Araştırma Makalesi
BibTex RIS Kaynak Göster

Tetikleyici tipinin dairesel KFTP çarpışma kutusu enerji emilim performansına etkisi

Yıl 2024, , 123 - 130, 15.01.2024
https://doi.org/10.28948/ngumuh.1351499

Öz

Bu çalışmada enerji absorpsiyon performansı üzerine tetikleyici etkisinin incelenmesi için karbon fiber takviyeli polimer matrisli kompozitler üretilmiştir. Üretim vakum infüzyon metodu ile gerçekleştirilmiştir. Üretilen kompozit çarpışma kutularının üzerine üç çeşit tetikleme geometrisi açılmış ve bir de tetikleyici içermeyen karşılaştırma numunesi hazırlanmıştır. Bu dört farklı numunenin yarı-statik basma testleri gerçekleştirilmiş ve elde edilen datalar ile numunelerin enerji emme performansları değerlendirilmiştir. Bunun yanında numunelerin hasarları incelenmiş ve tetikleyici ile nasıl değiştiği ortaya konmuştur. Buna göre S-2 olarak tanımlanan numune (üst yüzeyinden aşağıya doğru dört simetrik yarık ile tetiklenen numune), emilen enerji açısından en iyi performansı sergilemiştir. Ayrıca açılan tetikleyiciler ile tepe kuvveti düşürülmüş ve maksimum tepe kuvveti azalmaları S-3 (delik tipi tetikleyiciye sahip) ve S-4 (yatay yarık tipi tetikleyiciye sahip) numunelerinde görülmüştür.

