Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor nitrür kuantum nokta-grafen hidrojel kompozitinin süper kapasitör uygulaması

Yıl 2024, , 713 - 720, 15.04.2024
https://doi.org/10.28948/ngumuh.1418010

Öz

Bu çalışmada süperkapasitörler için kullanılacak yeni bir elektrot malzemesi olan bor nitrür kuantum nokta (BNKN) / indirgenmiş grafen oksit (rGO) hibrit yapısının sentezini ve elektrokimyasal uygulamalarına yer verilmiştir. BNKN’nin, grafen oksit (GO) ile aynı kristal yapıya sahip olması ve bunun sonucunda BNKN@rGO hibrit yapısının çok iyi elektriksel özellik gösteriyor olması tercih edilme sebeplerindendir. Hekzagonal bor nitrür (h-BN) nanoyapı tabanlı hibrit malzeme olan BNKN, termal kararlılıkları ve elektriksel iletkenlikleri sebepleriyle son yıllardaki çalışmalarda karşımıza çıkarken, grafen ise geniş spesifik yüzey alanına sahip olduğu için süperkapasitör çalışmalarında sıklıkla tercih edilmektedir. Ayrıca, grafenin kapasitans değerini geliştirmek için bu yapıya farklı nanomalzemeler eklenmesinin ana sebebi karbon malzemelerin elektron verici özelliklerinin geliştirilmesidir. Bundan dolayı, süperkapasitörlerde kullanılacak BNKN@rGO hibrit elektrotunun elektrokimyasal aktiviteyi arttıracağı düşünülerek spesifik kapasitans değeri ölçülmüştür. Elektrokimyasal çalışmalar sonucunda, BNKN@rGOH hibrit yapısının 5 mvs-1 tarama hızında 207.5 F/g yüksek kapasitans değeri elde edilmiştir. Ayrıca 1.000 döngüde %88.9’luk döngüsel stabilite performansı sergilemiştir.

