Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of precise point positioning-ambiguity resolution (PPP-AR) performances of Net_Diff and PRIDE software

Yıl 2023, , 816 - 826, 15.07.2023
https://doi.org/10.28948/ngumuh.1240321

Öz

Precise Point Positioning (PPP) method, which is an absolute positioning technique, allows to obtain position information with a single Global Navigation Satellite Systems (GNSS) receiver. This situation has increased the interest in PPP and Precise Point Positioning-Ambiguity Resolution (PPP-Ambiguity Resolution, PPP-AR) methods in recent years, as it offers cost and time savings, high positional accuracy depending on the observation time, practical solutions, resulting in the development of numerous software programs. In this study, the location determination performance of the software was examined by using Net_Diff and PRIDE software, which allows to obtain location information with the PPP-AR technique developed in recent years. For this purpose, twenty-day (29.10.2022-17.11.2022) observation data of ISTA and MERS International GNSS Service (International GNSS Service, IGS) stations were analyzed. GPS, GLONASS, Galileo and BeiDou satellite systems were used in the evaluations. The results obtained from the software were compared with the reference (IGS daily solution) coordinate values of the stations. In the study, while an average location accuracy of 6.2 mm horizontally and 12.9 mm vertically was achieved by Net_Diff software, location accuracy of 2.7 mm and 5.3 mm was obtained by PRIDE software respectively. The obtained results clearly demonstrate that PRIDE software has higher point location accuracy and sensitivity than Net_Diff software.