Kaynakça

  • W. Zhang and J. Xu, Advanced lightweight materials for Automobiles: A review. Materials and Design, 221, 110994, 2022. https://doi.org/10.1016/j.matdes.2022.110994
  • A. Yunus Nasution, M. Rejab, Q. Ma, and M. Firmansyah, Design optimization of passenger SUV’s crash box and bumper beam by using finite element method. Materials Science and Engineering, 1068, 2021. https://doi.org/10.1088/1757-899X/1068/1/012023
  • N. A. Z. Abdullah, M. S. M. Sani, M. S. Salwani, and N. A. Husain, A review on crashworthiness studies of crash box structure. Thin-Walled Structures, 153, 106795, 2020. https://doi.org/10.1016/j.tws.2020.106795
  • F. Tarlochan, F. Samer, A. M. S. Hamouda, S. Ramesh, and K. Khalid, Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures, 71, 7–17, 2013. https://doi.org/10.1016/j.tws.2013.04.003
  • A. Reyes and T. Børvik, Quasi-static behaviour of crash components with steel skins and polymer foam cores. Materials Today Communications, 17, 541–553, 2018. https://doi.org/10.1016/j.mtcomm.2018.09.015
  • E. Kösedağ and D. İşler, Effect of section geometry and material type on energy absorption capabilities of crash boxes. Karaelmas Fen ve Mühendislik Dergisi, 13(1), 1,2023. https://doi.org/10.7212/karaelmasfen.1150591
  • Z. Tang, S. Liu, and Z. Zhang, Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin-Walled Structures, 62, 75–84, 2013. https://doi.org/10.1016/j.tws.2012.05.019
  • L. Peroni, M. Avalle, and G. Belingardi, Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques. International Journal of Impact Engineering, 36(3), 498–511, 2009. https://doi.org/10.1016/j.ijimpeng.2008.06.004
  • A. B. Nellippallil, P. R. Berthelson, L. Peterson, and R. K. Prabhu, Chapter 10 - Robust concept exploration of driver’s side vehicular impacts for human-centric crashworthiness. Multiscale Biomechanical Modeling of the Brain, R. Prabhu and M. Horstemeyer, Eds., Academic Press, 45, 153–176, 2022. https://doi.org/10.1016/B978-0-12-818144-7.00002-5
  • Z. Wang, J. Liu, and S. Yao, On folding mechanics of multi-cell thin-walled square tubes. Composites Part B: Engineering, 132, 17–27, 2018. https://doi.org/10.1016/j.compositesb.2017.07.036
  • N. Nasir Hussain, S. Prakash Regalla, and Y. V. Daseswara Rao, Low velocity impact characterization of glass fiber reinforced plastics for application of crash box. Materials Today: Proceedings, 4(2) 3252–3262, 2017. https://doi.org/10.1016/j.matpr.2017.02.211
  • H. Mohammadi et al., Lightweight glass fiber-reinforced polymer composite for automotive bumper applications: a review. Polymers, 15(1), 2023. https://doi.org/10.3390/polym15010193
  • M. Zarei Mahmoudabadi and M. Sadighi, A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb – Theoretical and experimental. Materials Science and Engineering: A, 530, 333–343, 2011. https://doi.org/10.1016/j.msea.2011.09.093
  • O. Mohammadiha and H. Ghariblu, Crush behavior optimization of multi-tubes filled by functionally graded foam. Thin-walled structures, 98, 627–639, 2016. https://doi.org/10.1016/j.tws.2015.10.025
  • H. S. Kim, New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-walled structures, 40(4), 311–327, 2002. https://doi.org/10.1016/S0263-8231(01)00069-6
  • E. Kösedağ and R. Eki̇ci̇, Free vibration analysis of foam-core sandwich structures. Politeknik Dergisi, 24(1), 69-74, 2021. https://doi.org/10.2339/politeknik.571396
  • E. Kosedag and R. Ekici, Low-velocity and ballistic impact resistances of particle reinforced metal–matrix composites: An experimental study. Journal of Composite Materials, 56(7), 991–1002, 2022. https://doi.org/10.1177/00219983211068101
  • E. Kosedag, Effect of artificial aging on 3-point bending behavior of glass fiber/epoxy composites. Journal of Reinforced Plastics and Composites, 42(21-22), 2022. https://doi.org/10.1177/07316844221146287
  • N. N. Hussain, S. P. Regalla, and Y. V. D. Rao, Comparative study of trigger configuration for enhancement of crashworthiness of automobile crash box subjected to axial impact loading. Procedia Engineering, 173, 1390–1398, 2017. https://doi.org/10.1016/j.proeng.2016.12.198
  • A. Alavi Nia and J. Haddad Hamedani, Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Structures, 48(12), 946–954, 2010. https://doi.org/10.1016/j.tws.2010.07.003
  • M. A. Khan and M. Phil, Energy absorption capacity- an overview ScienceDirect Topics. https://www.sciencedirect.com/topics/engineering/energy-absorption-capacity (accessed Aug. 28, 2023).
  • G. M. Nagel and D. P. Thambiratnam, Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading. International Journal of Impact Engineering, 32(10), 1595–1620, 2006. https://doi.org/10.1016/j.ijimpeng.2005.01.002
  • N. N. Hussain, S. P. Regalla, Y. V. D. Rao and A. M. Mohammed, An experimental and numerical analysis on influence of triggering for composite automotive crash boxes under compressive impact loads. International Journal of Crashworthiness, 27(4), 1152-1166, 2022. https://doi.org/10.1080/13588265.2021.1914953
  • S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels and J. Vantomme, Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modelling. Polymer Testing, 29(6), 729–741, 2010. https://doi.org/10.1016/j.polymertesting.2010.05.010
  • M. A. Jiménez, A. Miravete, E. Larrodé, and D. Revuelta, Effect of trigger geometry on energy absorption in composite profiles. Composite Structures, 48(1), 107–111, 2000. https://doi.org/10.1016/S0263-8223(99)00081-1
  • M. S. Zahran, P. Xue, M. S. Esa, and M. M. Abdelwahab, A novel tailor-made technique for enhancing the crashworthiness by multi-stage tubular square tubes. Thin-Walled Structures, 122, 64–82, 2018. https://doi.org/10.1016/j.tws.2017.09.031
  • C. Zhou, S. Ming, C. Xia, B. Wang, X. Bi, P. Hao and M. Ren, The energy absorption of rectangular and slotted windowed tubes under axial crushing. International Journal of Mechanical Sciences, 141, 89–100, 2018. https://doi.org/10.1016/j.ijmecsci.2018.03.036
  • H. Zarei, M. Kröger, and H. Albertsen, An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Composite Structures, 85(3), 245–257, 2008. https://doi.org/10.1016/j.compstruct.2007.10.028
  • H. Böhm, J. Richter, J. Kim, G. Joo, H. Jang, M. Jeong, A. Hornig and M. Gude, Glass-fiber mat/PA6 composite tubes subjected to dynamic axial crush loading—Experimental evaluation and high fidelity modeling of failure phenomena. Composite Structures, 319, 117115, 2023. https://doi.org/10.1016/j.compstruct.2023.117115
  • M. Harhash, M. Kuhtz, J. Richter, A. Hornig, M. Gude and H. Palkowski, Trigger geometry influencing the failure modes in steel/polymer/steel sandwich crashboxes: Experimental and numerical evaluation. Composite Structures, 262, 113619, 2021. https://doi.org/10.1016/j.compstruct.2021.113619
  • S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels and J. Vantomme, Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Polymer Testing, 29 (3), 381–396, 2010. https://doi.org/10.1016/j.polymertesting.2010.01.003
  • N. Bahramian and A. Khalkhali, Crashworthiness topology optimization of thin-walled square tubes, using modified bidirectional evolutionary structural optimization approach. Thin-Walled Structures, 147, 106524, 2020. https://doi.org/10.1016/j.tws.2019.106524
  • S. Montazeri, M. Elyasi and A. Moradpour, Investigating the energy absorption, SEA and crushing performance of holed and grooved thin-walled tubes under axial loading with different materials. Thin-Walled Structures, 131, 646–653, 2018. https://doi.org/10.1016/j.tws.2018.07.024

