Araştırma Makalesi
BibTex RIS Kaynak Göster

Eğilme etkisi altındaki soğukta şekil verilmiş çelik konik çatı kirişlerinin sonlu elemanlar modellemesine etki eden parametrelerin incelenmesi

Yıl 2024, , 672 - 679, 15.04.2024
https://doi.org/10.28948/ngumuh.1400650

Öz

Bu çalışmada soğukta şekil verilmiş çelik kiriş elemanların doğrusal olmayan nümerik modellemesinin deneysel veriler ile doğrulanması amaçlanmıştır. C harfi formunda kesiti olan kirişlerden oluşturulan ve konik çatıya benzetilen deney elemanı test edilmiştir. Nümerik çalışmada ise deney elemanları farklı ağ tipleri, boyutları ve büyütme katsayıları kullanılarak modellenmiştir. Ayrıca, global ve lokal geometrik kusurlar gibi değişkenlerin analize etkisi değerlendirilmiş ve model doğrulanmıştır. Belirlenen modelin analizlerinden elde edilen sonuçlar, deneyde elde edilen sonuçlar ile karşılaştırılmıştır. Analitik modelin doğrulanmasında global kusurların tek başına yeterli olmadığı, lokal etkilerin de tanımlanması gerektiği sonucuna ulaşılmıştır.

Teşekkür

Deney elemanlarının üretilmesi OBİAL Çelik Silo tarafından yapılmıştır. Ayrıca, sonlu elemanlar analizlerinde sunduğu yardımlar için Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği bölümü öğretim üyesi Prof. Dr. Babür DELİKTAŞ’a teşekkür ederim.