Kaynakça

  • S. Alçay, Farklı gözlem sürelerinde GPS‐PPP ve GPS/GLONASS‐PPP yöntemlerinin konum belirleme performanslarının incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(2), 292-302, 2016. https://doi.org/10.5578/fmbd.28120.
  • S. Bisnath and Y. Gao, Precise point positioning, a powerful technique with a promising future. GPS World, 20 (4), 44–50, 2009. https://gge.ext.unb.ca/Resources/gpsworld.april09.pdf
  • L. A. Lipatnikov and S. O. Shevchuk, Cost effective precise positioning with GNSS. The International Federation of Surveyors (FIG), No: 74, 2019. https://www.researchgate.net/publication/332329222_Cost_Effective_Precise_Positioning_with_GNSS
  • J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins and F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102, No. B3, 5005-5017, 1997. https://doi.org/10.1029/96JB03860
  • J. Kouba and P. Heroux, Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12–28, 2001. https://doi.org/10.1007/PL00012883
  • N. F. Erbaş, Hassas nokta konumlama (PPP) hata kaynaklarının konum doğruluğuna etkileri. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021. https://hdl.handle.net/20.500.12452/8029
  • C. Rizos, V. Janssen, C. Roberts and T. Grinter, Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End?. FIG Working Week 2012, 1-17, 2012. http://www.fig.net/pub/fig2012/techprog.htm
  • C. O. Yigit, V. Gikas, S. Alcay and A. Ceylan, Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP. Survey Review, 46(3), 155-166, 2014. https://doi.org/10.1179/1752270613Y.0000000068
  • S. Choy, S. Bisnath and C. Rizos, Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS Solutions, 21, 13-22, 2017. https://doi.org/10.1007/s10291-016-0545-x
  • B. Bahadur and M. Nohutcu, Comparative Analysis of MGEX Products for Post-Processing Multi-GNSS PPP. Measurement, 145, 361-369, 2019. https://doi.org/10.1016/j.measurement.2019.05.094
  • K. Dawidowicz, Sub-hourly Precise Point Positioning Accuracy Analysis – Case Study For Selected ASG-EUPOS Stations, Survey Review. Cilt 52(4), 341-351, 2020. https://doi.org/10.1080/00396265.2019.1579988
  • Y. Facio and M. Berber, Subsidence is Determined in the Heart of the Central Valley Using Post Processed Static and Precise Point Positioning Techniques. Journal of Applied Geodesy, 14(1), 113-118, 2020. https://doi.org/10.1515/jag-2019-0043
  • D. Kiliszek and K. Kroszczyński, Performance of the Precise Point Positioning Method Along with the Development of GPS, GLONASS and GALILEO Systems. Measurement, 164, 1-26, 2020. https://doi.org/10.1016/j.measurement.2020.108009
  • R. Liu, B. Guo, A. Zhang and B. Yimwadsana, Research on GPS Precise Point Positioning Algorithm with a Sea Surface Height Constraint. Ocean Engineering, 197, 2020. https://doi.org/10.1016/j.oceaneng.2019.106826
  • S. Alçay ve Ö. F. Atiz, Farklı yazılımlar kullanılarak gerçek zamanlı hassas nokta konum belirleme (RT-PPP) yönteminin performansının incelenmesi. Geomatik Dergisi, 6(1), 77-83, 2021. https://doi.org/10.29128/geomatik.687709
  • S. Alcay and M. Turgut, Evaluation of the positioning performance of multi-GNSS RT-PPP method. Arabian Journal of Geosciences, 14(3), 1-19, 2021. https://doi.org/10.1007/s12517-021-06534-4
  • O. F. Atiz, S. Ogutcu, S. Alcay, L. Pan and I. Bugdayci, Performance investigation of LAMBDA and bootstrapping methods for PPP narrow-lane ambiguity resolution. Geo-spatial Information Science, 24(4), 604-614, 2021. https://doi.org/10.1080/10095020.2021.1942236
  • M. Ge, G. Gendt, M. Rothacher, C. Shi and J. Liu, Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 82, 389-399, 2008. https://doi.org/10.1007/s00190-007-0187-4
  • M. Hamed, A. Abdallah and A. Farah, Kinematic PPP using mixed GPS/GLONASS single-frequency observations. Artifical Satellites, 54, No:3, 2019. https://doi.org/DOI: 10.2478/arsa-2019-0008
  • Ö. F. Atiz, PPP yönteminde AR yaklaşımının konum doğruluğuna etkisinin araştırılması. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021. https://hdl.handle.net/20.500.12452/8028
  • X. Li, X. Li, Y. Yuan, K. Zhang, X. Zhang and J. Wickert, Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, GALILEO. Journal of Geodesy, 92, 579-608, 2018. https://doi.org/10.1007/s00190-017-1081-3
  • H. Hong, G. Jingxiang, Y. Yifei, Land deformation monitoring in mining area with PPP-AR. International Journal of Mining Science and Technology, 24(2), 2014. https://doi.org/10.1016/j.ijmst.2014.01.011
  • M. Bezcioglu, C. O. Yigit ve M. N. Bodur, Kinematik PPP-AR ve geleneksel PPP yöntemlerin performanslarının değerlendirilmesi: Antarktika yarımadası örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 162-169, 2019. https://doi.org/10.35414/akufemubid.467336
  • J. Tegedor, X. Liu, O. Ørpen, M. E. D. Goode, O. Ovstedal and N. Treffers, Comparison between multi-constellation ambiguity-fixed PPP and RTK for maritime precise navigation. Journal of Applied Geodesy 9(2):73-80, 2019. https://doi.org/10.1515/jag-2014-0028
  • G. Katsigianni, S. Loyer and F. Perosanz, PPP and PPP-AR kinematic post-processed performance of GPS-Only, GALILEO-Only and Multi-GNSS. Remote Sensing, 11(21), 2477, 2019. https://doi.org/10.3390/rs11212477
  • J. Geng, J. Guo, X. Meng, and K. Gao, Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data, Journal of Geodesy, 94(6), 1-15, 2020. https://doi.org/10.1007/s00190-019-01330-1.
  • Z. Du, H. Chai, G. Xiao, X. Yin, M. Wang and M. Xiang, Analyzing the contributions of multi-GNSS and INS to the PPP-AR outage re-fixing. GPS Solutions, 25(2), 2021. https://doi.org/10.1007/s10291-021-01121-2
  • N. Naciri and S. Bisnath, An uncombined triple-frequency user implementation of the decoupled clock model for PPP-AR. Journal of Geodesy, 95(5), 2021. https://doi.org/10.1007/s00190-021-01510-y
  • C. O. Yigit, A. El-Mowafy, A. A. Dindar, M. Bezcioglu M and I. Tiryakioglu, Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table. Journal of Surveying Engineering, 147(1), 05020011:1-14, 2021. https://doi.org/10.1061/(ASCE)SU.19435428.0000343
  • M. Bezcioğlu, C. O. Yiğit, A. A. Dindar ve Ö. Avcı, Yüksek zamansal çözünürlüklü çoklu-GNSS PPP-AR yönteminin yatay yönlü dinamik davranışları tespit edebilme yeteneğinin değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 952-960, 2022. https://doi.org/10.28948/ngumuh.1141383
  • J. Wang, Q. Zhang and G. Huang, Estimation of fractional cycle bias for GPS/BDS-2/Galileo based on international GNSS monitoring and assessment system observations using the uncombined PPP model. Satellite Navigation, 2(1), 1-11, 2021. https://doi.org/10.1186/s43020-021-00039-x
  • S. Ogutcu, S. Alcay, B. N. Ozdemir, P. Li, Y. Zhang, C. Konukseven and O. F. Atiz, Assessing the performance of BDS-3 for multi-GNSS static and kinematic PPP-AR. Advances in Space Research, 71(3), 1543-1557, 2023. https://doi.org/10.1016/j.asr.2022.10.016
  • S. Wang, R. Tu, B. Li, R. Zhang, L. Fan, J. Han and X. Lu, Tight Integration Kinematic PPP-AR Using GPS/Galileo/QZSS Overlapping Frequency Signals and Its Performance in High-Shade Environments. Remote Sensing, 15(2), 485, 2023. https://doi.org/10.3390/rs15020485
  • Y. Gao, Precise point positioning and its challenges, aided-gnss and signal tracking. Inside GNSS,1, 16–18, 2006. https://doi.org/insidegnss.com/auto/NovDec06GNSSSolutions.pdf
  • B. Erdoğan, O. Kayacık ve A. H. Doğan, Hassas mutlak nokta konumlamada GIPSY-OASIS II v6. 4 yazılımı ile elde edilen varyans kovaryans matrisinin güvenirliğinin araştırılması. Jeodezi ve Jeoinformasyon Dergisi, 6(2), 75-86, 2019. https://doi.org/10.9733/JGG.2019R0007.T