Response of trigger type to circular CFRP crash box energy absorption performance

Yıl 2024, , 123 - 130, 15.01.2024
https://doi.org/10.28948/ngumuh.1351499

Öz

In this study, carbon fiber reinforced polymer matrix composites were produced to investigate the trigger effect on energy absorption performance. Production was carried out by vacuum infusion method. Three types of trigger geometry were opened on the composite crash boxes produced and also comparison sample without trigger was prepared. The quasi-static compression tests of these four different samples were carried out and the energy absorption performances of the samples were evaluated with the obtained data. In addition, the damages of the samples were examined, and it was revealed how they changed with the trigger. Accordingly, the sample described as S-2, (the triggered sample, which consists of four symmetrical slits downwards from its upper surface) exhibited the best performance in terms of absorbed energy. Additionally, the peak forces were reduced with the triggers opened and the maximum peak force decreases were seen in S-3(with hole type triggers) and S-4 (with horizontal slit type triggers) samples.

Kaynakça

  • W. Zhang and J. Xu, Advanced lightweight materials for Automobiles: A review. Materials and Design, 221, 110994, 2022. https://doi.org/10.1016/j.matdes.2022.110994
  • A. Yunus Nasution, M. Rejab, Q. Ma, and M. Firmansyah, Design optimization of passenger SUV’s crash box and bumper beam by using finite element method. Materials Science and Engineering, 1068, 2021. https://doi.org/10.1088/1757-899X/1068/1/012023
  • N. A. Z. Abdullah, M. S. M. Sani, M. S. Salwani, and N. A. Husain, A review on crashworthiness studies of crash box structure. Thin-Walled Structures, 153, 106795, 2020. https://doi.org/10.1016/j.tws.2020.106795
  • F. Tarlochan, F. Samer, A. M. S. Hamouda, S. Ramesh, and K. Khalid, Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures, 71, 7–17, 2013. https://doi.org/10.1016/j.tws.2013.04.003
  • A. Reyes and T. Børvik, Quasi-static behaviour of crash components with steel skins and polymer foam cores. Materials Today Communications, 17, 541–553, 2018. https://doi.org/10.1016/j.mtcomm.2018.09.015
  • E. Kösedağ and D. İşler, Effect of section geometry and material type on energy absorption capabilities of crash boxes. Karaelmas Fen ve Mühendislik Dergisi, 13(1), 1,2023. https://doi.org/10.7212/karaelmasfen.1150591
  • Z. Tang, S. Liu, and Z. Zhang, Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin-Walled Structures, 62, 75–84, 2013. https://doi.org/10.1016/j.tws.2012.05.019
  • L. Peroni, M. Avalle, and G. Belingardi, Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques. International Journal of Impact Engineering, 36(3), 498–511, 2009. https://doi.org/10.1016/j.ijimpeng.2008.06.004
  • A. B. Nellippallil, P. R. Berthelson, L. Peterson, and R. K. Prabhu, Chapter 10 - Robust concept exploration of driver’s side vehicular impacts for human-centric crashworthiness. Multiscale Biomechanical Modeling of the Brain, R. Prabhu and M. Horstemeyer, Eds., Academic Press, 45, 153–176, 2022. https://doi.org/10.1016/B978-0-12-818144-7.00002-5
  • Z. Wang, J. Liu, and S. Yao, On folding mechanics of multi-cell thin-walled square tubes. Composites Part B: Engineering, 132, 17–27, 2018. https://doi.org/10.1016/j.compositesb.2017.07.036
  • N. Nasir Hussain, S. Prakash Regalla, and Y. V. Daseswara Rao, Low velocity impact characterization of glass fiber reinforced plastics for application of crash box. Materials Today: Proceedings, 4(2) 3252–3262, 2017. https://doi.org/10.1016/j.matpr.2017.02.211
  • H. Mohammadi et al., Lightweight glass fiber-reinforced polymer composite for automotive bumper applications: a review. Polymers, 15(1), 2023. https://doi.org/10.3390/polym15010193
  • M. Zarei Mahmoudabadi and M. Sadighi, A study on the static and dynamic loading of the foam filled metal hexagonal honeycomb – Theoretical and experimental. Materials Science and Engineering: A, 530, 333–343, 2011. https://doi.org/10.1016/j.msea.2011.09.093
  • O. Mohammadiha and H. Ghariblu, Crush behavior optimization of multi-tubes filled by functionally graded foam. Thin-walled structures, 98, 627–639, 2016. https://doi.org/10.1016/j.tws.2015.10.025
  • H. S. Kim, New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-walled structures, 40(4), 311–327, 2002. https://doi.org/10.1016/S0263-8231(01)00069-6