Kaynakça

  • Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2, 37–54, 2016. https://doi.org/10.1016/ j.jmat.2016.01.001.
  • C. Liu, F. Li, M. Lai-Peng, H. M. Cheng. Advanced Materials for Energy Storage. Advanced Materials, 22,28–62, 2010. https://doi.org/10.1002/adma.200903 328.
  • T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim & J. H. Lee. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 5, 52–71, 2012. doi:10.1039/c2nr32703a.
  • Z. Li, K. Xu, Y. Pan. Recent development of Supercapacitor Electrode Based on Carbon Materials. Nanotechnology Reviews, 8, 35–49 2019. https://doi.org/10.1515/ntrev-2019-0004.
  • Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen. Supercapacitor devices based on graphene materials. Journal of Physical Chemistry C, 113, 13103–13107 2009. https://doi.org/10.1021/jp902214f.
  • C. F. Liu, Y. C. Liu, T. Y. Yi, C. C. Hu. Carbon materials for high-voltage supercapacitors. Carbon, 145, 529–548 2019. https://doi.org/10.1016/j.carbon .2018.12.009.
  • Y. B. Tan, J. M. Lee. Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1, 14814–14843, 2013. https://doi.org/10.1039/C3TA1 2193C.
  • M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz. Partially reduced graphite oxide for supercapacitor electrodes: Effect of graphene layer spacing and huge specific capacitance. Electrochemistry Communications, 13, 90–92 2011. https://doi.org/10.1016/j.elecom.2010.11.021.
  • M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz. Partially Reduced Graphite Oxide as an Electrode Material for Electrochemical Double-Layer Capacitors. Chemistry – A European Journal, 18, 9125–9136, 2012. https://doi.org/10.1002/chem.201200702.
  • V. B. Mohan, K. Lau, D. Hui, D. Bhattacharyya. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142: 200–220, 2018. https://doi.org/10.1016/j.compositesb.2018 .01.013.
  • Y. Lu, Y. Huang, M. Zhang, Y. Chen. Nitrogen-doped graphene materials for supercapacitor applications. Journal of nanoscience and nanotechnology, 14, 1134–1144, 2014. doi:10.1166/jnn.2014.9102.
  • P. Karthika, N. Rajalakshmi, K. S. Dhathathreyan. Phosphorus-Doped Exfoliated Graphene for Supercapacitor Electrodes. Journal of Nanoscience and Nanotechnology, 13, 1746–1751, 2013. doi:10.1166/ jnn.2013.7112.
  • S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N. C. Murmu, T. Kuila. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Applied Materials and Interfaces, 7, 14211–14222, 2015. https://doi.org/10.1021/acsami. 5b03562.
  • X. Bian, R. Tuo, W. Yang, Y. Zhang, Q. Xie, J. Zha, S. He. Mechanical, Thermal, and Electrical Properties of BN–Epoxy Composites Modified with Carboxyl-Terminated Butadiene Nitrile Liquid Rubber. Polymers, 11, 1548 2019. https://doi.org/10.3390 /polym11101548.
  • M. Li, G. Huang, X. Chen, J. Yin, P. Zhang, Y. Yao, J. Huang. Perspectives on environmental applications of hexagonal boron nitride nanomaterials. Nano Today, 44, 101486, 2022. https://doi.org/10.1016/j.nantod .2022.101486.
  • W. Auwärter. Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surface Science Reports, 74, 1–95, 2019. https://doi.org/10.1016/j. surfrep.2018.10.001.
  • S. Madarvoni, R. P. S. Sreekanth. Mechanical Characterization of Graphene—Hexagonal Boron Nitride-Based Kevlar–Carbon Hybrid Fabric Nanocomposites. Polymers 2022, 14, 2559, 2022. doi:10.3390/polym14132559.
  • L. Lin, Y. Xu, S. Zhang, I. M. Ross, A. C. M. Ong, D. A. Allwood. Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots. Small, 10, 60–65, 2014. https://doi.org/10.1002/smll.201301001.
  • D. Peng, L. Zhang, F. F. Li, W. R. Cui, R. P. Liang, J. D. Qiu. Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing. ACS Applied Materials and Interfaces, 10, 7315–7323, 2018. https://doi.org/10.1021/acsami.7b1 5250
  • H. Li, R. Y. Tay, S. H. Tsang, X. Zhen, E. H. T. Teo. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots. Small, 11, 6491–6499, 2015. https://doi.org/10.1002/smll.201501632
  • Y. Yang, C. Zhang, D. Huang, G. Zeng, J. Huang, C. Lai, W. Xiong. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 245, 87–99, 2019. https://doi.org/10.1016/j.apcatb.2018.12.049.
  • Q. Zhang, Y. Peng, Y. Lin, S. Wu, X. Yu, C. Yang. Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of sulfamethazine. Chemical Engineering Journal, 405, 126661, 2021. https://doi.org/10.1016/j.cej.2020.1266 61
  • R. Jindal, V. Sharma, A. Shukla. Density functional theory study of the hydrogen evolution reaction in haeckelite boron nitride quantum dots. International Journal of Hydrogen Energy, 47, 41783–41794, 2022. https://doi.org/10.1016/j.ijhydene.2022.06.216
  • L. Stagi, J. Ren, P. Innocenzi. From 2-D to 0-D Boron Nitride Materials, The Next Challenge. Materials 2019, 12, 3905, 2019. doi:10.3390/ma12233905.
  • W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80, 1339, 1958. https://doi.org/10.1021/ja01 539a017.
  • S. Gurunathan, J. W. Han, V. Eppakayala, J. H. Kim. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach. Colloids and Surfaces B: Biointerfaces, 102, 772–777, 2013. 10.1016/j.colsurfb.2012.09.011.
  • B. Sert, S. Gonca, Y. Ozay, E. Harputlu, S. Ozdemir, K. Ocakoglu, N. Dizge. Investigation of the antifouling properties of polyethersulfone ultrafiltration membranes by blending of boron nitride quantum dots. Colloids and Surfaces B: Biointerfaces, 205, 111867, 2021. https://doi.org/10.1016/j.colsurfb.2021.111867
  • K. Chu, X. Li, Y. Tian, Q. Li, Y. Guo. Boron Nitride Quantum Dots/Ti3C2Tx-MXene Heterostructure For Efficient Electrocatalytic Nitrogen Fixation. Energy Environ. Materials, 5, 1303-1309, 2022. https://doi.org/10.1002/eem2.12247.
  • W. Wenpeng, H. Zipan, X. Yukun, Z. Xinqun, C. Kaiyue, F. Jinchen, L. Xin, Z. Yang, Q. Liangti. A versatile, heat-resisting, electrocatalytic active graphene framework by in-situ formation of boron nitride quantum dots. Carbon, 192, 123-132, 2022. https://doi.org/10.1016/j.carbon.2022.02.055
  • B. Sert, Grafitik karbon nitrür ve hekzagonal bor nitrür içeren kompozit yapıların hazırlanması; çevre ve enerji uygulamaları. Yüksek Lisans Tezi, Tarsus Üniversitesi Lisansüstü Eğitim Enstitüsü, Türkiye, 2022.