Kaynakça

  • W-W Yu, R.A. LaBoube and H. Chen, Cold-formed steel design. Wiley, Hoboken, 2019.
  • G. J. Hancock, T. Murray, and D. S. Ellifrit, Cold-formed steel structures to the AISI specification. CRC Press, Madison Avenue, 2001.
  • L. W. Williams, 1 - Introduction to recent trends in cold-formed steel construction. In: C. Yu. (editor) Recent Trends in Cold-Formed Steel Construction, Woodhead Publishing; 2016, p. 1–35. https://doi.org/10.1016/B978-0-08-100160-8.00001-3.
  • Y. Bölükbaş, Güncel tasarım standartlarına göre soğukta şekil verilmiş çelik kesitlerin eğilme dayanımlarının hesabı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1, 2024. https://doi.org/10.28948/ngumuh.1309045
  • S. Selvaraj and M. Madhavan, Bracing effect of sheathing in point-symmetric cold-formed steel flexural members. Journal of Constructional Steel Research, 157, 450-462, 2019. https://doi.org/ 10.1016/j.jcsr.2019.02.037
  • L. Y. Li, Lateral–torsional buckling of cold-formed zed-purlins partial-laterally restrained by metal sheeting. Thin-walled structures, 42(7), 995-1011, 2004. https://doi.org/10.1016/j.tws.2004.03.005
  • P. Nandini and V. Kalyanaraman, Strength of cold-formed lipped channel beams under interaction of local, distortional and lateral torsional buckling. Thin-walled structures, 48(10-11), 872-877, 2010. https://doi.org/ 10.1016/j.tws.2010.04.013
  • B. Janarthanan and M. Mahendran, Behaviour and strength of unlipped channel sections under combined bending and torsion. Journal of Constructional Steel Research, 182, 106648, 2021. https://doi.org/10.1016/ j.jcsr.2021.106648
  • H. X. Wan, B. Huang and M. Mahendran, Experiments and numerical modelling of cold-formed steel beams under bending and torsion. Thin-Walled Structures, 161, 107424, 2021. https://doi.org/10.1016/ j.tws.2020.107424
  • R. H. Plaut and C. D. Moen, Lateral-torsional deformations of single-span and two-span thin-walled beams with continuous bracing. Journal of Constructional Steel Research, 179, 106534, 2021. https://doi.org/10.1016/j.jcsr.2021.106534
  • C. Zhao, Investigations on structural interaction of cold-formed steel roof purlin-sheet system. Ph.D. Thesis, University of Birmingham, UK, 2014.
  • ABAQUS Analysis User’s Manual-Version 6.14., ABAQUS Inc., USA, 2018
  • C. Yu and BW. Schafer, Simulation of cold-formed steel beams in local and distortional buckling with applications to the direct strength method. Journal of Constructional Steel Research, 63, 5, 581-590, 2007. https://doi.org/10.1016/j.jcsr.2006.07.008.
  • N. D. Kankanamge and M. Mahendran, Behaviour and design of cold-formed steel beams subject to lateral–torsional buckling. Thin-Walled Structures, 51, 25-38, 2012. https://doi.org/10.1016/j.tws.2011.10.012.
  • M. R. Haidarali and D.A. Nethercot, Local and distortional buckling of cold-formed steel beams with edge-stiffened flanges. Journal of Constructional Steel Research, 73, 31-42, 2012. https://doi.org/10.1016/ j.jcsr.2012.01.006.
  • M. Anbarasu, Local-distortional buckling interaction on cold-formed steel lipped channel beams. Thin-Walled Structures, 98, 351-359, 2016. https://doi.org/10.1016/ j.tws.2015.10.003.
  • M. Anbarasu, Local-distortional buckling interaction on cold-formed steel lipped channel beams. Thin-Walled Structures, 98, 351-359, 2016. https://doi.org/10.1016/ j.tws.2015.10.003
  • Q. Y. Li and B. Young, Structural performance of cold-formed steel built-up section beams under non-uniform bending. Journal of Constructional Steel Research, 189, 107050, 2022. https://doi.org/10.1016/ j.jcsr.2021.107050
  • K. Roy, H. H. Lau, T. C. H. Ting, B. Chen, and J. B. Lim, Flexural behaviour of back-to-back built-up cold-formed steel channel beams: Experiments and finite element modelling. Structures, 29, 235-253, 2021. https://doi.org/10.1016/j.istruc.2020.10.052
  • D. Dubina and V. Ungureanu, Effect of imperfections numerical simulation of instability behaviour of cold-formed steel members. Thin-walled structures, 40, 3, 239-262, 2002. https://doi.org/10.1016/S0263-8231(01)00046-5
  • V. M. Zeinoddini and B. W., Schafer, Simulation of geometric imperfections in cold-formed steel members using spectral representation approach. Thin-Walled Structures, 60, 105-117, 2012. https://doi.org/10.1016/ j.tws.2012.07.001
  • B. W. Schafer and T. Peköz, Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses. Journal of Constructional Steel Research, 47, 193-210, 1998. https://doi.org/10.1016/S0143-974X(98)00007-8.
  • C. H. Pham and G. J. Hancock, Numerical simulation of high strength cold-formed purlins in combined bending and shear. Journal of Constructional Steel Research, 66, 1205-17, 2010. https://doi.org/10.1016/ j.jcsr.2010.04.014.
  • P. Natario, N. Silvestre and D. Camotim, Computational modelling of flange crushing in cold-formed steel sections. Thin-Walled Structures, 84, 393-405, 2014. https://doi.org/10.1016/j.tws.2014.07.006
  • ASTM E8/E8M-13a, Standard test methods for tension testing of metallic materials. West Conshohocken, 2013.

Investigation of parameters affecting finite element modeling of cold formed steel conical roof beams under bending

Yıl 2024, , 672 - 679, 15.04.2024
https://doi.org/10.28948/ngumuh.1400650

Öz

This study aims to verify the nonlinear numerical modeling of cold-formed steel beam members with experimental data. An experimental member formed by beams with a C-section and modeled as a conical roof was tested. In the numerical study, the experimental elements were modeled using different mesh types, sizes and amplification factors. In addition, the effect of parameters such as global and local geometric imperfections on the analysis is evaluated and the model is validated. The results obtained from the specified model analysis are compared with those obtained in the experiment. It is concluded that global imperfections alone are insufficient to validate the analytical model and local effects should also be identified.

