Derleme
BibTex RIS Kaynak Göster

Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme

Yıl 2022, Cilt: 11 Sayı: 2, 1 - 7, 08.12.2022
https://doi.org/10.17100/nevbiltek.1178268

Öz

Magnezyum 21. Yüzyılın en hafif yapı metali olarak geçici ortopedik implantlarda ve koroner stentlerde kullanılabilme potansiyeline sahip yeni nesil biyobozunur malzeme olarak kabul edilir. Biomedikal uygulamalar için umut vaat eden Mg/Mg-esaslı alaşımların özellikleri, avantajları ve dezavanatajları bu derleme çalışmasında ayrıntılı bir şekilde ele alınmıştır. Biyobozunur malzemelerin kemik dokusunun iyileşmesi sürecinde kemiğin kendini yenilemeye başladığı zamana kadar mukavemetini yitirmemesi, mekanik özelliklerini koruması istenmektedir. Ancak Mg ve Mg esaslı alaşımlar vücutta çok hızlı bir şekilde korozyona uğradıklarından mekanik özelliklerini kısa süre içerisinde kaybetmektedirler. Mg esaslı alaşımların implant malzemelerinde kullanılabilmesi için korozyon dirençlerini artırmak ve mekanik özelliklerini iyileştirmek gerekmektedir. Bu alaşımların korozyon dirençlerinin artırılmasında ve mekanik özelliklerini geliştirmesinde kullanılan prosesler, bu çalışmada detaylı olarak araştırılmış ve anlatılmıştır.

Kaynakça

  • Xu, T., Yang, Y., Peng, X., Song, J., Pan, F., “Overview of Advancement and Development Trend on Magnesium Alloy”, Journal of Magnesium and Alloys, 7 (3), 536–544, 2019.
  • Tsakiris V., Tardei C., Clicinschi FM., “Biodegradable Mg alloys for orthopedic implants – A review” Journal of Magnesium and Alloys, 9, 1884–905, 2021
  • Razzaghi M., Kasiri-Asgarani M., Bakhsheshi-Rad H., R., Ghayour H., “In Vitro Degradation, Antibacterial Activity and Cytotoxicity of Mg-3Zn-xAg Nanocomposites Synthesized by Mechanical Alloying for Implant Applications” Journal of Materials Engineering and Performance, 28, 1441–55, 2019.
  • Salleh E.M., Zuhailawati H., Ramakrishnan S., “Synthesis of biodegradable Mg-Zn alloy by mechanical alloying: Statistical prediction of elastic modulus and mass loss using fractional factorial design” Transactions of Nonferrous Metals Society of China, 28:687–99, 2018
  • Rosalbino F., De Negri S., Saccone A., Angelini E., Delfino S., “Bio-corrosion characterization of Mg–Zn–X (X = Ca, Mn, Si) alloys for biomedical applications.” Journal of Materials Science: Materials in Medicine, 21, 1091–8, 2010 Bommala V.,K., Krishna M.,G, Rao C.,T. “Magnesium matrix composites for biomedical applications: A review.” Journal of Magnesium and Alloys, 7, 72–9. 2019
  • Zhao D., Witte F., Lu F., Wang J., Li J., Qin L., “Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective.” Biomaterials, 112, 287–302.2017.
  • Huang T., Cheng J., Bian D., Zheng Y.” Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials: FE-AU AND FE-AG COMPOSITES FOR STENT MATERIALS.” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104:225–40,2016
  • Purnama A., Hermawan H., Couet J., Mantovani D., “Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulation.” Acta Biomaterialia,6, 1800–7, 2010
  • Xie G., Takada H., Kanetaka H., “Development of high performance MgFe alloy as potential biodegradable materials.”, Materials Science and Engineering: A, 671:48–53, 2016.
  • Radha R., Sreekanth D., “Insight of magnesium alloys and composites for orthopedic implant applications – a review.” Journal of Magnesium and Alloys, 5, 286–312, 2017.
  • Li H.F., Xie X.H., Zheng Y.F., Cong Y., Zhou F.Y, Qiu K.J., et al. “Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.” Scientific Reports;5, 10719, 2015.
  • Yin D., Zhang E., Zeng S., “Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy”. Transactions of Nonferrous Metals Society of China, 18, 763–8, 2008.
  • Zhang, E., Zhao, X., Hu, J., Wang, R., Fu, S., “Qin, G. Antibacterial Metals and Alloys for Potential Biomedical Implants”. Bioactive Materials, 6 (8), 2569–2612, 2021.
  • Mohammadi Zerankeshi M., Alizadeh R. “Ag-incorporated biodegradable Mg alloys.” Materialia 2022;23:101445. https://doi.org/10.1016/j.mtla.2022.101445.
  • Gąsior G., Szczepański J., Radtke A.. “Biodegradable Iron-Based Materials—What Was Done and What More Can Be Done?” Materials;14, 3381, 2021.
  • Venezuela J., Dargusch M.S. “Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends.” Current Opinion in Solid State and Materials Science, 24,100822. 2020.
  • Wang J., Dou J., Wang Z., Hu C., Yu H., Chen C.. “Research progress of biodegradable magnesium-based biomedical materials: A review.” Journal Alloys Compound,;923, 166377, 2022.
  • Rosalbino F., De Negri S., Saccone A., Angelini E., Delfino S. “Bio-corrosion characterization of Mg–Zn–X (X = Ca, Mn, Si) alloys for biomedical applications”. Journal of Materials Science: Materials in Medicine, 21, 1091–8, 2010
  • Razzaghi M., Kasiri-Asgarani M., Bakhsheshi-Rad H.R, Ghayour H., “Microstructure, mechanical properties, and in-vitro biocompatibility of nano- NiTi reinforced Mg–3Zn-0.5Ag alloy: Prepared by mechanical alloying for implant applications.” Composites Part B: Engineering, 190, 107947, 2020.
  • Ma Y., Wang D., Li H., Yuan F., Yang C., Zhang J., “Microstructure, mechanical and corrosion properties of novel quaternary biodegradable extruded Mg–1Zn–0.2Ca-xAg alloys.” Materials Research Express, 7,015414, 2020.
  • Kavyani M., Ebrahimi G.R., Ezatpour H.R., Jahazi M., “Microstructure refinement, mechanical and biocorrosion properties of Mg–Zn–Ca–Mn alloy improved by a new severe plastic deformation process.” Journal of Magnesium and Alloys, 10, 1640–62, 2022.
  • Li Q., “Sol-gel coatings to improve the corrosion resistance of magnesium (Mg) alloys.”, Corrosion Prevention of Magnesium Alloys, 469–85. 2013
  • Mozafari M., Ramedani A., Zhang Y.N., Mills D.K. “Thin films for tissue engineering applications. Thin Film” Coatings for Biomedical Applications, Elsevier, 167–95, 2016.
  • Du M., Huang L., Peng M., Hu F., Gao Q., Chen Y., et al. “Preparation of vancomycin-loaded alginate hydrogel coating on magnesium alloy with enhanced anticorrosion and antibacterial properties.” Thin Solid Films, 693, 137679, 2020
  • Gu Y., Zheng X., Liu Q, Ma H., Zhang L., Yang D.,” Investigating Corrosion Performance and Corrosive Wear Behavior of Sol–gel/MAO-Coated Mg Alloy.” Tribology Letters, 66, 101, 2018.
  • Dou J., Chen Y., Yu H., Chen C., “Research status of magnesium alloys by micro-arc oxidation: a review”, Surface Engineering, 33,731–8, 2017
  • Lin Z., Wang T., Yu X., Sun X., Yang H., “Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: a review” Journal of Alloys and Compounds, 879, 160453, 2021.
  • Ali M., Elsherif M., Salih A.E., Ul-Hamid A., Hussein M.A., Park S., et al.”Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances.” Journal of Alloys and Compounds, 825, 154140, 2020.
  • Riaz U., Shabib I., Haider W., “The current trends of Mg alloys in biomedical applications—A review” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107, 1970–96 ,2019.
  • Lotfabadi A.F., Bakhsheshi-Rad H.R., Idris M.H., Hamzah E., Kasiri-Asgarani M., “The role of solution heat treatment on corrosion and mechanical behaviour of Mg–Zn biodegradable alloys” Canadian Metallurgical Quarterly,55, 53–64, 2016.
  • Tipan N., Pandey A., Mishra P., “Selection and preparation strategies of Mg-alloys and other biodegradable materials for orthopaedic applications: A review” Materials Today Communications, 31, 103658, 2022.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi/Review Article
Yazarlar

