Araştırma Makalesi
BibTex RIS Kaynak Göster

Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi

Yıl 2023, , 853 - 860, 15.07.2023
https://doi.org/10.28948/ngumuh.1268912

Öz

Teknik bilgi içermeden yapılan yığma yapılar yaşanan depremler nedeniyle oldukça hasar görmekte ve göçmektedir. Yığma yapıların taşıyıcı sistemini oluşturan duvarlar; malzeme, işçilik, harç, duvar narinliği, duvarda bulunan boşluklar ve düzlem içi/dışı konumu gibi parametrelerden etkilenmektedir. Duvar davranışını etkileyen parametrelerden biri olan destek duvarların varlığı ve duvarda bırakılan boşluklar davranışı oldukça değiştirmektedir. Bu çalışmada tuğla yığma duvarların düzlem dışı davranışları deneysel ve analitik olarak araştırılmıştır. Düzlem dışı konumda bulunan ana duvara dik yerleştirilmiş destek duvarların varlığı ve destek duvarlarda bulunan kapı, pencere boşluklarının ana duvar davranışına etkisi araştırma konusu olmuştur. Bu bağlamda harman tuğlası kullanılarak tek sıra ve düz örgü ile ½ ölçekte duvarlar üretilmiştir. Duvarlar tek yönlü hareket eden eğilme masası üzerinde test edilmiştir. Duvarlar tuğla birimleri arasında harç kullanılmadan örülmüş ve 7 farklı duvar modeli göz önüne alınmıştır. Bunlar yan duvarların ve boşlukların etkisinin araştırıldığı 4 adet U ve 3 adet L geometrisinde duvar modelidir. Her modelde doğru sonuca ulaşmak için 3 adet deney tekrarlanmıştır. Duvarlar Abaqus-2019 programında basitleştirilmiş mikro modelleme tekniği ile sadece sürtünme esaslı modellenmiş ve itme analizleri yapılmıştır. Sonuçlara göre yan duvarların bulunması ana duvar rijitliğini ve yatay yük kapasitesini artırmıştır. Yan duvarlarda bulunan kapı ve pencere boşlukları hem bulunduğu duvarın hem de ana duvarın rijitliğini düşürmüştür. Boşluk miktarı artışı ile daha erken ve gevrek göçme görülmüştür.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

117M316

Teşekkür

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 117M316 projesi ile destekleyen TÜBİTAK'a teşekkürlerimizi sunarım.