Supercapacitor application of boron nitride quantum dot-graphene hydrogel composite

Yıl 2024, , 713 - 720, 15.04.2024
https://doi.org/10.28948/ngumuh.1418010

Öz

In this study, the synthesis and electrochemical application of boron nitride quantum dot (BNKN) / reduced graphene oxide (rGO) hybrid structure, which is a new electrode material to be used for supercapacitors, is investigated. BNKN is recommended because it has the same crystal structure as graphene oxide (GO), and so the hybrid structure of BNKN@rGO exhibits excellent electrical characteristics. BNKN, a hexagonal boron nitride (h-BN) nanostructure-based hybrid material, has appeared in recent studies due to its thermal stability and electrical conductivity, while graphene is frequently preferred in supercapacitor studies because it has a large specific surface area. In addition, the main reason for adding different heterostructures to this structure to improve the capacitance value of graphene is; changing the electron donating properties of carbon materials has been made a priority. Therefore, the specific capacitance value was measured, considering that the BNKN@rGO hybrid electrode to be used in supercapacitors would increase the electrochemical activity. A high capacitance value of 207.5 F/g was found at 5 mvs-1 scanning speed of the BNKN@rGOH hybrid structure as a result of electrochemical investigations. At 10,000 cycles, it also demonstrated a cyclic stability performance of 88.9%.