  • B. M. Azúa and C. DeMets, Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of Mexico. Journal of Geophysical Research, 108, No. B9, 2450, 2003. https://doi.org/10.1029/2002JB002241
  • J. C. Savage, W. Gan, WH. Prescott and J. L. Svarc, Strain accumulation across the coast ranges at the latitude of San Francisco 1994–2000. Journal of Geophysical Research, 109(B03413), 1-11, 2004. https://doi.org/10.1029/2003JB002612
  • W. C. Hammond and W. Thatcher, Northwest Basin and Range tectonic deformation observed with the global positioning system: 1999–2003. Journal of Geophysical Research Letters, 110(B10405), 1-12, 2005. https://doi.org/10.1029/2005JB003678
  • N. D’Agostino, D. Cheloni, S. Mantenuto, G. Selvaggi, A. Michelini and D. Zuliani, Strain accumulation in the Southern Alps (NE Italy) and deformation at the Northeastern Boundary of Adria observed by CGPS measurements. Geophysical Research Letters, 32(19): L19306, 2005. https://doi.org/10.1029/2005GL024266
  • E. Calais, C. JH. Harthnady, J.-M. Nocquet and C. Ebinger, Kinematics of the East African Rift from GPS and earthquake slip vector data. Geological Society London Special Publications, 259(1), 9-22, 2006. https://doi.org/10.1144/GSL.SP.2006.259.01.03
  • G. Gendt, G. Dick, C. Reigber, M. Tomassini and Y. Liu (2004). Demonstration of NRT GPS water vapor monitoringfor numerical weather prediction in Germany. J Meteo Societ Jap, 82(1B), 360–370, 2004.
  • C. Rocken, T. Van Hove and R. Ware, Near real-time GPS sensing of atmospheric water vapour. Geophysical Research Letters, 24(24), 3221-3224, 1997. https://doi.org/10.1029/97GL03312
  • H. Bock, U. Hugentobler and G. Beutler, Kinematic and Dynamic Determination of Trajectories for Low Earth Satellites Using GPS. In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 65–69, 2003. https://link.springer.com/chapter/10.1007/978-3-540-38366-6_10
  • S. Zhu, C. Reigber and R. König, Integrated Adjustment of CHAMP, GRACE, and GPS Data. Journal of Geodesy, 78 (1), 103–108, 2004. https://doi.org/10.1007/s00190-004-0379-0
  • Y. Gao and X. Shen, A new method for carrier-phase-based precise point positioning. Navigation - Journal of The Institute of Navigation, 49(2), 109-116, 2002. https://doi.org/10.1002/j.2161-4296.2002.tb00260.x
  • X. Zhang and O. B. Andersen, Surface ice flow velocity and tide retrieval of the Amery ice shelf using precise point positioning. Journal of Geodesy, 80, 171–176, 2006. https://doi.org/10.1007/s00190-006-0062-8
  • S. Jin, X. Qian and X. Wu, Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): first results and evaluation. Global and Planetary Change, 149, 20-25, 2017. https://doi.org/10.1016/j.gloplacha.2016.12.010
  • M. Wang, J. Wang, Y. Bock, H. Liang, D. Dong and P. Fang, Dynamic mapping of the movement of landfalling atmospheric rivers over southern California with GPS data. Geophysical Research Letters, 46(6), 3551-3559, 2019. https://doi.org/10.1029/2018GL081318
  • A. Wang, J. Chen, Y. Zhang, L. Meng, B. Wang and J. Wang, Evaluating the impact of CNES real-time ionospheric products on multi-GNSS single-frequency positioning using the IGS real-time service. Advances in Space Research, 66(11), 2516-2527, 2020. https://doi.org/10.1016/j.asr.2020.09.010
  • S. Liu and Y. Yuan, Generating GPS decoupled clock products for precise point positioning with ambiguity resolution. Journal of Geodesy, 96(6), 2022. https://doi.org/10.1007/s00190-021-01593-7
  • D. Laurichesse, F. Mercier, J. P. Berthias, P. Broca and L. Cerri, Integer ambiguity resolution on undifferenced GPS phase measurements and 151 its application to PPP and satellite precise orbit determination. Navigation - Journal of The Institute of Navigation, 56(2), 135-149, 2009. https://doi.org/10.1002/j.21614296.2009.tb01750.x
  • P. Collins, F. Lahaye, P. Héroux and S. Bisnath, Precise Point Positioning with Ambiguity Resolution using the Decoupled Clock Model. Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), 1315-1322, 2008. https://www.researchgate.net/publication/287080939_Precise_point_positioning_with_ambiguity_resolution_using_the_decoupled_clock_model
  • J. Geng, X. Meng, F. N. Teferle and A. H. Dodson, Performance of precise point positioning with ambiguity resolution for 1- to 4-hour observation periods. Survey Review, 42(316), 155–165, 2010. https://doi.org/10.1179/003962610X12572516251682
  • D. Arıkan ve R. A. Abbak, Elipsoidal yükseklik değişiminin hassas nokta konumlamaya etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 140-151, 2019. https://doi.org/10.35414/akufemubid.496252
  • S. Ogutcu, Performance analysis of ambiguity resolution on PPP and relative positioning techniques: Consideration of satellite geometry. International Journal of Engineering and Geosciences, 5(2), 73-93, 2020. https://doi.org/10.26833/ijeg.580027
  • PJG. Teunissen and A. Khodabandeh, Review and principles of PPP-RTK methods. Journal of Geodesy. 89(3), 217-240, 2015. https://doi.org/10.1007/s00190-014-0771-3
  • J. Geng, F. N. Teferle, C. Shi, X. Meng, A. H. Dodson and J. Liu, Ambiguity resolution in precise point positioning with hourly data. GPS Solutions, 3(4), 263-270, 2009. https://doi.org/10.1007/s10291-009-0119-2
  • S. Bisnath and Y. Gao, Current state of precise point positioning and future prospects and limitations. International Association of Geodesy Symposia, 133, 615-623, 2008. https://doi.org/10.1007/978-3-540-85426-5_71
  • T. Hadas and J. Bosy, IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut, 19(1), 2015. https://doi.org/10.1007/s10291-014-0369-5
  • J. Dousa and P. Vaclavovic, Real-time zenith tropospheric delays in support of numerical weather prediction applications. Advances in Space Research, 53(9), 1347-1358, 2014. https://doi.org/10.1016/j.asr.2014.02.021
  • T. Hadas, F. N. Teferle, K. Kazmierski, P. Hordyniec and J. Bosy, Optimum stochastic modeling for GNSS tropospheric delay estimation in realtime. GPS Solutions, 21(3), 1069-1081, 2017. https://doi.org/10.1007/s10291-016-0595-0
  • Q. Zhao, Y. Yao, W. Yao and Z. Li, Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Scientific Reports, 8(1), 7939, 2018. https://doi.org/10.1038/s41598- 018-26299-3
  • http://129.211.69.159:8090/Main.aspx (Erişim Tarihi: 21 Kasım 2022)
  • J. Chen, A. Wang, Y. Zhang, J. Zhou & C. Yu, BDS satellite-based augmentation service correction parameters and performance assessment. Remote Sensing, 12(5), 766, 2020. https://doi.org/10.3390/rs12050766
  • Y. Zhang, J. Chen, X. Gong X and Q. Chen Q (2020). The update of BDS-2 TGD and its impact on positioning. Advances in space research, 65(11), 2645-2661, 2020. https://doi.org/10.1016/j.asr.2020.03.011
  • M. A. Jurin, R. Fadly and E. Rahmadi, Kajian pengaruh panjang baseline terhadap pengolahan data GPS metode static radial menggunakan perangkat lunak net diff. Journal of Geodesy and Geomatics, 1, No:2, 18-22, 2021. https://journal.eng.unila.ac.id/index.php/jgg/article/view/2089
  • https://github.com/YizeZhang/Net_Diff (Erişim Tarihi: 21 Aralık 2022)
  • B. Karadeniz, M. Bezcioğlu, Ö. F. Bilgen, ve C. Ö. Yiğit, GPS/GALILEO PPP-AR ve PPP yöntemlerinin doğruluklarının gözlem süresi ve uydu kombinasyonları açısından incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(6), 1377-1392, 2021. https://doi.org/10.35414/akufemubid.1003382
  • J. Geng, X. Chen, Y. Pan, S. Mao, C. Li, J. Zhou and K. Zhang, PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23(4), 2019. https://doi.org/10.1007/s10291-019-0888-1
  • https://github.com/prezi/pride (Erişim Tarihi: 21 Aralık 2022
  • https://cddis.nasa.gov/archive/gnss/products/ (Erişim Tarihi: 22 Aralık 2022)

Net_Diff ile PRIDE yazılımlarının hassas nokta konumlama-belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması

Yıl 2023, , 816 - 826, 15.07.2023
https://doi.org/10.28948/ngumuh.1240321

Öz

Mutlak konum belirleme tekniği olan Hassas Nokta Konum Belirleme (Precise Point Positioning, PPP) yöntemi tek bir Küresel Navigasyon Uydu Sistemleri (Global Navigation Satellite Systems, GNSS) alıcısıyla konum bilgisi elde etmeye olanak sağlamaktadır. Bu durumun maliyet ve zaman tasarrufu, gözlem süresine bağlı olarak yüksek konum doğruluğu, pratik çözümler sunmasının yanı sıra yüksek hassasiyeti de beraberinde getirmesi son yıllarda PPP ve Hassas Mutlak Konum Belirleme-Belirsizlik Çözümü (PPP-Ambiguity Resolution, PPP-AR) yöntemlerine olan ilgiyi arttırmış ve bu sayede çok sayıda yazılım üretilmiştir. Bu çalışmada son yıllarda geliştirilmiş PPP-AR tekniği ile konum bilgisi elde etmeye imkân tanıyan Net_Diff ve PRIDE yazılımları kullanılarak yazılımların konum belirleme performansı incelenmiştir. Bu amaçla ISTA ve MERS Uluslararası GNSS Hizmeti (International GNSS Service, IGS) istasyonlarının yirmi günlük (29.10.2022-17.11.2022) gözlem verileri analiz edilmiştir. Değerlendirmelerde GPS, GLONASS, Galileo ve BeiDou uydu sistemleri kullanılmıştır. Yazılımlardan elde edilen sonuçlar istasyonların referans (IGS günlük çözüm) koordinat değerleriyle karşılaştırılmıştır. Çalışmada, Net_Diff yazılımı ile yatayda ortalama 6.2 mm ve düşeyde 12.9 mm konum doğruluğuna ulaşılırken, PRIDE yazılımında sırasıyla 2.7 mm ve 5.3 mm düzeyinde konum doğruluğu elde edilmiştir. Elde edilen sonuçlar PRIDE yazılımının, Net_Diff yazılımına göre daha yüksek nokta konumlandırma doğruluğuna ve hassasiyete sahip olduğunu açıkça ortaya koymaktadır.

Kaynakça

  • S. Alçay, Farklı gözlem sürelerinde GPS‐PPP ve GPS/GLONASS‐PPP yöntemlerinin konum belirleme performanslarının incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(2), 292-302, 2016. https://doi.org/10.5578/fmbd.28120.
  • S. Bisnath and Y. Gao, Precise point positioning, a powerful technique with a promising future. GPS World, 20 (4), 44–50, 2009. https://gge.ext.unb.ca/Resources/gpsworld.april09.pdf
  • L. A. Lipatnikov and S. O. Shevchuk, Cost effective precise positioning with GNSS. The International Federation of Surveyors (FIG), No: 74, 2019. https://www.researchgate.net/publication/332329222_Cost_Effective_Precise_Positioning_with_GNSS
  • J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins and F. H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102, No. B3, 5005-5017, 1997. https://doi.org/10.1029/96JB03860
  • J. Kouba and P. Heroux, Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12–28, 2001. https://doi.org/10.1007/PL00012883
  • N. F. Erbaş, Hassas nokta konumlama (PPP) hata kaynaklarının konum doğruluğuna etkileri. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021. https://hdl.handle.net/20.500.12452/8029
  • C. Rizos, V. Janssen, C. Roberts and T. Grinter, Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End?. FIG Working Week 2012, 1-17, 2012. http://www.fig.net/pub/fig2012/techprog.htm
  • C. O. Yigit, V. Gikas, S. Alcay and A. Ceylan, Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP. Survey Review, 46(3), 155-166, 2014. https://doi.org/10.1179/1752270613Y.0000000068
  • S. Choy, S. Bisnath and C. Rizos, Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS Solutions, 21, 13-22, 2017. https://doi.org/10.1007/s10291-016-0545-x
  • B. Bahadur and M. Nohutcu, Comparative Analysis of MGEX Products for Post-Processing Multi-GNSS PPP. Measurement, 145, 361-369, 2019. https://doi.org/10.1016/j.measurement.2019.05.094
  • K. Dawidowicz, Sub-hourly Precise Point Positioning Accuracy Analysis – Case Study For Selected ASG-EUPOS Stations, Survey Review. Cilt 52(4), 341-351, 2020. https://doi.org/10.1080/00396265.2019.1579988
  • Y. Facio and M. Berber, Subsidence is Determined in the Heart of the Central Valley Using Post Processed Static and Precise Point Positioning Techniques. Journal of Applied Geodesy, 14(1), 113-118, 2020. https://doi.org/10.1515/jag-2019-0043
  • D. Kiliszek and K. Kroszczyński, Performance of the Precise Point Positioning Method Along with the Development of GPS, GLONASS and GALILEO Systems. Measurement, 164, 1-26, 2020. https://doi.org/10.1016/j.measurement.2020.108009
  • R. Liu, B. Guo, A. Zhang and B. Yimwadsana, Research on GPS Precise Point Positioning Algorithm with a Sea Surface Height Constraint. Ocean Engineering, 197, 2020. https://doi.org/10.1016/j.oceaneng.2019.106826
  • S. Alçay ve Ö. F. Atiz, Farklı yazılımlar kullanılarak gerçek zamanlı hassas nokta konum belirleme (RT-PPP) yönteminin performansının incelenmesi. Geomatik Dergisi, 6(1), 77-83, 2021. https://doi.org/10.29128/geomatik.687709
  • S. Alcay and M. Turgut, Evaluation of the positioning performance of multi-GNSS RT-PPP method. Arabian Journal of Geosciences, 14(3), 1-19, 2021. https://doi.org/10.1007/s12517-021-06534-4
  • O. F. Atiz, S. Ogutcu, S. Alcay, L. Pan and I. Bugdayci, Performance investigation of LAMBDA and bootstrapping methods for PPP narrow-lane ambiguity resolution. Geo-spatial Information Science, 24(4), 604-614, 2021. https://doi.org/10.1080/10095020.2021.1942236
  • M. Ge, G. Gendt, M. Rothacher, C. Shi and J. Liu, Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 82, 389-399, 2008. https://doi.org/10.1007/s00190-007-0187-4
  • M. Hamed, A. Abdallah and A. Farah, Kinematic PPP using mixed GPS/GLONASS single-frequency observations. Artifical Satellites, 54, No:3, 2019. https://doi.org/DOI: 10.2478/arsa-2019-0008
  • Ö. F. Atiz, PPP yönteminde AR yaklaşımının konum doğruluğuna etkisinin araştırılması. Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2021. https://hdl.handle.net/20.500.12452/8028
  • X. Li, X. Li, Y. Yuan, K. Zhang, X. Zhang and J. Wickert, Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, GALILEO. Journal of Geodesy, 92, 579-608, 2018. https://doi.org/10.1007/s00190-017-1081-3
  • H. Hong, G. Jingxiang, Y. Yifei, Land deformation monitoring in mining area with PPP-AR. International Journal of Mining Science and Technology, 24(2), 2014. https://doi.org/10.1016/j.ijmst.2014.01.011
  • M. Bezcioglu, C. O. Yigit ve M. N. Bodur, Kinematik PPP-AR ve geleneksel PPP yöntemlerin performanslarının değerlendirilmesi: Antarktika yarımadası örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 162-169, 2019. https://doi.org/10.35414/akufemubid.467336
  • J. Tegedor, X. Liu, O. Ørpen, M. E. D. Goode, O. Ovstedal and N. Treffers, Comparison between multi-constellation ambiguity-fixed PPP and RTK for maritime precise navigation. Journal of Applied Geodesy 9(2):73-80, 2019. https://doi.org/10.1515/jag-2014-0028
  • G. Katsigianni, S. Loyer and F. Perosanz, PPP and PPP-AR kinematic post-processed performance of GPS-Only, GALILEO-Only and Multi-GNSS. Remote Sensing, 11(21), 2477, 2019. https://doi.org/10.3390/rs11212477