Kaynakça

  • A. B. Mehrabi, P. Benson Shing, M. P. Schuller, and J. L. Noland, Experimental evaluation of masonry-infilled RC frames. Journal of Structural Engineering, 122(3), 228-237, 1996. https://doi.org/10.1061/ (ASCE)0733-9445(1996)122:3(228)
  • A. Karaşin ve E. Karaesmen, Bingöl depreminde meydana gelen yapısal hasarların irdelenmesi. Deprem Sempozyumu. Kocaeli, 386:396, 2005.
  • A. Turer, S. Z. Korkmaz and H. H. Korkmaz, Performance improvement studies of masonry houses using elastic post-tensioning straps. Earthquake Engıneerıng and Structural Dynamics, 36: 683-705, 2007. https://doi.org/10.1002/eqe.649
  • O. A. Shawa, G. de Felice, A. Mauro and L. Sorrentino, Out of plane seismic behaviour of rocking masonry walls. Earthquake Engineering & Structural Dynamics, 41(5): 949-968, 2012. https://doi.org/10.1002/eqe.1168
  • P. B. Lourenço and J. G. Rots, Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics, ASCE. 123(7): 660-668, 1998. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660)
  • H. Maccarini, G. Vasconcelos, H. Rodrigues, J. Ortega, and P. B. Lourenço, Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Construction and Building Materials, 179, 430-452, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05. 216
  • V. Akansel, G. Ameri, A. Askan, A. Caner, B. Erdil, Ö. Kale and D. Okuyucu, The 23 October 2011 MW7.0 Van (Eastern Turkey) earthquake: interpretations of recorded strong ground motions and post-earthquake conditions of nearby structures. Earthquake Spectra, 30(2): 657-682, 2014. https://doi.org/10.1193/ 012912EQS020M
  • A. Dazio, The effect of the boundary conditions on the out-of-plane behaviour of unreinforced masonry walls. In 14th World Conference on Earthquake Engineering, 8: Beijing, China, 112-17, 2008.
  • C. Casapulla and L. U. Argiento, The comparative role of friction in local out-of-plane mechanisms of masonry buildings. Pushover analysis and experimental investigation. Engineering Structures, Naples, Italy, 126: 158-173, 2016. https://doi.org/10.1016/ j.engstruct.2016.07.036
  • L. f. Restrepo-Velez, M. Guido and C. G. Michael, Dry stone masonry walls in bending part 1: static tests. International Journal of Architectural Heritage, 8(1):1-28, 2014. https://doi.org/10.1080/15583058. 2012.663059
  • Y. Shi, D. D’Ayala and P. Jain, Analysis of out of plane damage behaviour of unreinforced masonry walls. 14th International Brick & Block Masonry Conference, Bath, England, 02-17, 2008.
  • A. L. Abbas, and M. H. Saeed, Representation of the masonry walls techniques by using FEM. Australian Journal of Basic and Applied Sciences, 11(13), 39-48, 2017. https://doi.org/10.22587/ajbas.2017.11.13.5
  • P.B. Lourenço, Analysis of masonry structures with interface elements: Theory and applications, Report 03-21-22-0-01. Delft University of Technology, Delft, Netherlands, 1994.
  • S. Ahmad, R. A. Khan and H. Gupta, Seismic performance of a masonry heritage structure. International Journal of Engineering and Advanced Technology, 4(3), 2014.
  • S. S. Ali, and A. W. Page, Finite element model for masonry subjected to concentrated loads. Journal of structural engineering, 114(8), 1761-1784, 1988. https://doi.org/10.1061/(ASCE)07339445(1988)114:8(1761)
  • P. Shing, M. Schuller and V. Hoskere, In-plane resistance of reinforced masonry shear walls. Journal of Structural Engineering, 116(3): 619–40, 1990. https://doi.org/10.1061/(ASCE)07339445(1990)116:3(619)
  • A. W. Page, Finite element model for masonry. Journal of Structural Engineering, ASCE, 104(8), 1267-1285, 1978. https://doi.org/10.1061/JSDEAG.0004969
  • S. K. Arya, and G. A. Hegemier, On nonlinear response prediction of concrete masonry assemblies. Proc., North Am. Masonry Conference, Masonry Society, Boulder, Colo., 19.1-19.24, 1978.
  • G. Francesco, U. Tomassetti, A. Penna and G. Magenes, Out-of-plane shaking table tests on URM single leaf and cavity walls. Engineering Structures, 125: 455-470, 2016. https://doi.org/ 10.1016/j.engstruct.2016.07.011
  • N. Mendes, P. B. Lourenço and A. Campos-Costa, Shaking table testing of an existing masonry building: assessment and improvement of the seismic performance. Earthquake Engineering & Structural Dynamics, 10: 23-42, 2013. https://doi.org/ 10.1002/eqe.2342
  • A. Turer, M. Golalmis, H. H. Korkmaz and S. Z. Korkmaz, Tilting table tests on strengthened masonry houses. Proceedings of the 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, 4084-4099, 2013.
  • M. S. Döndüren, Bağlayıcı özelliği artırılan duvar ve sıva harcının düzlem dışı yüklenen tuğla duvarların mekaniksel davranışına etkisi. Doktora Tezi, Selçuk Üniversitesi, Konya, 2008.
  • J. M. Nichols, and Y. Z. Totoev, Experimental determination of the dynamic MOE of Masonry Units, 15th Australian Conf. on the Mechanics of Structures and Materials, Melbourne, Vic., 1997.
  • K. F. Abdulla, L. S., Cunningham, and M. Gillie, Simulating masonry wall behaviour using a simplified micro-model approach. Engineering Structures, 151, 349-365, 2017. https://doi.org/10.1016/j.engstruct. 2017.08.021
  • S. Yanan, D. D’Ayala and J. Prateek, Analysis of out of plane damage behaviour of unreinforced masonry walls. In 14th International Brick and Bock Masonry Conference. 02-17, 2008.
  • P. Taforel, F. Dubois and S. Pagano, Evaluation of numerical uncertainties on the modeling of dry masonry structures submitted to out of plane loading, using the NSCD method in comparison with experimental test. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, 2013.
  • A. Giuffrè, A mechanical model for statics and dynamics of historical masonry buildings. In Protection of the Architectural Heritage Against Earthquakes, CISM Courses and Lectures, 359: 71–152, 1996. https://doi.org/10.1007/978-3-7091-2656-1_4

The effect of side wall and side wall opening on the out-of-plane behavior of masonry structures