Kaynakça

  • Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2, 37–54, 2016. https://doi.org/10.1016/ j.jmat.2016.01.001.
  • C. Liu, F. Li, M. Lai-Peng, H. M. Cheng. Advanced Materials for Energy Storage. Advanced Materials, 22,28–62, 2010. https://doi.org/10.1002/adma.200903 328.
  • T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim & J. H. Lee. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 5, 52–71, 2012. doi:10.1039/c2nr32703a.
  • Z. Li, K. Xu, Y. Pan. Recent development of Supercapacitor Electrode Based on Carbon Materials. Nanotechnology Reviews, 8, 35–49 2019. https://doi.org/10.1515/ntrev-2019-0004.
  • Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen. Supercapacitor devices based on graphene materials. Journal of Physical Chemistry C, 113, 13103–13107 2009. https://doi.org/10.1021/jp902214f.
  • C. F. Liu, Y. C. Liu, T. Y. Yi, C. C. Hu. Carbon materials for high-voltage supercapacitors. Carbon, 145, 529–548 2019. https://doi.org/10.1016/j.carbon .2018.12.009.
  • Y. B. Tan, J. M. Lee. Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1, 14814–14843, 2013. https://doi.org/10.1039/C3TA1 2193C.
  • M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz. Partially reduced graphite oxide for supercapacitor electrodes: Effect of graphene layer spacing and huge specific capacitance. Electrochemistry Communications, 13, 90–92 2011. https://doi.org/10.1016/j.elecom.2010.11.021.
  • M. M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz. Partially Reduced Graphite Oxide as an Electrode Material for Electrochemical Double-Layer Capacitors. Chemistry – A European Journal, 18, 9125–9136, 2012. https://doi.org/10.1002/chem.201200702.
  • V. B. Mohan, K. Lau, D. Hui, D. Bhattacharyya. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142: 200–220, 2018. https://doi.org/10.1016/j.compositesb.2018 .01.013.
  • Y. Lu, Y. Huang, M. Zhang, Y. Chen. Nitrogen-doped graphene materials for supercapacitor applications. Journal of nanoscience and nanotechnology, 14, 1134–1144, 2014. doi:10.1166/jnn.2014.9102.
  • P. Karthika, N. Rajalakshmi, K. S. Dhathathreyan. Phosphorus-Doped Exfoliated Graphene for Supercapacitor Electrodes. Journal of Nanoscience and Nanotechnology, 13, 1746–1751, 2013. doi:10.1166/ jnn.2013.7112.
  • S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N. C. Murmu, T. Kuila. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Applied Materials and Interfaces, 7, 14211–14222, 2015. https://doi.org/10.1021/acsami. 5b03562.
  • X. Bian, R. Tuo, W. Yang, Y. Zhang, Q. Xie, J. Zha, S. He. Mechanical, Thermal, and Electrical Properties of BN–Epoxy Composites Modified with Carboxyl-Terminated Butadiene Nitrile Liquid Rubber. Polymers, 11, 1548 2019. https://doi.org/10.3390 /polym11101548.
  • M. Li, G. Huang, X. Chen, J. Yin, P. Zhang, Y. Yao, J. Huang. Perspectives on environmental applications of hexagonal boron nitride nanomaterials. Nano Today, 44, 101486, 2022. https://doi.org/10.1016/j.nantod .2022.101486.
  • W. Auwärter. Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surface Science Reports, 74, 1–95, 2019. https://doi.org/10.1016/j. surfrep.2018.10.001.
  • S. Madarvoni, R. P. S. Sreekanth. Mechanical Characterization of Graphene—Hexagonal Boron Nitride-Based Kevlar–Carbon Hybrid Fabric Nanocomposites. Polymers 2022, 14, 2559, 2022. doi:10.3390/polym14132559.
  • L. Lin, Y. Xu, S. Zhang, I. M. Ross, A. C. M. Ong, D. A. Allwood. Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots. Small, 10, 60–65, 2014. https://doi.org/10.1002/smll.201301001.
  • D. Peng, L. Zhang, F. F. Li, W. R. Cui, R. P. Liang, J. D. Qiu. Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing. ACS Applied Materials and Interfaces, 10, 7315–7323, 2018. https://doi.org/10.1021/acsami.7b1 5250
  • H. Li, R. Y. Tay, S. H. Tsang, X. Zhen, E. H. T. Teo. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots. Small, 11, 6491–6499, 2015. https://doi.org/10.1002/smll.201501632
  • Y. Yang, C. Zhang, D. Huang, G. Zeng, J. Huang, C. Lai, W. Xiong. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 245, 87–99, 2019. https://doi.org/10.1016/j.apcatb.2018.12.049.
  • Q. Zhang, Y. Peng, Y. Lin, S. Wu, X. Yu, C. Yang. Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of sulfamethazine. Chemical Engineering Journal, 405, 126661, 2021. https://doi.org/10.1016/j.cej.2020.1266 61
  • R. Jindal, V. Sharma, A. Shukla. Density functional theory study of the hydrogen evolution reaction in haeckelite boron nitride quantum dots. International Journal of Hydrogen Energy, 47, 41783–41794, 2022. https://doi.org/10.1016/j.ijhydene.2022.06.216
  • L. Stagi, J. Ren, P. Innocenzi. From 2-D to 0-D Boron Nitride Materials, The Next Challenge. Materials 2019, 12, 3905, 2019. doi:10.3390/ma12233905.
  • W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80, 1339, 1958. https://doi.org/10.1021/ja01 539a017.
  • S. Gurunathan, J. W. Han, V. Eppakayala, J. H. Kim. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach. Colloids and Surfaces B: Biointerfaces, 102, 772–777, 2013. 10.1016/j.colsurfb.2012.09.011.
  • B. Sert, S. Gonca, Y. Ozay, E. Harputlu, S. Ozdemir, K. Ocakoglu, N. Dizge. Investigation of the antifouling properties of polyethersulfone ultrafiltration membranes by blending of boron nitride quantum dots. Colloids and Surfaces B: Biointerfaces, 205, 111867, 2021. https://doi.org/10.1016/j.colsurfb.2021.111867
  • K. Chu, X. Li, Y. Tian, Q. Li, Y. Guo. Boron Nitride Quantum Dots/Ti3C2Tx-MXene Heterostructure For Efficient Electrocatalytic Nitrogen Fixation. Energy Environ. Materials, 5, 1303-1309, 2022. https://doi.org/10.1002/eem2.12247.
  • W. Wenpeng, H. Zipan, X. Yukun, Z. Xinqun, C. Kaiyue, F. Jinchen, L. Xin, Z. Yang, Q. Liangti. A versatile, heat-resisting, electrocatalytic active graphene framework by in-situ formation of boron nitride quantum dots. Carbon, 192, 123-132, 2022. https://doi.org/10.1016/j.carbon.2022.02.055
  • B. Sert, Grafitik karbon nitrür ve hekzagonal bor nitrür içeren kompozit yapıların hazırlanması; çevre ve enerji uygulamaları. Yüksek Lisans Tezi, Tarsus Üniversitesi Lisansüstü Eğitim Enstitüsü, Türkiye, 2022.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Enerjisi Depolama, Enerji, Elektrokimyasal Enerji Depolama ve Dönüşüm
Bölüm Araştırma Makaleleri
Yazarlar

