Araştırma Makalesi
BibTex RIS Kaynak Göster

DFT analysis of salicylideneaniline derivatives as corrosion inhibitors for mild steel

Yıl 2024, , 1408 - 1419, 15.10.2024
https://doi.org/10.28948/ngumuh.1506838

Öz

Schiff bases are important in corrosion inhibition due to their ability to form stable complexes with metal ions and create protective layers on metal surfaces, thereby extending the lifespan of structural materials in various industrial applications. In this study the Salicylideneaniline and its derivatives were analyzed as corrosion inhibitor versus mild steel corrosion via DFT analysis. The eight molecules were chosen; salicylideneaniline, 2-(benzylideneamino)phenol, 4-(benzylideneamino)phenol, 2-phenyldiazenylphenol, 2-Phenylazo-4-methylphenol, 3-methyl-2-phenyldiazenyl phenol, 2-[(2-methylphenyl)diazenyl]phenol, 4-phenyldiazenylbenzene-1,3-diol), for this purpose. The Gaussian 03 program and the 6-311++G (d, p) basis set was used. Electronic properties such as the energy of the highest occupied molecular orbital (EHOMO), energy of the lowest unoccupied molecular orbital (ELUMO), energy gap (∆E) between LUMO and HOMO, dipole moment, and charges on the backbone atoms, ESP were determined.

Kaynakça

  • M. Benmabrouk, S. Seridi, Y. Aimene and S. Almi, Synthesis, spectroscopic characterization, DFT, and molecular docking analysis of some Salicylideneaniline schiff base derivatives as potential antioxidant compounds. Polycyclic Aromatic Compounds, 1-27, 2023. https://doi.org/10.1080/ 10406638.2023.2276252.
  • Z. Moosavi-Tekyeh and N. Dastani, Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations. Journal of Molecular Structure, 1102, 314-322, 2015. https:// doi.org/10.1016/j.molstruc.2015.09.001.
  • S. Shahab, L. Filippovich, M. Aharodnikova, H. A. Almodarresiyeh, F. H. Hajikolaee, R. Kumar and M. Mashayekhi, Photochromic properties of the N-Salicylideneaniline in Polyvinyl Butyral matrix: Experimental and theoretical investigations. Journal of Molecular Structure, 1134, 530-537, 2017. https://doi. org/10.1016/j.molstruc.2016.12.038.
  • J-W Hu, H-Y Tsai, S-K Fang, C-W Chang, L-C Wang and K-Y Chen, Conformationally locked salicylideneaniline derivatives with strong ESIPT fluorescence. Dyes and Pigments, 145, 493-504, 2017. https://doi.org/10.1016/j.dyepig.2017.06.037.
  • E. D. Akpan, A. K. Singh, H. Lgaz, T. W. Quadri, S. K. Shukla, B. Mangla, A. Dwivedi, O. Dagdag, Sheetal, E. E. Inyang and E. E. Ebenso, Coordination compounds as corrosion inhibitors of metals: A review. Coordination Chemistry Reviews, 499, 215503, 2024. https://doi. org/10.1016/j.ccr.2023.215503.
  • Sheetal, A. K. Singh, S. Thakur, B. Pani and M. Singh, Heterocyclic compounds as corrosion inhibitors for iron alloys in various industrial processes: A review. Journal of Industrial and Engineering Chemistry, 130, 141-177, 2024. https://doi.org/10.10 16/j.jiec.2023.10.005.
  • X. Li, J. He, B. Xie, Y. He, C. Lai, W. Wang, J Zeng, B. Yao, W. Zhao and T. Long, 1,4-Phenylenediamine-based Schiff bases as eco-friendly and efficient corrosion inhibitors for mild steel in HCl medium: Experimental and theoretical approaches. Journal of Electroanalytical Chemistry, 955, 118052, 2024. https://doi.org/10.1016 /j.jelechem.2024.118052.
  • A. Fellah, Y. Harek, I. Ichchou, L. Larabi, H. Rouabhi, R. Bourzami and A. Ammari, Experimental and DFT studies of a novel salicylhydrazone derivative as a steel corrosion inhibitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 685, 133150, 2024. https://doi.org/10.1016/j.colsurfa.2024.133150.
  • N. Karakuş, Determination of ınhibition mechanism of mono-azo Naphthylamine dyes: A computational corrosion study. Turkish Computational and Theoretical Chemistry, 1, 35-44, 2017.
  • K. Sayin, N. Kurtoglu, M. Kose, D. Karakas and M Kurtoglu, Computational and experimental studies of 2-[(E)-hydrazinylidenemethyl]-6-methoxy-4-[(E)-phenyldiazenyl]phenol and its tautomers. Journal of Molecular Structure, 1119, 413-422, 2016. https://doi. org/10.1016/j.molstruc.2016.04.097.
  • D. Daoud, T. Douadi, H. Hamani, S. Chafaa and M. Al-Noaimi, Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study. Corrosion Science, 94, 21-37, 2015. https://doi.org/10.1016/ j.corsci.2015.01.025.
  • J. D. Margerum and J. A. Sous, Spectroscopic studies of substituted Benzalaniline. Applied Spectroscopy, 19, 91-97, 1965.
  • O. O. Emmanuel, O. B. Samuel, O. F. Kolawole, A. D. Dada, A. E. Oluwafisayo, E. B. Chibuzo and I. Nureni, Experimental and theoretical study on the corrosion ınhibitive potentials of schiff base of Aniline and Salicyaldehyde on mild steel in 0.5M HCl. Advanced Journal of Chemistry-Section B, 2, 197-208, 2020. https://doi.org/10.22034/ajcb.2020. 113664.
  • T. Umasankareswari and T. Jeyaraj, Salicylideneaniline as inhibitor for the corrosion of mild steel in 1.0 N hydrochloric acid. Journal of Chemical and Pharmaceutical Research, 4, 3414-3419, 2012.
  • S. M. Merdas, Synthesis, characterization and DFT studies of new azo-schiff base and evaluation as corrosion ınhibitor. Annals of the Romanian Society for Cell Biology, 25, 910-928, 2021. http://www.annalsofrscb.ro/index.php/journal/article/view/2519.
  • C. Verma, D. S. Chauhan, R. Aslam, P. Banerjee, J. Aslam, T. W. Quadri, M. A. Quraishi, D. K. Verma, A. AlFantazia and T. Rasheed, Principles and theories of green chemistry for corrosion science and engineering: design and application. Green Chemistry, 26, 4270-4357, 2024. https://doi.org/10.1039/d3gc05207a.
  • R. Sehrawat, P. Vashishth, H. Bairagi, S. K. Shukla, H. Kumar, G. Ji and B. Mangla, Coordination bonding and corrosion inhibition characteristics of chalcone compounds for metals: An inclusive review based on experimental as well as theoretical perspectives. Coordination Chemistry Reviews, 514, 215820, 2024. https://doi. org/10.1016/j.ccr.2024.215820.
  • R. Sehrawat, R. Pundeer, S. Yadav, P. Vashishth, H. Bairagi, S. K. Shukla and B. Mangla, Insights of newly synthesized novel pyrazole compounds for mild steel corrosion inhibition in an acidic environment by experimental and computational calculations. Journal of Molecular Structure 2024;1316. https://doi.org/10.1016/j.mol struc.2024.139017.
  • K. Mortadi, A. El Amri, M. Ouakki, R. Hsissou, A. Jebli, A. Lebkiri, Z. Safi, N. