Derleme
BibTex RIS Kaynak Göster

Vitamin D and enhanced efficient electrochemical biosensors

Yıl 2023, , 525 - 537, 15.04.2023
https://doi.org/10.28948/ngumuh.1181007

Öz

With the increasing demand in recent years, the interest in vitamins has been growing rapidly. The vitamin group that attracts attention with the pandemic period is vitamin D. Vitamin D deficiency and insufficiency; It is associated with many chronic diseases including cancers, cardiovascular diseases, metabolic syndrome, infectious and autoimmune diseases. Therefore, the need to monitor exposure and the amount and amount of vitamins in foods, drugs, and biological fluids makes regular measurement critical. The importance of organic and inorganic (such as nanoclays, ceramics, bioactive glasses and metal oxide nanoparticles) carriers used in ensuring, increasing and protecting the stability of vitamins is of great importance. In this study, starting from vitamin D and its importance, by referring to the methods used in the determination of vitamin D, electrochemical methods will be examined in particular, by referring to the stabilizing inorganic nanocarriers in particular nanoclays, comprehensive reviews will be made about promising possibilities as (bio)detection platforms in the near future.

Kaynakça

  • Dini and S. Laneri, Nutricosmetics: A brief overview, Phytotherapy Research, vol.33, pp.3054-3063, Sep. 2019. https://doi.org/10.1002/ptr.6494
  • H. Akkoyun ve M. Bayramoğlu, D Vitamini Ve Metabolizma İçin Önemi, cilt 9, sayı 3, Aralık 2014. https://doi.org/10.17094/avbd.05043
  • L. S. Killedar, P. R. Vernekar, M. M. Shanbhag, N. P. Shetti and R. S. Malladi, Fabrication of nanoclay-modified electrodes and their use as an effective electrochemical sensor for biomedical applications, Elsevier Inc., vol 351, Apr. 2022. DOI: 10.1016/j.molliq.2022.118583
  • M. F. Holick, Vitamin D: A millenium perspective, J Cell Biochem, vol. 88, no. 2, pp. 296–307, Feb. 2003. https://doi.org/10.1002/jcb.10338
  • M. Kira, T. Kobayashi, K. Yoshikawa,Vitamin D and the Skin, The Journal of Dermatology, vol. 6, no. 6, pp. 429–437, Feb. 2014.
  • H. S. Çakmak, Y. N. Yüksek, T. Tütüncü, E. Ö. Küçük, T. Turan, D. Berker ve R. Kahveci, D vitamini testinin akılcı kullanımı: Test mi? Ya da tedavi mi?, Turkish Journal of Clinics and Laboratory, cilt 10, sayı 2, pp.168 – 178, Jun. 2019. https://doi.org/10.18663 /tjcl.440877
  • R. Nair, A. Maseeh,Vitamin D: The "sunshine" vitamin, J Pharmacol Pharmacother, vol. 3, no. 2, pp. 118–126, Apr-Jun. 2012.
  • Y. Shi, Manco, M., Moyal, D., Huppert, G., Araki, H., Banks, A., ... & Pielak, R. M. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures, PloS one, 13(1), e0190233, Jan. 2018 https://doi.org/10.1371/journal.pone.0190233.
  • M. Rivas, E. Rojas, M. C. Araya and G. M. Calaf, Ultraviolet light exposure, skin cancer risk and vitamin D production, Oncol Lett, vol. 10, no. 4, pp. 2259-2264, Oct. 2015. https://doi.org/10.3892/ol.2015.3519
  • H. Genç,Yenidoğan sarılığı tedavisinde beşikte fototerapinin etkinliği, Uzmanlık Tezi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, İstanbul Tıp Fakültesi, İstanbul, Türkiye, 2010.
  • G. R. Zosky, L. J. Berry, J. G. Elliot, A. L. James, S. Gorman, and P. H. Hart,Vitamin D deficiency causes deficits in lung function and alters lung structure, Am. J. Respir. Crit. Care Med., vol. 183, no. 10, pp. 1336–1343, May. 2011.
  • L. G. Collins, C. Haines, R. Perkel, and R. E. Enck, Lung cancer: Diagnosis and management. Am. Fam. Physician, vol. 75, no. 1, pp. 56–63, Jan. 2007.
  • E. Doğan, N. Sevinç, Türkiye’de Batı Karadeniz bölgesindeki çocukların D vitamini düzeyleri. Pamukkale Tıp Dergisi, cilt 4, sayı 1, Ocak 2011. https://doi.org/10.31362/patd.718933
  • Z. Workneh Bitew, T. Worku, and A. Alemu. Effects of vitamin D on neonatal sepsis: A systematic review and meta-analysis, Food Sci. Nutr., vol. 9, no. 1, pp. 375–388, Nov. 2020.
  • T.D Thacher, Vitamin D and COVID-19, Mayo Clin Proc, vol. Apr. 96 (4), pp. 838-840, 2021. doi: 10.1016/j.mayocp.2021.02.014
  • C.S. Stokes, F. Lammert and D. A. Volmer, Analytical Methods for Quantification of Vitamin D and Implications for Research and Clinical Practice, Anticancer Res., vol. 38, no. 2, pp. 1137-1144, Feb. 2018.
  • D. C. Gheorghe, R.L. Stefan-van Staden and J. K. F. van Staden, Mini-Review: Electrochemical Sensors Used for the Determination of Water- and Fat-Soluble Vitamins: B, D, K, Crit Rev Anal Chem., pp. 1-10, Feb. 2022.
  • Y. Yu, C. Li, C. Chen, H. Huang, C. Liang, Y. Lou, X. Chen, Z. Shi, S. Geng, Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12, Talanta, vol. 195, pp. 117-126, Apr. 2019. https://doi.org/10.1016/j.talanta.2018.11.010
  • O. N. Oliveira, Jr, F. Marystela, F. Leite and A. L. Róz, Nanoscience and its Applications, 1st Edition, (Online), Dec. 2016.
  • V. Dhinakaran and M. V. Shree, Chapter Ten - Point-of-care applications with graphene in human life, Comprehensive Analytical Chemistry, vol. 91, pp. 235-262, 2020. https://doi.org/10.1016/bs.coac.2020.08 .009