  • J. Geng, J. Guo, X. Meng, and K. Gao, Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data, Journal of Geodesy, 94(6), 1-15, 2020. https://doi.org/10.1007/s00190-019-01330-1.
  • Z. Du, H. Chai, G. Xiao, X. Yin, M. Wang and M. Xiang, Analyzing the contributions of multi-GNSS and INS to the PPP-AR outage re-fixing. GPS Solutions, 25(2), 2021. https://doi.org/10.1007/s10291-021-01121-2
  • N. Naciri and S. Bisnath, An uncombined triple-frequency user implementation of the decoupled clock model for PPP-AR. Journal of Geodesy, 95(5), 2021. https://doi.org/10.1007/s00190-021-01510-y
  • C. O. Yigit, A. El-Mowafy, A. A. Dindar, M. Bezcioglu M and I. Tiryakioglu, Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table. Journal of Surveying Engineering, 147(1), 05020011:1-14, 2021. https://doi.org/10.1061/(ASCE)SU.19435428.0000343
  • M. Bezcioğlu, C. O. Yiğit, A. A. Dindar ve Ö. Avcı, Yüksek zamansal çözünürlüklü çoklu-GNSS PPP-AR yönteminin yatay yönlü dinamik davranışları tespit edebilme yeteneğinin değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 952-960, 2022. https://doi.org/10.28948/ngumuh.1141383
  • J. Wang, Q. Zhang and G. Huang, Estimation of fractional cycle bias for GPS/BDS-2/Galileo based on international GNSS monitoring and assessment system observations using the uncombined PPP model. Satellite Navigation, 2(1), 1-11, 2021. https://doi.org/10.1186/s43020-021-00039-x
  • S. Ogutcu, S. Alcay, B. N. Ozdemir, P. Li, Y. Zhang, C. Konukseven and O. F. Atiz, Assessing the performance of BDS-3 for multi-GNSS static and kinematic PPP-AR. Advances in Space Research, 71(3), 1543-1557, 2023. https://doi.org/10.1016/j.asr.2022.10.016
  • S. Wang, R. Tu, B. Li, R. Zhang, L. Fan, J. Han and X. Lu, Tight Integration Kinematic PPP-AR Using GPS/Galileo/QZSS Overlapping Frequency Signals and Its Performance in High-Shade Environments. Remote Sensing, 15(2), 485, 2023. https://doi.org/10.3390/rs15020485
  • Y. Gao, Precise point positioning and its challenges, aided-gnss and signal tracking. Inside GNSS,1, 16–18, 2006. https://doi.org/insidegnss.com/auto/NovDec06GNSSSolutions.pdf
  • B. Erdoğan, O. Kayacık ve A. H. Doğan, Hassas mutlak nokta konumlamada GIPSY-OASIS II v6. 4 yazılımı ile elde edilen varyans kovaryans matrisinin güvenirliğinin araştırılması. Jeodezi ve Jeoinformasyon Dergisi, 6(2), 75-86, 2019. https://doi.org/10.9733/JGG.2019R0007.T
  • B. M. Azúa and C. DeMets, Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of Mexico. Journal of Geophysical Research, 108, No. B9, 2450, 2003. https://doi.org/10.1029/2002JB002241
  • J. C. Savage, W. Gan, WH. Prescott and J. L. Svarc, Strain accumulation across the coast ranges at the latitude of San Francisco 1994–2000. Journal of Geophysical Research, 109(B03413), 1-11, 2004. https://doi.org/10.1029/2003JB002612
  • W. C. Hammond and W. Thatcher, Northwest Basin and Range tectonic deformation observed with the global positioning system: 1999–2003. Journal of Geophysical Research Letters, 110(B10405), 1-12, 2005. https://doi.org/10.1029/2005JB003678
  • N. D’Agostino, D. Cheloni, S. Mantenuto, G. Selvaggi, A. Michelini and D. Zuliani, Strain accumulation in the Southern Alps (NE Italy) and deformation at the Northeastern Boundary of Adria observed by CGPS measurements. Geophysical Research Letters, 32(19): L19306, 2005. https://doi.org/10.1029/2005GL024266
  • E. Calais, C. JH. Harthnady, J.-M. Nocquet and C. Ebinger, Kinematics of the East African Rift from GPS and earthquake slip vector data. Geological Society London Special Publications, 259(1), 9-22, 2006. https://doi.org/10.1144/GSL.SP.2006.259.01.03
  • G. Gendt, G. Dick, C. Reigber, M. Tomassini and Y. Liu (2004). Demonstration of NRT GPS water vapor monitoringfor numerical weather prediction in Germany. J Meteo Societ Jap, 82(1B), 360–370, 2004.
  • C. Rocken, T. Van Hove and R. Ware, Near real-time GPS sensing of atmospheric water vapour. Geophysical Research Letters, 24(24), 3221-3224, 1997. https://doi.org/10.1029/97GL03312
  • H. Bock, U. Hugentobler and G. Beutler, Kinematic and Dynamic Determination of Trajectories for Low Earth Satellites Using GPS. In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 65–69, 2003. https://link.springer.com/chapter/10.1007/978-3-540-38366-6_10
  • S. Zhu, C. Reigber and R. König, Integrated Adjustment of CHAMP, GRACE, and GPS Data. Journal of Geodesy, 78 (1), 103–108, 2004. https://doi.org/10.1007/s00190-004-0379-0
  • Y. Gao and X. Shen, A new method for carrier-phase-based precise point positioning. Navigation - Journal of The Institute of Navigation, 49(2), 109-116, 2002. https://doi.org/10.1002/j.2161-4296.2002.tb00260.x
  • X. Zhang and O. B. Andersen, Surface ice flow velocity and tide retrieval of the Amery ice shelf using precise point positioning. Journal of Geodesy, 80, 171–176, 2006. https://doi.org/10.1007/s00190-006-0062-8
  • S. Jin, X. Qian and X. Wu, Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): first results and evaluation. Global and Planetary Change, 149, 20-25, 2017. https://doi.org/10.1016/j.gloplacha.2016.12.010