  • E. Kösedağ and R. Eki̇ci̇, Free vibration analysis of foam-core sandwich structures. Politeknik Dergisi, 24(1), 69-74, 2021. https://doi.org/10.2339/politeknik.571396
  • E. Kosedag and R. Ekici, Low-velocity and ballistic impact resistances of particle reinforced metal–matrix composites: An experimental study. Journal of Composite Materials, 56(7), 991–1002, 2022. https://doi.org/10.1177/00219983211068101
  • E. Kosedag, Effect of artificial aging on 3-point bending behavior of glass fiber/epoxy composites. Journal of Reinforced Plastics and Composites, 42(21-22), 2022. https://doi.org/10.1177/07316844221146287
  • N. N. Hussain, S. P. Regalla, and Y. V. D. Rao, Comparative study of trigger configuration for enhancement of crashworthiness of automobile crash box subjected to axial impact loading. Procedia Engineering, 173, 1390–1398, 2017. https://doi.org/10.1016/j.proeng.2016.12.198
  • A. Alavi Nia and J. Haddad Hamedani, Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Structures, 48(12), 946–954, 2010. https://doi.org/10.1016/j.tws.2010.07.003
  • M. A. Khan and M. Phil, Energy absorption capacity- an overview ScienceDirect Topics. https://www.sciencedirect.com/topics/engineering/energy-absorption-capacity (accessed Aug. 28, 2023).
  • G. M. Nagel and D. P. Thambiratnam, Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading. International Journal of Impact Engineering, 32(10), 1595–1620, 2006. https://doi.org/10.1016/j.ijimpeng.2005.01.002
  • N. N. Hussain, S. P. Regalla, Y. V. D. Rao and A. M. Mohammed, An experimental and numerical analysis on influence of triggering for composite automotive crash boxes under compressive impact loads. International Journal of Crashworthiness, 27(4), 1152-1166, 2022. https://doi.org/10.1080/13588265.2021.1914953
  • S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels and J. Vantomme, Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modelling. Polymer Testing, 29(6), 729–741, 2010. https://doi.org/10.1016/j.polymertesting.2010.05.010
  • M. A. Jiménez, A. Miravete, E. Larrodé, and D. Revuelta, Effect of trigger geometry on energy absorption in composite profiles. Composite Structures, 48(1), 107–111, 2000. https://doi.org/10.1016/S0263-8223(99)00081-1
  • M. S. Zahran, P. Xue, M. S. Esa, and M. M. Abdelwahab, A novel tailor-made technique for enhancing the crashworthiness by multi-stage tubular square tubes. Thin-Walled Structures, 122, 64–82, 2018. https://doi.org/10.1016/j.tws.2017.09.031
  • C. Zhou, S. Ming, C. Xia, B. Wang, X. Bi, P. Hao and M. Ren, The energy absorption of rectangular and slotted windowed tubes under axial crushing. International Journal of Mechanical Sciences, 141, 89–100, 2018. https://doi.org/10.1016/j.ijmecsci.2018.03.036
  • H. Zarei, M. Kröger, and H. Albertsen, An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Composite Structures, 85(3), 245–257, 2008. https://doi.org/10.1016/j.compstruct.2007.10.028
  • H. Böhm, J. Richter, J. Kim, G. Joo, H. Jang, M. Jeong, A. Hornig and M. Gude, Glass-fiber mat/PA6 composite tubes subjected to dynamic axial crush loading—Experimental evaluation and high fidelity modeling of failure phenomena. Composite Structures, 319, 117115, 2023. https://doi.org/10.1016/j.compstruct.2023.117115
  • M. Harhash, M. Kuhtz, J. Richter, A. Hornig, M. Gude and H. Palkowski, Trigger geometry influencing the failure modes in steel/polymer/steel sandwich crashboxes: Experimental and numerical evaluation. Composite Structures, 262, 113619, 2021. https://doi.org/10.1016/j.compstruct.2021.113619
  • S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels and J. Vantomme, Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures. Polymer Testing, 29 (3), 381–396, 2010. https://doi.org/10.1016/j.polymertesting.2010.01.003
  • N. Bahramian and A. Khalkhali, Crashworthiness topology optimization of thin-walled square tubes, using modified bidirectional evolutionary structural optimization approach. Thin-Walled Structures, 147, 106524, 2020. https://doi.org/10.1016/j.tws.2019.106524
  • S. Montazeri, M. Elyasi and A. Moradpour, Investigating the energy absorption, SEA and crushing performance of holed and grooved thin-walled tubes under axial loading with different materials. Thin-Walled Structures, 131, 646–653, 2018. https://doi.org/10.1016/j.tws.2018.07.024
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katı Mekanik, Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makaleleri
Yazarlar