  • S. Menon and K. G. Kumar, Chapter 21 - Carbon nanomaterial-based sensors: Emerging trends, markets, and concerns, Carbon Nanomaterials-Based Sensors, pp, 347-379, 2022. https://doi.org/10.1016/B978-0-323-91174-0.00008-1
  • L. Huan, S. Tuan, W. Zhao K. Liui and J. Guo, Electrochemical vitamin sensors: A critical review, Talanta, vol. 222, Jan. 2021.
  • M. H. Parvin, J. Y. Lee, γ-Al2O3 nanoparticle catalyst mediated polyaniline gold electrode biosensor for vitamin E, Catalysis Communications, vol. 110, pp. 59-63, May. 2018. https://doi.org/10.1016/j.catcom. 2018.03.009
  • T. Sha, Green and Low-cost Synthesis of Nitrogen-Doped Graphene-like Mesoporous Nanosheets from the Biomass Waste of Okara for the Amperometric Detection of Vitamin C in Real Samples, Talanta, vol. 200, pp. 300-306, August 2019.
  • V. Ruiz, V. Montiel, J. Wang, J. R. Sempionatto, Decentralized vitamin C & D dual biosensor chip: Toward personalized immune system support”. Biosensors and Bioelectronics, vol, 194, Dec. 2021.
  • S. Kia, S. Bahar and S. Bohlooli, A novel electrochemical sensor based on plastic antibodies for vitamin D3 detection in real samples, IEEE Sensors Journal, vol. 19, pp. 4752 – 4757, March 2019.
  • S. Kia, A new Voltametric sensor, based on molecularly imprinted polymer (MIP) for vitamin D3 Detection. International Conference on Biomedical Innovations and Applications (BIA), IEEE, Nov. 2019.
  • D. Chauhan, R. Kumar, A K.Panda, P. R.Solanki, An efficient electrochemical biosensor for Vitamin-D3 detection based on aspartic acid functionalized gadolinium oxide nanorods, Journal of Materials Research and Technology, vol. 8, pp. 5490-5503, Nov.2019.https://doi.org/10.1016/j.jmrt.2019.09.017
  • J. Tavakoli and Y. Tang, Hydrogel Based Sensors for Biomedical Applications: An Updated Review,Polymers, vol.9, no. 8, Aug. 2017. https://doi.org/10.3390/polym9080364
  • L. L. Jiang, X. Lu, C. Xie, G. Wan, H. Zhang and T. Youhong, Flexible, Free-Standing TiO2–Graphene–Polypyrrole Composite Films as Electrodes for Supercapacitors, The Journal of Physical Chemistry C, vol. 119, no.8, pp. 3903–3910, Feb. 2015. https://doi.org/10.1021/jp511022 z
  • Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Reviews, vol.53, pp. 321-339, Dec. 2001.
  • A.Yalçin, F. Damin, E. Özkumur, G. Carlo, M. Chiari, M. S. Unlü, Direct observation of conformation of a polymeric coating with implications in microarray applications, Analytical chemistry, vol. 81, no. 2, pp. 625-630, Dec. 2009. https://doi.org/10.1021/ac801954x
  • H. J. Hwang, M. Y. Ryu, C. Y. Park, J. Ahn, H. G. Park, C. Choi, S. Ha, T. J. Park, J.P. Park, High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder, Biosens. Bioelectron, vol. 87, pp. 164-170, Jan. 2016.
  • H.R. Culver, J. R. Clegg and N. A. Peppas, Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery, Acc. Chem. Res, pp. 170-178, Feb.2017.
  • W.Lu, X. Le, J. Zhang, Y. Huang, and T. Chen, Supramolecular shape memory hydrogels: A new bridge between stimuli-responsive polymers and supramolecular chemistry, Chem. Soc. Rev., vol. 50, no. 2, Feb. 2017. https://doi.org/10.1039 /C6CS00754F
  • J. Tavakoli, E. Jabbari, M. E. Khosroshahi, and M. Boroujerdi, Swelling characterization of anionic acrylic acid hydrogel in an external electric field, Iran. Polym. J., vol. 115, Nov. 2006.
  • H. Linden, S. Herber, W. Olthuis and P. Bergveld,Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis, Analyst, vol. 128, no. 4, pp. 325-331, Feb. 2003. https://doi.org/10.1039/B210140H
  • F.Wahid, X. Zhao, S. Jia, H. Bai, C. Zhong, Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives, Composites Part B: Engineering, vol. 200, Nov. 2020. https://doi.org/10.1016 /j.compositesb.2020.108208
  • E. Pavón, R. M. Rodríguez, A. C. Perdigón and M. Alba, New Trends in Nanoclay-Modified Sensors, Inorganics, vol. 9 (6), Jun. 2021. https://doi.org/10.3390/inorganics9060043
  • B. Benli, Nanoteknoloji ve antik çağlara uzanan killi nanoyapılar, Kibited, vol.1 (3) pp. 143-162, Jan. 2009.
  • F. Bergaya, G. Lagaly, Chapter 1- General Introduction: Clays, Clay Minerals, and Clay Science Developments in Clay Science, vol. 1, pp. 1-18, 2006. http://dx.doi.org/10.1016/S1572-4352 (05)01001-9
  • B. Benli, Effects of humic acid release from sepiolite on the interfacial and rheological properties of alkaline dispersions, Applied Clay Science, vol. 102, pp. 1-7, Dec. 2014. https://doi.org/10.1016/j.clay.2014.10.004
  • J. D. D. Moraes, S. R. A. Bertolino, S. L. Cuffini, D. F. Ducart, P. E. Bretzke, G. R. Leonardi, Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review, Int J Pharm., vol. 534(1-2), Oct. 2017.
  • C. Mousty. Sensors and biosensors based on clay-modified electrodes- New trends, Applied Clay Science, vol. 27, pp. 159-177, Dec. 2017.
  • C.Mousty, Biosensing applications of claymodified electrodes: A review, Analytical and Bioanalytical Chemistry, vol. 396, pp. 315-325, Nov. 2010.
  • O. Akbal, G. Bolat,S. Abacı, Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt. 24, sayı. 1, pp. 80-89, Nisan 2020. https://doi.org/10.19113/sdufenbed.562072