Buse Sert 0000-0003-0565-775X

Ersan Harputlu 0000-0002-2140-9070

Erken Görünüm Tarihi 28 Mart 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 11 Ocak 2024
Kabul Tarihi 14 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sert, B., & Harputlu, E. (2024). Bor nitrür kuantum nokta-grafen hidrojel kompozitinin süper kapasitör uygulaması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 713-720. https://doi.org/10.28948/ngumuh.1418010
AMA Sert B, Harputlu E. Bor nitrür kuantum nokta-grafen hidrojel kompozitinin süper kapasitör uygulaması. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):713-720. doi:10.28948/ngumuh.1418010
Chicago Sert, Buse, ve Ersan Harputlu. “Bor nitrür Kuantum Nokta-Grafen Hidrojel Kompozitinin süper kapasitör Uygulaması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 713-20. https://doi.org/10.28948/ngumuh.1418010.
EndNote Sert B, Harputlu E (01 Nisan 2024) Bor nitrür kuantum nokta-grafen hidrojel kompozitinin süper kapasitör uygulaması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 713–720.
IEEE B. Sert ve E. Harputlu, “Bor nitrür kuantum nokta-grafen hidrojel kompozitinin süper kapasitör uygulaması”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 713–720, 2024, doi: 10.28948/ngumuh.1418010.
ISNAD Sert, Buse - Harputlu, Ersan. “Bor nitrür Kuantum Nokta-Grafen Hidrojel Kompozitinin süper kapasitör Uygulaması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 713-720. https://doi.org/10.28948/ngumuh.1418010.
JAMA Sert B, Harputlu E. Bor nitrür kuantum nokta-grafen hidrojel kompozitinin süper kapasitör uygulaması. NÖHÜ Müh. Bilim. Derg. 2024;13:713–720.
MLA Sert, Buse ve Ersan Harputlu. “Bor nitrür Kuantum Nokta-Grafen Hidrojel Kompozitinin süper kapasitör Uygulaması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 713-20, doi:10.28948/ngumuh.1418010.
Vancouver Sert B, Harputlu E. Bor nitrür kuantum nokta-grafen hidrojel kompozitinin süper kapasitör uygulaması. NÖHÜ Müh. Bilim. Derg. 2024;13(2):713-20.

download