Yıl 2023, , 853 - 860, 15.07.2023
https://doi.org/10.28948/ngumuh.1268912

Öz

The masonry structures built without technical knowledge are damaged and collapsed due to earthquakes. The walls forming the structural system of masonry structures are affected by parameters; such as material, labor, mortar, wall slenderness, gaps in the wall and in/out of plane position. The presence of supporting walls and the openings left in the wall, which are one of the parameters affecting the wall behavior, change the behavior considerably. In this study, the out-of-plane behavior of brick masonry walls was investigated experimentally and analytically. The presence of support walls placed perpendicular to the main wall in an out-of-plane position and the effect of door and window openings on the supporting walls on the main wall behavior have been the subject of research. In this context, ½ scale walls were produced with a single line and plain bond using harman bricks. The walls were tested on a one-way bending table. The walls were built between brick units without using mortar and 7 different wall models were considered. These are 4 U and 3 L geometry wall models in which the effects of side walls and openings are investigated. Three experiments were repeated in order to reach the correct result in each model. In the Abaqus-2019 program, the walls were modeled only on the basis of friction and pushover analysis were made with the simplified micro modeling technique. According to the results, the presence of side walls increased the stiffness of the main wall and the horizontal load capacity. The door and window openings on the side walls have reduced the rigidity of both the wall and the main wall. Earlier and brittle failure was observed with the increase in the number of openings.

Proje Numarası

117M316

Kaynakça

  • A. B. Mehrabi, P. Benson Shing, M. P. Schuller, and J. L. Noland, Experimental evaluation of masonry-infilled RC frames. Journal of Structural Engineering, 122(3), 228-237, 1996. https://doi.org/10.1061/ (ASCE)0733-9445(1996)122:3(228)
  • A. Karaşin ve E. Karaesmen, Bingöl depreminde meydana gelen yapısal hasarların irdelenmesi. Deprem Sempozyumu. Kocaeli, 386:396, 2005.
  • A. Turer, S. Z. Korkmaz and H. H. Korkmaz, Performance improvement studies of masonry houses using elastic post-tensioning straps. Earthquake Engıneerıng and Structural Dynamics, 36: 683-705, 2007. https://doi.org/10.1002/eqe.649
  • O. A. Shawa, G. de Felice, A. Mauro and L. Sorrentino, Out of plane seismic behaviour of rocking masonry walls. Earthquake Engineering & Structural Dynamics, 41(5): 949-968, 2012. https://doi.org/10.1002/eqe.1168
  • P. B. Lourenço and J. G. Rots, Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics, ASCE. 123(7): 660-668, 1998. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660)
  • H. Maccarini, G. Vasconcelos, H. Rodrigues, J. Ortega, and P. B. Lourenço, Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Construction and Building Materials, 179, 430-452, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05. 216
  • V. Akansel, G. Ameri, A. Askan, A. Caner, B. Erdil, Ö. Kale and D. Okuyucu, The 23 October 2011 MW7.0 Van (Eastern Turkey) earthquake: interpretations of recorded strong ground motions and post-earthquake conditions of nearby structures. Earthquake Spectra, 30(2): 657-682, 2014. https://doi.org/10.1193/ 012912EQS020M
  • A. Dazio, The effect of the boundary conditions on the out-of-plane behaviour of unreinforced masonry walls. In 14th World Conference on Earthquake Engineering, 8: Beijing, China, 112-17, 2008.
  • C. Casapulla and L. U. Argiento, The comparative role of friction in local out-of-plane mechanisms of masonry buildings. Pushover analysis and experimental investigation. Engineering Structures, Naples, Italy, 126: 158-173, 2016. https://doi.org/10.1016/ j.engstruct.2016.07.036
  • L. f. Restrepo-Velez, M. Guido and C. G. Michael, Dry stone masonry walls in bending part 1: static tests. International Journal of Architectural Heritage, 8(1):1-28, 2014. https://doi.org/10.1080/15583058. 2012.663059
  • Y. Shi, D. D’Ayala and P. Jain, Analysis of out of plane damage behaviour of unreinforced masonry walls. 14th International Brick & Block Masonry Conference, Bath, England, 02-17, 2008.
  • A. L. Abbas, and M. H. Saeed, Representation of the masonry walls techniques by using FEM. Australian Journal of Basic and Applied Sciences, 11(13), 39-48, 2017. https://doi.org/10.22587/ajbas.2017.11.13.5
  • P.B. Lourenço, Analysis of masonry structures with interface elements: Theory and applications, Report 03-21-22-0-01. Delft University of Technology, Delft, Netherlands, 1994.
  • S. Ahmad, R. A. Khan and H. Gupta, Seismic performance of a masonry heritage structure. International Journal of Engineering and Advanced Technology, 4(3), 2014.
  • S. S. Ali, and A. W. Page, Finite element model for masonry subjected to concentrated loads. Journal of structural engineering, 114(8), 1761-1784, 1988. https://doi.org/10.1061/(ASCE)07339445(1988)114:8(1761)
  • P. Shing, M. Schuller and V. Hoskere, In-plane resistance of reinforced masonry shear walls. Journal of Structural Engineering, 116(3): 619–40, 1990. https://doi.org/10.1061/(ASCE)07339445(1990)116:3(619)
  • A. W. Page, Finite element model for masonry. Journal of Structural Engineering, ASCE, 104(8), 1267-1285, 1978. https://doi.org/10.1061/JSDEAG.0004969
  • S. K. Arya, and G. A. Hegemier, On nonlinear response prediction of concrete masonry assemblies. Proc., North Am. Masonry Conference, Masonry Society, Boulder, Colo., 19.1-19.24, 1978.
  • G. Francesco, U. Tomassetti, A. Penna and G. Magenes, Out-of-plane shaking table tests on URM single leaf and cavity walls. Engineering Structures, 125: 455-470, 2016. https://doi.org/ 10.1016/j.engstruct.2016.07.011
  • N. Mendes, P. B. Lourenço and A. Campos-Costa, Shaking table testing of an existing masonry building: assessment and improvement of the seismic performance. Earthquake Engineering & Structural Dynamics, 10: 23-42, 2013. https://doi.org/ 10.1002/eqe.2342
  • A. Turer, M. Golalmis, H. H. Korkmaz and S. Z. Korkmaz, Tilting table tests on strengthened masonry houses. Proceedings of the 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, 4084-4099, 2013.
  • M. S. Döndüren, Bağlayıcı özelliği artırılan duvar ve sıva harcının düzlem dışı yüklenen tuğla duvarların mekaniksel davranışına etkisi. Doktora Tezi, Selçuk Üniversitesi, Konya, 2008.
  • J. M. Nichols, and Y. Z. Totoev, Experimental determination of the dynamic MOE of Masonry Units, 15th Australian Conf. on the Mechanics of Structures and Materials, Melbourne, Vic., 1997.
  • K. F. Abdulla, L. S., Cunningham, and M. Gillie, Simulating masonry wall behaviour using a simplified micro-model approach. Engineering Structures, 151, 349-365, 2017. https://doi.org/10.1016/j.engstruct. 2017.08.021
  • S. Yanan, D. D’Ayala and J. Prateek, Analysis of out of plane damage behaviour of unreinforced masonry walls. In 14th International Brick and Bock Masonry Conference. 02-17, 2008.
  • P. Taforel, F. Dubois and S. Pagano, Evaluation of numerical uncertainties on the modeling of dry masonry structures submitted to out of plane loading, using the NSCD method in comparison with experimental test. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, 2013.
  • A. Giuffrè, A mechanical model for statics and dynamics of historical masonry buildings. In Protection of the Architectural Heritage Against Earthquakes, CISM Courses and Lectures, 359: 71–152, 1996. https://doi.org/10.1007/978-3-7091-2656-1_4
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Fırat Kıpçak 0000-0003-3849-7545