  • P. Thoniyot, M. J. Tan, A. A. Karim, D. J. Young and X. J. Loh, Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials, Advanced Science, vol. 2, Jan. 2015. https://doi.org/10.1002/advs.201400010
  • C. Muderrisoglu, M. Saveleva, A. Abalymov, L. Meeren, A. Ivanova, V. Atkin, B. Parakhonskiy and A. Skirtach, “Nanostructured Biointerfaces Based on Bioceramic Calcium Carbonate/Hydrogel Coatings on Titanium with an Active Enzyme for Stimulating Osteoblasts Growth, Advanced Materials Interfaces, vol. 5, Jan. 2018. https://doi.org/10.1002/admi.201800452
  • X. Sun, S. Agate, K. S. Salem, L. Lucia, and L. Pal, Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Applied Bio Materials, vol. 4, no. 1, pp. 140-162, Nov. 2020.
  • S. Utech, and A. R. Boccaccini,A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers,Journal of Materials Science, vol. 51(1), pp. 271-310, Sep. 2016.
  • L. Lin, L. Shen, J. Zhang, Y. Xu, Z. Fang, P. Müller- Buschbaum, and Q. Zhong, Ionic Hydrogels Based Wearable Sensors to Monitor the Solar Radiation Dose for Vitamin D Production and SunburnPrevention, Applications Of Polymer, Composite, And Coating Materias, vol. 13, no. 38, Sep. 2021. https://doi.org/10.1021/acsami.1c13027
  • A.S.Finny, C. Jiang, and S. Andreescu, 3D Printed Hydrogel-based Sensors for Quantifying UV Exposure, ACS Applied Materials & Interfaces, vol. 12, no. 39, Sep. 2020.
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, P. K. Brahman,Designing and fabrication of electrochemical nanosensor employing fullerene-C60 and bimetallic nanoparticles composite film for the detection of vitamin D3 in blood samples, Diamond and Related Materials,vol. 104, Apr. 2020.
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, P. K. Brahman, Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency,Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 611, Feb. 2021. https://doi.org/10.1016/j.colsur fa.2020.125854
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, A. Bonanni, P. K. Brahman, Fabrication of handmade paper sensor based on silver-cobalt doped copolymer-ionic liquid composite for monitoring of vitamin D3 level in real samples, Microchemical Journal, vol 161, Feb. 2021. https://doi.org/10.1016/j.microc.2020.105789
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, A. Bonanni, P. K. Brahman, R. Y.A. Hassan, Fabrication of electrochemical immunosensor based on GCN-β-CD/Au nanocomposite for the monitoring of vitamin D deficiency, Bioelectrochemistry, vol. 143, Feb. 2022. https://doi.org/10.1016/j.bioelechem.2021.107935
  • S. Wadhwa, A. T. John, S. Nagabooshanam, A. Mathur, J. Narang, Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application, Applied Surface Science, vol. 521, August 2020. https://doi.org/10.1016/j.apsusc .2020.146427
  • A.D Durovic, Z. S. S. Stojanović , S. Ž. Kravić, T. Ž. Brezo-Borjan , J. Ј. Kos, Unmodified glassy carbon electrode as a reliable sensor for sensitive voltammetric quantification of vitamin D3, Acta Periodica Technologica, pp. 111-118, Jan. 2020.
  • A.Durovic, Z. Stojanovic, S. Kravic, J. Kos, L. Richtera, Electrochemical Determination of Vitamin D3 in Pharmaceutical Products by Using Boron Doped Diamond Electrode Electroanalysis, vol. 32, pp. 741 748, Nov. 2019. https://doi.org/10.1002/elan.201 900532
  • T. K. S. Fathima, S. Ramaprabhu, Evaluating the origin of the electrocatalytic activity of multiwalled carbon nanotubes towards Vitamin D3 oxidation Journal of Electroanalytical Chemistry, vol. 911, Apr. 2022. https://doi.org/10.1016/j.jelechem .2022.116215
  • H. Bora, D. Mandal, and A. Chandra, High-Performance, Nitrogen-Doped, Carbon-Nanotube-Based Electrochemical Sensor For Vitamin D3 Detection, vol. 5 (4), pp. 1721–1730, March 2022. https://doi.org/10.1021/acsabm.2c00094
  • T.C. Canevari, F. H. Cincotto, R. Landers, S. A.S. Machado, Synthesis and characterization of α-nickel (II) hydroxide particles on organic-inorganic matrix and its application in a sensitive electrochemical sensor for vitamin D determination, Electrochimica Acta, vol. 147, pp. 688-695, Nov. 2014. https://doi.org/10.1016/j. electacta.2014.10.012
  • T. Sarkar, T. K. Dhiman, R. K. Sajwan, S. Sri, P. R. Solanki, Studies on Carbon quantum dots embedded Iron Oxide Nanoparticles and their Electrochemical response, Nanotechnology, 31(35), 355502, Aug. 2020.
  • T.Sarkar, H. B. Bohidar, P. R. Solanki, Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D, International Journal of Biological
  • H.Teymourian, M. Parrilla, J. R. Sempionatto, N. F. Montiel, A. Barfidokht, R. V. Echelpoel, K. Wael, and J. Wang, Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs, vol. 5(9), ACS Sensors, pp. 2679-2700, Aug. 2020. https://doi.org/10.1021/acssensors.0c01318
  • J. R. Sempionatto, V. Montiel, Eva Vargas, H. Teymourian, and J. Wang, Wearable and Mobile Sensors for Personalized Nutrition, ACS Sensors, vol. 6(5), pp. 1745-1760, May. 2021 https://doi.org/10.1021/acssensors.1c00553
  • A.Kumari, V. Vyas, and S. Kumar, Advances in electrochemical and optical sensing techniques for vitamins detection: a Review, ISSS Journal of Micro and Smart Systems, pp. 329-34, Dec. 2022.