Kaynakça

  • W-W Yu, R.A. LaBoube and H. Chen, Cold-formed steel design. Wiley, Hoboken, 2019.
  • G. J. Hancock, T. Murray, and D. S. Ellifrit, Cold-formed steel structures to the AISI specification. CRC Press, Madison Avenue, 2001.
  • L. W. Williams, 1 - Introduction to recent trends in cold-formed steel construction. In: C. Yu. (editor) Recent Trends in Cold-Formed Steel Construction, Woodhead Publishing; 2016, p. 1–35. https://doi.org/10.1016/B978-0-08-100160-8.00001-3.
  • Y. Bölükbaş, Güncel tasarım standartlarına göre soğukta şekil verilmiş çelik kesitlerin eğilme dayanımlarının hesabı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1, 2024. https://doi.org/10.28948/ngumuh.1309045
  • S. Selvaraj and M. Madhavan, Bracing effect of sheathing in point-symmetric cold-formed steel flexural members. Journal of Constructional Steel Research, 157, 450-462, 2019. https://doi.org/ 10.1016/j.jcsr.2019.02.037
  • L. Y. Li, Lateral–torsional buckling of cold-formed zed-purlins partial-laterally restrained by metal sheeting. Thin-walled structures, 42(7), 995-1011, 2004. https://doi.org/10.1016/j.tws.2004.03.005
  • P. Nandini and V. Kalyanaraman, Strength of cold-formed lipped channel beams under interaction of local, distortional and lateral torsional buckling. Thin-walled structures, 48(10-11), 872-877, 2010. https://doi.org/ 10.1016/j.tws.2010.04.013
  • B. Janarthanan and M. Mahendran, Behaviour and strength of unlipped channel sections under combined bending and torsion. Journal of Constructional Steel Research, 182, 106648, 2021. https://doi.org/10.1016/ j.jcsr.2021.106648
  • H. X. Wan, B. Huang and M. Mahendran, Experiments and numerical modelling of cold-formed steel beams under bending and torsion. Thin-Walled Structures, 161, 107424, 2021. https://doi.org/10.1016/ j.tws.2020.107424
  • R. H. Plaut and C. D. Moen, Lateral-torsional deformations of single-span and two-span thin-walled beams with continuous bracing. Journal of Constructional Steel Research, 179, 106534, 2021. https://doi.org/10.1016/j.jcsr.2021.106534
  • C. Zhao, Investigations on structural interaction of cold-formed steel roof purlin-sheet system. Ph.D. Thesis, University of Birmingham, UK, 2014.
  • ABAQUS Analysis User’s Manual-Version 6.14., ABAQUS Inc., USA, 2018
  • C. Yu and BW. Schafer, Simulation of cold-formed steel beams in local and distortional buckling with applications to the direct strength method. Journal of Constructional Steel Research, 63, 5, 581-590, 2007. https://doi.org/10.1016/j.jcsr.2006.07.008.
  • N. D. Kankanamge and M. Mahendran, Behaviour and design of cold-formed steel beams subject to lateral–torsional buckling. Thin-Walled Structures, 51, 25-38, 2012. https://doi.org/10.1016/j.tws.2011.10.012.
  • M. R. Haidarali and D.A. Nethercot, Local and distortional buckling of cold-formed steel beams with edge-stiffened flanges. Journal of Constructional Steel Research, 73, 31-42, 2012. https://doi.org/10.1016/ j.jcsr.2012.01.006.
  • M. Anbarasu, Local-distortional buckling interaction on cold-formed steel lipped channel beams. Thin-Walled Structures, 98, 351-359, 2016. https://doi.org/10.1016/ j.tws.2015.10.003.
  • M. Anbarasu, Local-distortional buckling interaction on cold-formed steel lipped channel beams. Thin-Walled Structures, 98, 351-359, 2016. https://doi.org/10.1016/ j.tws.2015.10.003
  • Q. Y. Li and B. Young, Structural performance of cold-formed steel built-up section beams under non-uniform bending. Journal of Constructional Steel Research, 189, 107050, 2022. https://doi.org/10.1016/ j.jcsr.2021.107050
  • K. Roy, H. H. Lau, T. C. H. Ting, B. Chen, and J. B. Lim, Flexural behaviour of back-to-back built-up cold-formed steel channel beams: Experiments and finite element modelling. Structures, 29, 235-253, 2021. https://doi.org/10.1016/j.istruc.2020.10.052
  • D. Dubina and V. Ungureanu, Effect of imperfections numerical simulation of instability behaviour of cold-formed steel members. Thin-walled structures, 40, 3, 239-262, 2002. https://doi.org/10.1016/S0263-8231(01)00046-5
  • V. M. Zeinoddini and B. W., Schafer, Simulation of geometric imperfections in cold-formed steel members using spectral representation approach. Thin-Walled Structures, 60, 105-117, 2012. https://doi.org/10.1016/ j.tws.2012.07.001
  • B. W. Schafer and T. Peköz, Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses. Journal of Constructional Steel Research, 47, 193-210, 1998. https://doi.org/10.1016/S0143-974X(98)00007-8.
  • C. H. Pham and G. J. Hancock, Numerical simulation of high strength cold-formed purlins in combined bending and shear. Journal of Constructional Steel Research, 66, 1205-17, 2010. https://doi.org/10.1016/ j.jcsr.2010.04.014.
  • P. Natario, N. Silvestre and D. Camotim, Computational modelling of flange crushing in cold-formed steel sections. Thin-Walled Structures, 84, 393-405, 2014. https://doi.org/10.1016/j.tws.2014.07.006
  • ASTM E8/E8M-13a, Standard test methods for tension testing of metallic materials. West Conshohocken, 2013.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çelik Yapılar
Bölüm Araştırma Makaleleri
Yazarlar