  • M. Wang, J. Wang, Y. Bock, H. Liang, D. Dong and P. Fang, Dynamic mapping of the movement of landfalling atmospheric rivers over southern California with GPS data. Geophysical Research Letters, 46(6), 3551-3559, 2019. https://doi.org/10.1029/2018GL081318
  • A. Wang, J. Chen, Y. Zhang, L. Meng, B. Wang and J. Wang, Evaluating the impact of CNES real-time ionospheric products on multi-GNSS single-frequency positioning using the IGS real-time service. Advances in Space Research, 66(11), 2516-2527, 2020. https://doi.org/10.1016/j.asr.2020.09.010
  • S. Liu and Y. Yuan, Generating GPS decoupled clock products for precise point positioning with ambiguity resolution. Journal of Geodesy, 96(6), 2022. https://doi.org/10.1007/s00190-021-01593-7
  • D. Laurichesse, F. Mercier, J. P. Berthias, P. Broca and L. Cerri, Integer ambiguity resolution on undifferenced GPS phase measurements and 151 its application to PPP and satellite precise orbit determination. Navigation - Journal of The Institute of Navigation, 56(2), 135-149, 2009. https://doi.org/10.1002/j.21614296.2009.tb01750.x
  • P. Collins, F. Lahaye, P. Héroux and S. Bisnath, Precise Point Positioning with Ambiguity Resolution using the Decoupled Clock Model. Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), 1315-1322, 2008. https://www.researchgate.net/publication/287080939_Precise_point_positioning_with_ambiguity_resolution_using_the_decoupled_clock_model
  • J. Geng, X. Meng, F. N. Teferle and A. H. Dodson, Performance of precise point positioning with ambiguity resolution for 1- to 4-hour observation periods. Survey Review, 42(316), 155–165, 2010. https://doi.org/10.1179/003962610X12572516251682
  • D. Arıkan ve R. A. Abbak, Elipsoidal yükseklik değişiminin hassas nokta konumlamaya etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 140-151, 2019. https://doi.org/10.35414/akufemubid.496252
  • S. Ogutcu, Performance analysis of ambiguity resolution on PPP and relative positioning techniques: Consideration of satellite geometry. International Journal of Engineering and Geosciences, 5(2), 73-93, 2020. https://doi.org/10.26833/ijeg.580027
  • PJG. Teunissen and A. Khodabandeh, Review and principles of PPP-RTK methods. Journal of Geodesy. 89(3), 217-240, 2015. https://doi.org/10.1007/s00190-014-0771-3
  • J. Geng, F. N. Teferle, C. Shi, X. Meng, A. H. Dodson and J. Liu, Ambiguity resolution in precise point positioning with hourly data. GPS Solutions, 3(4), 263-270, 2009. https://doi.org/10.1007/s10291-009-0119-2
  • S. Bisnath and Y. Gao, Current state of precise point positioning and future prospects and limitations. International Association of Geodesy Symposia, 133, 615-623, 2008. https://doi.org/10.1007/978-3-540-85426-5_71
  • T. Hadas and J. Bosy, IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut, 19(1), 2015. https://doi.org/10.1007/s10291-014-0369-5
  • J. Dousa and P. Vaclavovic, Real-time zenith tropospheric delays in support of numerical weather prediction applications. Advances in Space Research, 53(9), 1347-1358, 2014. https://doi.org/10.1016/j.asr.2014.02.021
  • T. Hadas, F. N. Teferle, K. Kazmierski, P. Hordyniec and J. Bosy, Optimum stochastic modeling for GNSS tropospheric delay estimation in realtime. GPS Solutions, 21(3), 1069-1081, 2017. https://doi.org/10.1007/s10291-016-0595-0
  • Q. Zhao, Y. Yao, W. Yao and Z. Li, Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Scientific Reports, 8(1), 7939, 2018. https://doi.org/10.1038/s41598- 018-26299-3
  • http://129.211.69.159:8090/Main.aspx (Erişim Tarihi: 21 Kasım 2022)
  • J. Chen, A. Wang, Y. Zhang, J. Zhou & C. Yu, BDS satellite-based augmentation service correction parameters and performance assessment. Remote Sensing, 12(5), 766, 2020. https://doi.org/10.3390/rs12050766
  • Y. Zhang, J. Chen, X. Gong X and Q. Chen Q (2020). The update of BDS-2 TGD and its impact on positioning. Advances in space research, 65(11), 2645-2661, 2020. https://doi.org/10.1016/j.asr.2020.03.011
  • M. A. Jurin, R. Fadly and E. Rahmadi, Kajian pengaruh panjang baseline terhadap pengolahan data GPS metode static radial menggunakan perangkat lunak net diff. Journal of Geodesy and Geomatics, 1, No:2, 18-22, 2021. https://journal.eng.unila.ac.id/index.php/jgg/article/view/2089
  • https://github.com/YizeZhang/Net_Diff (Erişim Tarihi: 21 Aralık 2022)
  • B. Karadeniz, M. Bezcioğlu, Ö. F. Bilgen, ve C. Ö. Yiğit, GPS/GALILEO PPP-AR ve PPP yöntemlerinin doğruluklarının gözlem süresi ve uydu kombinasyonları açısından incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(6), 1377-1392, 2021. https://doi.org/10.35414/akufemubid.1003382
  • J. Geng, X. Chen, Y. Pan, S. Mao, C. Li, J. Zhou and K. Zhang, PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23(4), 2019. https://doi.org/10.1007/s10291-019-0888-1
  • https://github.com/prezi/pride (Erişim Tarihi: 21 Aralık 2022
  • https://cddis.nasa.gov/archive/gnss/products/ (Erişim Tarihi: 22 Aralık 2022)
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Harita Mühendisliği
Yazarlar