D vitamini ve tespitine yönelik geliştirilen elektrokimyasal biyosensörler

Yıl 2023, , 525 - 537, 15.04.2023
https://doi.org/10.28948/ngumuh.1181007

Öz

Son yıllarda giderek artan taleple birlikte vitaminlere olan ilgi hızla büyümektedir. Pandemi dönemiyle beraber dikkatleri üzerine çeken vitamin grubu ise D vitaminidir. D vitamini eksikliği ve yetersizliği; kanserler, kardiyovasküler hastalıklar, metabolik sendrom, enfeksiyöz ve otoimmün hastalıkların dahil olduğu pek çok kronik hastalıkla ilişkilendirilmektedir. Bu yüzden gerek maruz kalınan ve gerekse yiyeceklerdeki, ilaçlardaki ve biyolojik sıvılardaki vitaminlerin ve miktarlarının takibine duyulan ihtiyaç düzenli ölçmeyi kritik hale getirir. Vitaminlerin stabilitesinin sağlanması, kararlılığının arttırılması ve korunmasında kullanılan organik ve inorganik (nanokiller, seramikler, biyoaktif camlar ve metal oksit nanopartiküller gibi) taşıyıcıların önemi büyüktür. Bu çalışmada, D vitamini ve öneminden başlayarak, D vitamini tayininde kullanılan yöntemlere değinerek, özellikle elektrokimyasal yöntemler incelenecek, stabilite sağlayıcı inorganik nanotaşıyıcılara nanokiller özelinde değinerek, yakın gelecekteki (biyo)algılama platformları olarak umut verici olasılıklar hakkında kapsamlı incelemelerde bulunulacaktır.