Barış Erdil 0000-0001-5282-3568

Proje Numarası 117M316
Erken Görünüm Tarihi 18 Haziran 2023
Yayımlanma Tarihi 15 Temmuz 2023
Gönderilme Tarihi 21 Mart 2023
Kabul Tarihi 8 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kıpçak, F., & Erdil, B. (2023). Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 853-860. https://doi.org/10.28948/ngumuh.1268912
AMA Kıpçak F, Erdil B. Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi. NÖHÜ Müh. Bilim. Derg. Temmuz 2023;12(3):853-860. doi:10.28948/ngumuh.1268912
Chicago Kıpçak, Fırat, ve Barış Erdil. “Yığma yapıların düzlem dışı davranışlarına Yan duvarın Ve Yan Duvar boşluğunun Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 3 (Temmuz 2023): 853-60. https://doi.org/10.28948/ngumuh.1268912.
EndNote Kıpçak F, Erdil B (01 Temmuz 2023) Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 853–860.
IEEE F. Kıpçak ve B. Erdil, “Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 3, ss. 853–860, 2023, doi: 10.28948/ngumuh.1268912.
ISNAD Kıpçak, Fırat - Erdil, Barış. “Yığma yapıların düzlem dışı davranışlarına Yan duvarın Ve Yan Duvar boşluğunun Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (Temmuz 2023), 853-860. https://doi.org/10.28948/ngumuh.1268912.
JAMA Kıpçak F, Erdil B. Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi. NÖHÜ Müh. Bilim. Derg. 2023;12:853–860.
MLA Kıpçak, Fırat ve Barış Erdil. “Yığma yapıların düzlem dışı davranışlarına Yan duvarın Ve Yan Duvar boşluğunun Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 3, 2023, ss. 853-60, doi:10.28948/ngumuh.1268912.
Vancouver Kıpçak F, Erdil B. Yığma yapıların düzlem dışı davranışlarına yan duvarın ve yan duvar boşluğunun etkisi. NÖHÜ Müh. Bilim. Derg. 2023;12(3):853-60.

Cited By

download