Nezih Furkan Erbaş 0000-0002-5888-4916

Haluk Balı 0000-0001-6893-8554

Erken Görünüm Tarihi 11 Temmuz 2023
Yayımlanma Tarihi 15 Temmuz 2023
Gönderilme Tarihi 21 Ocak 2023
Kabul Tarihi 23 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Erbaş, N. F., & Balı, H. (2023). Net_Diff ile PRIDE yazılımlarının hassas nokta konumlama-belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 816-826. https://doi.org/10.28948/ngumuh.1240321
AMA Erbaş NF, Balı H. Net_Diff ile PRIDE yazılımlarının hassas nokta konumlama-belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması. NÖHÜ Müh. Bilim. Derg. Temmuz 2023;12(3):816-826. doi:10.28948/ngumuh.1240321
Chicago Erbaş, Nezih Furkan, ve Haluk Balı. “Net_Diff Ile PRIDE yazılımlarının Hassas Nokta Konumlama-Belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 3 (Temmuz 2023): 816-26. https://doi.org/10.28948/ngumuh.1240321.
EndNote Erbaş NF, Balı H (01 Temmuz 2023) Net_Diff ile PRIDE yazılımlarının hassas nokta konumlama-belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 816–826.
IEEE N. F. Erbaş ve H. Balı, “Net_Diff ile PRIDE yazılımlarının hassas nokta konumlama-belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 3, ss. 816–826, 2023, doi: 10.28948/ngumuh.1240321.
ISNAD Erbaş, Nezih Furkan - Balı, Haluk. “Net_Diff Ile PRIDE yazılımlarının Hassas Nokta Konumlama-Belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (Temmuz 2023), 816-826. https://doi.org/10.28948/ngumuh.1240321.
JAMA Erbaş NF, Balı H. Net_Diff ile PRIDE yazılımlarının hassas nokta konumlama-belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması. NÖHÜ Müh. Bilim. Derg. 2023;12:816–826.
MLA Erbaş, Nezih Furkan ve Haluk Balı. “Net_Diff Ile PRIDE yazılımlarının Hassas Nokta Konumlama-Belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 3, 2023, ss. 816-2, doi:10.28948/ngumuh.1240321.
Vancouver Erbaş NF, Balı H. Net_Diff ile PRIDE yazılımlarının hassas nokta konumlama-belirsizlik çözümü (PPP-AR) performanslarının karşılaştırılması. NÖHÜ Müh. Bilim. Derg. 2023;12(3):816-2.

download