Kaynakça

  • Dini and S. Laneri, Nutricosmetics: A brief overview, Phytotherapy Research, vol.33, pp.3054-3063, Sep. 2019. https://doi.org/10.1002/ptr.6494
  • H. Akkoyun ve M. Bayramoğlu, D Vitamini Ve Metabolizma İçin Önemi, cilt 9, sayı 3, Aralık 2014. https://doi.org/10.17094/avbd.05043
  • L. S. Killedar, P. R. Vernekar, M. M. Shanbhag, N. P. Shetti and R. S. Malladi, Fabrication of nanoclay-modified electrodes and their use as an effective electrochemical sensor for biomedical applications, Elsevier Inc., vol 351, Apr. 2022. DOI: 10.1016/j.molliq.2022.118583
  • M. F. Holick, Vitamin D: A millenium perspective, J Cell Biochem, vol. 88, no. 2, pp. 296–307, Feb. 2003. https://doi.org/10.1002/jcb.10338
  • M. Kira, T. Kobayashi, K. Yoshikawa,Vitamin D and the Skin, The Journal of Dermatology, vol. 6, no. 6, pp. 429–437, Feb. 2014.
  • H. S. Çakmak, Y. N. Yüksek, T. Tütüncü, E. Ö. Küçük, T. Turan, D. Berker ve R. Kahveci, D vitamini testinin akılcı kullanımı: Test mi? Ya da tedavi mi?, Turkish Journal of Clinics and Laboratory, cilt 10, sayı 2, pp.168 – 178, Jun. 2019. https://doi.org/10.18663 /tjcl.440877
  • R. Nair, A. Maseeh,Vitamin D: The "sunshine" vitamin, J Pharmacol Pharmacother, vol. 3, no. 2, pp. 118–126, Apr-Jun. 2012.
  • Y. Shi, Manco, M., Moyal, D., Huppert, G., Araki, H., Banks, A., ... & Pielak, R. M. Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures, PloS one, 13(1), e0190233, Jan. 2018 https://doi.org/10.1371/journal.pone.0190233.
  • M. Rivas, E. Rojas, M. C. Araya and G. M. Calaf, Ultraviolet light exposure, skin cancer risk and vitamin D production, Oncol Lett, vol. 10, no. 4, pp. 2259-2264, Oct. 2015. https://doi.org/10.3892/ol.2015.3519
  • H. Genç,Yenidoğan sarılığı tedavisinde beşikte fototerapinin etkinliği, Uzmanlık Tezi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, İstanbul Tıp Fakültesi, İstanbul, Türkiye, 2010.
  • G. R. Zosky, L. J. Berry, J. G. Elliot, A. L. James, S. Gorman, and P. H. Hart,Vitamin D deficiency causes deficits in lung function and alters lung structure, Am. J. Respir. Crit. Care Med., vol. 183, no. 10, pp. 1336–1343, May. 2011.
  • L. G. Collins, C. Haines, R. Perkel, and R. E. Enck, Lung cancer: Diagnosis and management. Am. Fam. Physician, vol. 75, no. 1, pp. 56–63, Jan. 2007.
  • E. Doğan, N. Sevinç, Türkiye’de Batı Karadeniz bölgesindeki çocukların D vitamini düzeyleri. Pamukkale Tıp Dergisi, cilt 4, sayı 1, Ocak 2011. https://doi.org/10.31362/patd.718933
  • Z. Workneh Bitew, T. Worku, and A. Alemu. Effects of vitamin D on neonatal sepsis: A systematic review and meta-analysis, Food Sci. Nutr., vol. 9, no. 1, pp. 375–388, Nov. 2020.
  • T.D Thacher, Vitamin D and COVID-19, Mayo Clin Proc, vol. Apr. 96 (4), pp. 838-840, 2021. doi: 10.1016/j.mayocp.2021.02.014
  • C.S. Stokes, F. Lammert and D. A. Volmer, Analytical Methods for Quantification of Vitamin D and Implications for Research and Clinical Practice, Anticancer Res., vol. 38, no. 2, pp. 1137-1144, Feb. 2018.
  • D. C. Gheorghe, R.L. Stefan-van Staden and J. K. F. van Staden, Mini-Review: Electrochemical Sensors Used for the Determination of Water- and Fat-Soluble Vitamins: B, D, K, Crit Rev Anal Chem., pp. 1-10, Feb. 2022.
  • Y. Yu, C. Li, C. Chen, H. Huang, C. Liang, Y. Lou, X. Chen, Z. Shi, S. Geng, Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12, Talanta, vol. 195, pp. 117-126, Apr. 2019. https://doi.org/10.1016/j.talanta.2018.11.010
  • O. N. Oliveira, Jr, F. Marystela, F. Leite and A. L. Róz, Nanoscience and its Applications, 1st Edition, (Online), Dec. 2016.
  • V. Dhinakaran and M. V. Shree, Chapter Ten - Point-of-care applications with graphene in human life, Comprehensive Analytical Chemistry, vol. 91, pp. 235-262, 2020. https://doi.org/10.1016/bs.coac.2020.08 .009
  • S. Menon and K. G. Kumar, Chapter 21 - Carbon nanomaterial-based sensors: Emerging trends, markets, and concerns, Carbon Nanomaterials-Based Sensors, pp, 347-379, 2022. https://doi.org/10.1016/B978-0-323-91174-0.00008-1
  • L. Huan, S. Tuan, W. Zhao K. Liui and J. Guo, Electrochemical vitamin sensors: A critical review, Talanta, vol. 222, Jan. 2021.
  • M. H. Parvin, J. Y. Lee, γ-Al2O3 nanoparticle catalyst mediated polyaniline gold electrode biosensor for vitamin E, Catalysis Communications, vol. 110, pp. 59-63, May. 2018. https://doi.org/10.1016/j.catcom. 2018.03.009
  • T. Sha, Green and Low-cost Synthesis of Nitrogen-Doped Graphene-like Mesoporous Nanosheets from the Biomass Waste of Okara for the Amperometric Detection of Vitamin C in Real Samples, Talanta, vol. 200, pp. 300-306, August 2019.
  • V. Ruiz, V. Montiel, J. Wang, J. R. Sempionatto, Decentralized vitamin C & D dual biosensor chip: Toward personalized immune system support”. Biosensors and Bioelectronics, vol, 194, Dec. 2021.