Nilüfer Küçükdeveci 0000-0002-4579-9915

Erken Görünüm Tarihi 8 Aralık 2022
Yayımlanma Tarihi 8 Aralık 2022
Kabul Tarihi 23 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 2

Kaynak Göster

APA Küçükdeveci, N. (2022). Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme. Nevşehir Bilim Ve Teknoloji Dergisi, 11(2), 1-7. https://doi.org/10.17100/nevbiltek.1178268
AMA Küçükdeveci N. Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme. Nevşehir Bilim ve Teknoloji Dergisi. Aralık 2022;11(2):1-7. doi:10.17100/nevbiltek.1178268
Chicago Küçükdeveci, Nilüfer. “Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme”. Nevşehir Bilim Ve Teknoloji Dergisi 11, sy. 2 (Aralık 2022): 1-7. https://doi.org/10.17100/nevbiltek.1178268.
EndNote Küçükdeveci N (01 Aralık 2022) Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme. Nevşehir Bilim ve Teknoloji Dergisi 11 2 1–7.
IEEE N. Küçükdeveci, “Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme”, Nevşehir Bilim ve Teknoloji Dergisi, c. 11, sy. 2, ss. 1–7, 2022, doi: 10.17100/nevbiltek.1178268.
ISNAD Küçükdeveci, Nilüfer. “Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme”. Nevşehir Bilim ve Teknoloji Dergisi 11/2 (Aralık 2022), 1-7. https://doi.org/10.17100/nevbiltek.1178268.
JAMA Küçükdeveci N. Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme. Nevşehir Bilim ve Teknoloji Dergisi. 2022;11:1–7.
MLA Küçükdeveci, Nilüfer. “Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 11, sy. 2, 2022, ss. 1-7, doi:10.17100/nevbiltek.1178268.
Vancouver Küçükdeveci N. Biyomedikal Uygulamalar İçin Biyobuzunur Mg Esaslı Alaşımların Geliştirilmesi – Derleme. Nevşehir Bilim ve Teknoloji Dergisi. 2022;11(2):1-7.

Dergimizin tarandığı indeksler


12300          20980     2097822081