analyzed with the aid of scanning
electron microscopy (SEM) images and X-ray diffraction (XRD). The pore
properties including the Brunauer-Emmett-Teller (BET) surface area, pore volume, pore size distribution and average pore diameter
of the zeolite was determined by physical adsorption of N2 at -196 C.
Inverse gas
chromatography (IGC) was applied to characterize the surface of zeolite.

Proje Numarası

2017-1426

Kaynakça

  • [1] Xu, H.Y.;Wu, L.C.; Shi, T.N.; Liu,W.C.; Qi, S.Y. “Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash” Science China Technological Sciences, 57, 1127–1134, 2014.
  • [2] Flanigen E.M., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. J.C., Elsevier Science B.V., Amsterdam. 2001, p 11-37.
  • [3] Kunkeler P.J., Downing R.S., van Bekkum, H., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. Elsevier Science B.V., Amsterdam. 2001, p 987.
  • [4] Maesen T., Marcus, B., Studies in Surface Science and Catalysis (Vol. 137), Eds. H. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jensen. Elsevier Science B.V., Amsterdam. 2001, p 1.
  • [5] Russel J.D., Fraser, A.R., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, (Wilson, M.J. editor). Chapman & Hall, New York, 1994, p 11-67.
  • [6] Fripiat,J.J., Advanced Technique for Clay Mineral Analysis, Elsevier, New York, 1982.
  • [7] Gates W.P., Komadel P., Madejova J., Bujdak J., Stucki J.W., Kirkpatrick R.J., “Electronic Properties of Reduced-charge Montmorillonites” Applied Clay Science, 16, 257–271, 2000.
  • [8] Brunauer S., Emmett P.H., Teller E., “Adsorption of Gases in Multimolecular Layers” Journal of American Chemical Society, 60, 309–319, 1938.
  • [9] Song K., Sandi G., “Characterization of Montmorillonite Surfaces after Organosilane Modification” Clays Clay Miner., 49, 119–125, 2001.
  • [10] Valverde J. L., Canizares P., Sunkou M. R., Moliuna C. B., “Enhanced Thermal stability of A1-pillared Smectites Modified with Ce and La” Clays Clay Miner., 48, 424–432, 2000.
  • [11] Cordeiro N., Gouveia C., John M.J., “Investigation of Surface Properties of Physico-Chemically Modified Natural Fibres Using Inverse Gas Chromatography” Industrial Crops and Products, 33, 108-115, 2011.
  • [12] Vaculícová L., Plevová E., “Identification of clay minerals and micas in sedimentary rocks” Acta Geodynamica et Geomaterialia, 2, 167–175, 2005.
  • [13] Farmer V.C., Russell J.D., “Effects of particle size and structure on the vibrational frequencies of layer silicates” Spectrochimica Acta 22, 389-98, 1966.
  • [14] Ali M.A., Brisdon B., Thomas W.J., “Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios” Applied Catalyst A, 252, 149-162, 2003.
  • [15] Leinonen H., Lehto J., “Purification of metal finishing waste waters with zeolites and activated carbons” Waste Management and Research, 19, 45-57, 2001.
  • [16] Shirazi L., Jamshidi E., Ghasemi M.R., “The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size” Crystal Research and Technology, 43(12), 1300–1306, 2008.
  • [17] Yang G.H., Tsubaki N., Shamoto J., Yoneyama Y., Zhang Y., “Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis” Journal of American Chemical Society, 132, 8129–8136, 2010.
  • [18] Bao J., Yang G.H., Okada C., Yoneyama Y., Tsubaki N., “H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas” Applied Catalyst A, 394, 195–200, 2011.
  • [19] Abdelrahman E.A., “Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media” Journal of Molecular Liquid, 253, 72–82, 2018.
  • [20] Liu M., Li J., Jia W., Qin M., Wang Y., Tong K., Chen H., “Seed-induced synthesis of hierarchical ZSM-5 nanosheets in the presence of hexadecyl trimethyl ammonium bromide” RSC Advances, 5, 9237–9240, 2015.
  • [21] Ho R., Heng J.Y.Y., “A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids” KONA Powder Part Journal, 30, 164–180, 2013.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Diğer Bölümler
Yazarlar

Ceyda Bilgiç 0000-0002-9572-3863

Proje Numarası 2017-1426
Yayımlanma Tarihi 15 Aralık 2019
Kabul Tarihi 4 Aralık 2019
Yayımlandığı Sayı Yıl 2019 - Cilt:8 - IMSMATEC Özel Sayı

Kaynak Göster

APA Bilgiç, C. (2019). ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi. Nevşehir Bilim Ve Teknoloji Dergisi, 8, 63-70. https://doi.org/10.17100/nevbiltek.632795
AMA Bilgiç C. ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi. Nevşehir Bilim ve Teknoloji Dergisi. Aralık 2019;8:63-70. doi:10.17100/nevbiltek.632795
Chicago Bilgiç, Ceyda. “ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi”. Nevşehir Bilim Ve Teknoloji Dergisi 8, Aralık (Aralık 2019): 63-70. https://doi.org/10.17100/nevbiltek.632795.
EndNote Bilgiç C (01 Aralık 2019) ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi. Nevşehir Bilim ve Teknoloji Dergisi 8 63–70.
IEEE C. Bilgiç, “ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi”, Nevşehir Bilim ve Teknoloji Dergisi, c. 8, ss. 63–70, 2019, doi: 10.17100/nevbiltek.632795.
ISNAD Bilgiç, Ceyda. “ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi”. Nevşehir Bilim ve Teknoloji Dergisi 8 (Aralık 2019), 63-70. https://doi.org/10.17100/nevbiltek.632795.
JAMA Bilgiç C. ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi. Nevşehir Bilim ve Teknoloji Dergisi. 2019;8:63–70.
MLA Bilgiç, Ceyda. “ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 8, 2019, ss. 63-70, doi:10.17100/nevbiltek.632795.
Vancouver Bilgiç C. ZSM-5 Zeolitinin Yüzey Özelliklerinin Ters Gaz Kromatografisiyle Belirlenmesi. Nevşehir Bilim ve Teknoloji Dergisi. 2019;8:63-70.

Dergimizin tarandığı indeksler


12300          20980     2097822081