  • S. Kia, S. Bahar and S. Bohlooli, A novel electrochemical sensor based on plastic antibodies for vitamin D3 detection in real samples, IEEE Sensors Journal, vol. 19, pp. 4752 – 4757, March 2019.
  • S. Kia, A new Voltametric sensor, based on molecularly imprinted polymer (MIP) for vitamin D3 Detection. International Conference on Biomedical Innovations and Applications (BIA), IEEE, Nov. 2019.
  • D. Chauhan, R. Kumar, A K.Panda, P. R.Solanki, An efficient electrochemical biosensor for Vitamin-D3 detection based on aspartic acid functionalized gadolinium oxide nanorods, Journal of Materials Research and Technology, vol. 8, pp. 5490-5503, Nov.2019.https://doi.org/10.1016/j.jmrt.2019.09.017
  • J. Tavakoli and Y. Tang, Hydrogel Based Sensors for Biomedical Applications: An Updated Review,Polymers, vol.9, no. 8, Aug. 2017. https://doi.org/10.3390/polym9080364
  • L. L. Jiang, X. Lu, C. Xie, G. Wan, H. Zhang and T. Youhong, Flexible, Free-Standing TiO2–Graphene–Polypyrrole Composite Films as Electrodes for Supercapacitors, The Journal of Physical Chemistry C, vol. 119, no.8, pp. 3903–3910, Feb. 2015. https://doi.org/10.1021/jp511022 z
  • Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Reviews, vol.53, pp. 321-339, Dec. 2001.
  • A.Yalçin, F. Damin, E. Özkumur, G. Carlo, M. Chiari, M. S. Unlü, Direct observation of conformation of a polymeric coating with implications in microarray applications, Analytical chemistry, vol. 81, no. 2, pp. 625-630, Dec. 2009. https://doi.org/10.1021/ac801954x
  • H. J. Hwang, M. Y. Ryu, C. Y. Park, J. Ahn, H. G. Park, C. Choi, S. Ha, T. J. Park, J.P. Park, High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder, Biosens. Bioelectron, vol. 87, pp. 164-170, Jan. 2016.
  • H.R. Culver, J. R. Clegg and N. A. Peppas, Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery, Acc. Chem. Res, pp. 170-178, Feb.2017.
  • W.Lu, X. Le, J. Zhang, Y. Huang, and T. Chen, Supramolecular shape memory hydrogels: A new bridge between stimuli-responsive polymers and supramolecular chemistry, Chem. Soc. Rev., vol. 50, no. 2, Feb. 2017. https://doi.org/10.1039 /C6CS00754F
  • J. Tavakoli, E. Jabbari, M. E. Khosroshahi, and M. Boroujerdi, Swelling characterization of anionic acrylic acid hydrogel in an external electric field, Iran. Polym. J., vol. 115, Nov. 2006.
  • H. Linden, S. Herber, W. Olthuis and P. Bergveld,Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis, Analyst, vol. 128, no. 4, pp. 325-331, Feb. 2003. https://doi.org/10.1039/B210140H
  • F.Wahid, X. Zhao, S. Jia, H. Bai, C. Zhong, Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives, Composites Part B: Engineering, vol. 200, Nov. 2020. https://doi.org/10.1016 /j.compositesb.2020.108208
  • E. Pavón, R. M. Rodríguez, A. C. Perdigón and M. Alba, New Trends in Nanoclay-Modified Sensors, Inorganics, vol. 9 (6), Jun. 2021. https://doi.org/10.3390/inorganics9060043
  • B. Benli, Nanoteknoloji ve antik çağlara uzanan killi nanoyapılar, Kibited, vol.1 (3) pp. 143-162, Jan. 2009.
  • F. Bergaya, G. Lagaly, Chapter 1- General Introduction: Clays, Clay Minerals, and Clay Science Developments in Clay Science, vol. 1, pp. 1-18, 2006. http://dx.doi.org/10.1016/S1572-4352 (05)01001-9
  • B. Benli, Effects of humic acid release from sepiolite on the interfacial and rheological properties of alkaline dispersions, Applied Clay Science, vol. 102, pp. 1-7, Dec. 2014. https://doi.org/10.1016/j.clay.2014.10.004
  • J. D. D. Moraes, S. R. A. Bertolino, S. L. Cuffini, D. F. Ducart, P. E. Bretzke, G. R. Leonardi, Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review, Int J Pharm., vol. 534(1-2), Oct. 2017.
  • C. Mousty. Sensors and biosensors based on clay-modified electrodes- New trends, Applied Clay Science, vol. 27, pp. 159-177, Dec. 2017.
  • C.Mousty, Biosensing applications of claymodified electrodes: A review, Analytical and Bioanalytical Chemistry, vol. 396, pp. 315-325, Nov. 2010.
  • O. Akbal, G. Bolat,S. Abacı, Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt. 24, sayı. 1, pp. 80-89, Nisan 2020. https://doi.org/10.19113/sdufenbed.562072
  • P. Thoniyot, M. J. Tan, A. A. Karim, D. J. Young and X. J. Loh, Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials, Advanced Science, vol. 2, Jan. 2015. https://doi.org/10.1002/advs.201400010
  • C. Muderrisoglu, M. Saveleva, A. Abalymov, L. Meeren, A. Ivanova, V. Atkin, B. Parakhonskiy and A. Skirtach, “Nanostructured Biointerfaces Based on Bioceramic Calcium Carbonate/Hydrogel Coatings on Titanium with an Active Enzyme for Stimulating Osteoblasts Growth, Advanced Materials Interfaces, vol. 5, Jan. 2018. https://doi.org/10.1002/admi.201800452