Ertan Kösedağ 0000-0002-5580-0414

Erken Görünüm Tarihi 17 Kasım 2023
Yayımlanma Tarihi 15 Ocak 2024
Gönderilme Tarihi 28 Ağustos 2023
Kabul Tarihi 6 Kasım 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kösedağ, E. (2024). Response of trigger type to circular CFRP crash box energy absorption performance. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 123-130. https://doi.org/10.28948/ngumuh.1351499
AMA Kösedağ E. Response of trigger type to circular CFRP crash box energy absorption performance. NÖHÜ Müh. Bilim. Derg. Ocak 2024;13(1):123-130. doi:10.28948/ngumuh.1351499
Chicago Kösedağ, Ertan. “Response of Trigger Type to Circular CFRP Crash Box Energy Absorption Performance”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 1 (Ocak 2024): 123-30. https://doi.org/10.28948/ngumuh.1351499.
EndNote Kösedağ E (01 Ocak 2024) Response of trigger type to circular CFRP crash box energy absorption performance. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 1 123–130.
IEEE E. Kösedağ, “Response of trigger type to circular CFRP crash box energy absorption performance”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 1, ss. 123–130, 2024, doi: 10.28948/ngumuh.1351499.
ISNAD Kösedağ, Ertan. “Response of Trigger Type to Circular CFRP Crash Box Energy Absorption Performance”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/1 (Ocak 2024), 123-130. https://doi.org/10.28948/ngumuh.1351499.
JAMA Kösedağ E. Response of trigger type to circular CFRP crash box energy absorption performance. NÖHÜ Müh. Bilim. Derg. 2024;13:123–130.
MLA Kösedağ, Ertan. “Response of Trigger Type to Circular CFRP Crash Box Energy Absorption Performance”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 1, 2024, ss. 123-30, doi:10.28948/ngumuh.1351499.
Vancouver Kösedağ E. Response of trigger type to circular CFRP crash box energy absorption performance. NÖHÜ Müh. Bilim. Derg. 2024;13(1):123-30.

download