Ramazan Oruç 0000-0002-1650-4145

M. Emin Kara 0000-0002-1135-4387

Erken Görünüm Tarihi 14 Mart 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 5 Aralık 2023
Kabul Tarihi 1 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Oruç, R., & Kara, M. E. (2024). Eğilme etkisi altındaki soğukta şekil verilmiş çelik konik çatı kirişlerinin sonlu elemanlar modellemesine etki eden parametrelerin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 672-679. https://doi.org/10.28948/ngumuh.1400650
AMA Oruç R, Kara ME. Eğilme etkisi altındaki soğukta şekil verilmiş çelik konik çatı kirişlerinin sonlu elemanlar modellemesine etki eden parametrelerin incelenmesi. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):672-679. doi:10.28948/ngumuh.1400650
Chicago Oruç, Ramazan, ve M. Emin Kara. “Eğilme Etkisi altındaki soğukta şekil Verilmiş çelik Konik çatı kirişlerinin Sonlu Elemanlar Modellemesine Etki Eden Parametrelerin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 672-79. https://doi.org/10.28948/ngumuh.1400650.
EndNote Oruç R, Kara ME (01 Nisan 2024) Eğilme etkisi altındaki soğukta şekil verilmiş çelik konik çatı kirişlerinin sonlu elemanlar modellemesine etki eden parametrelerin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 672–679.
IEEE R. Oruç ve M. E. Kara, “Eğilme etkisi altındaki soğukta şekil verilmiş çelik konik çatı kirişlerinin sonlu elemanlar modellemesine etki eden parametrelerin incelenmesi”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 672–679, 2024, doi: 10.28948/ngumuh.1400650.
ISNAD Oruç, Ramazan - Kara, M. Emin. “Eğilme Etkisi altındaki soğukta şekil Verilmiş çelik Konik çatı kirişlerinin Sonlu Elemanlar Modellemesine Etki Eden Parametrelerin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 672-679. https://doi.org/10.28948/ngumuh.1400650.
JAMA Oruç R, Kara ME. Eğilme etkisi altındaki soğukta şekil verilmiş çelik konik çatı kirişlerinin sonlu elemanlar modellemesine etki eden parametrelerin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;13:672–679.
MLA Oruç, Ramazan ve M. Emin Kara. “Eğilme Etkisi altındaki soğukta şekil Verilmiş çelik Konik çatı kirişlerinin Sonlu Elemanlar Modellemesine Etki Eden Parametrelerin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 672-9, doi:10.28948/ngumuh.1400650.
Vancouver Oruç R, Kara ME. Eğilme etkisi altındaki soğukta şekil verilmiş çelik konik çatı kirişlerinin sonlu elemanlar modellemesine etki eden parametrelerin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2024;13(2):672-9.

download