  • X. Sun, S. Agate, K. S. Salem, L. Lucia, and L. Pal, Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Applied Bio Materials, vol. 4, no. 1, pp. 140-162, Nov. 2020.
  • S. Utech, and A. R. Boccaccini,A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers,Journal of Materials Science, vol. 51(1), pp. 271-310, Sep. 2016.
  • L. Lin, L. Shen, J. Zhang, Y. Xu, Z. Fang, P. Müller- Buschbaum, and Q. Zhong, Ionic Hydrogels Based Wearable Sensors to Monitor the Solar Radiation Dose for Vitamin D Production and SunburnPrevention, Applications Of Polymer, Composite, And Coating Materias, vol. 13, no. 38, Sep. 2021. https://doi.org/10.1021/acsami.1c13027
  • A.S.Finny, C. Jiang, and S. Andreescu, 3D Printed Hydrogel-based Sensors for Quantifying UV Exposure, ACS Applied Materials & Interfaces, vol. 12, no. 39, Sep. 2020.
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, P. K. Brahman,Designing and fabrication of electrochemical nanosensor employing fullerene-C60 and bimetallic nanoparticles composite film for the detection of vitamin D3 in blood samples, Diamond and Related Materials,vol. 104, Apr. 2020.
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, P. K. Brahman, Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency,Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 611, Feb. 2021. https://doi.org/10.1016/j.colsur fa.2020.125854
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, A. Bonanni, P. K. Brahman, Fabrication of handmade paper sensor based on silver-cobalt doped copolymer-ionic liquid composite for monitoring of vitamin D3 level in real samples, Microchemical Journal, vol 161, Feb. 2021. https://doi.org/10.1016/j.microc.2020.105789
  • T. Anusha, K. S. Bhavani, J. V. S. Kumar, A. Bonanni, P. K. Brahman, R. Y.A. Hassan, Fabrication of electrochemical immunosensor based on GCN-β-CD/Au nanocomposite for the monitoring of vitamin D deficiency, Bioelectrochemistry, vol. 143, Feb. 2022. https://doi.org/10.1016/j.bioelechem.2021.107935
  • S. Wadhwa, A. T. John, S. Nagabooshanam, A. Mathur, J. Narang, Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application, Applied Surface Science, vol. 521, August 2020. https://doi.org/10.1016/j.apsusc .2020.146427
  • A.D Durovic, Z. S. S. Stojanović , S. Ž. Kravić, T. Ž. Brezo-Borjan , J. Ј. Kos, Unmodified glassy carbon electrode as a reliable sensor for sensitive voltammetric quantification of vitamin D3, Acta Periodica Technologica, pp. 111-118, Jan. 2020.
  • A.Durovic, Z. Stojanovic, S. Kravic, J. Kos, L. Richtera, Electrochemical Determination of Vitamin D3 in Pharmaceutical Products by Using Boron Doped Diamond Electrode Electroanalysis, vol. 32, pp. 741 748, Nov. 2019. https://doi.org/10.1002/elan.201 900532
  • T. K. S. Fathima, S. Ramaprabhu, Evaluating the origin of the electrocatalytic activity of multiwalled carbon nanotubes towards Vitamin D3 oxidation Journal of Electroanalytical Chemistry, vol. 911, Apr. 2022. https://doi.org/10.1016/j.jelechem .2022.116215
  • H. Bora, D. Mandal, and A. Chandra, High-Performance, Nitrogen-Doped, Carbon-Nanotube-Based Electrochemical Sensor For Vitamin D3 Detection, vol. 5 (4), pp. 1721–1730, March 2022. https://doi.org/10.1021/acsabm.2c00094
  • T.C. Canevari, F. H. Cincotto, R. Landers, S. A.S. Machado, Synthesis and characterization of α-nickel (II) hydroxide particles on organic-inorganic matrix and its application in a sensitive electrochemical sensor for vitamin D determination, Electrochimica Acta, vol. 147, pp. 688-695, Nov. 2014. https://doi.org/10.1016/j. electacta.2014.10.012
  • T. Sarkar, T. K. Dhiman, R. K. Sajwan, S. Sri, P. R. Solanki, Studies on Carbon quantum dots embedded Iron Oxide Nanoparticles and their Electrochemical response, Nanotechnology, 31(35), 355502, Aug. 2020.
  • T.Sarkar, H. B. Bohidar, P. R. Solanki, Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D, International Journal of Biological
  • H.Teymourian, M. Parrilla, J. R. Sempionatto, N. F. Montiel, A. Barfidokht, R. V. Echelpoel, K. Wael, and J. Wang, Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs, vol. 5(9), ACS Sensors, pp. 2679-2700, Aug. 2020. https://doi.org/10.1021/acssensors.0c01318
  • J. R. Sempionatto, V. Montiel, Eva Vargas, H. Teymourian, and J. Wang, Wearable and Mobile Sensors for Personalized Nutrition, ACS Sensors, vol. 6(5), pp. 1745-1760, May. 2021 https://doi.org/10.1021/acssensors.1c00553
  • A.Kumari, V. Vyas, and S. Kumar, Advances in electrochemical and optical sensing techniques for vitamins detection: a Review, ISSS Journal of Micro and Smart Systems, pp. 329-34, Dec. 2022.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Kimya Mühendisliği
Bölüm Kimya Mühendisliği
Yazarlar

Mervenur Kirazoğlu 0000-0003-2551-0333

Birgül Benli 0000-0001-7386-5003

Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 27 Eylül 2022
Kabul Tarihi 23 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kirazoğlu, M., & Benli, B. (2023). D vitamini ve tespitine yönelik geliştirilen elektrokimyasal biyosensörler. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 525-537. https://doi.org/10.28948/ngumuh.1181007
AMA Kirazoğlu M, Benli B. D vitamini ve tespitine yönelik geliştirilen elektrokimyasal biyosensörler. NÖHÜ Müh. Bilim. Derg. Nisan 2023;12(2):525-537. doi:10.28948/ngumuh.1181007
Chicago Kirazoğlu, Mervenur, ve Birgül Benli. “D Vitamini Ve Tespitine yönelik geliştirilen Elektrokimyasal biyosensörler”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 2 (Nisan 2023): 525-37. https://doi.org/10.28948/ngumuh.1181007.
EndNote Kirazoğlu M, Benli B (01 Nisan 2023) D vitamini ve tespitine yönelik geliştirilen elektrokimyasal biyosensörler. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 525–537.
IEEE M. Kirazoğlu ve B. Benli, “D vitamini ve tespitine yönelik geliştirilen elektrokimyasal biyosensörler”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 2, ss. 525–537, 2023, doi: 10.28948/ngumuh.1181007.
ISNAD Kirazoğlu, Mervenur - Benli, Birgül. “D Vitamini Ve Tespitine yönelik geliştirilen Elektrokimyasal biyosensörler”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (Nisan 2023), 525-537. https://doi.org/10.28948/ngumuh.1181007.
JAMA Kirazoğlu M, Benli B. D vitamini ve tespitine yönelik geliştirilen elektrokimyasal biyosensörler. NÖHÜ Müh. Bilim. Derg. 2023;12:525–537.
MLA Kirazoğlu, Mervenur ve Birgül Benli. “D Vitamini Ve Tespitine yönelik geliştirilen Elektrokimyasal biyosensörler”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 2, 2023, ss. 525-37, doi:10.28948/ngumuh.1181007.
Vancouver Kirazoğlu M, Benli B. D vitamini ve tespitine yönelik geliştirilen elektrokimyasal biyosensörler. NÖHÜ Müh. Bilim. Derg. 2023;12(2):525-37.

download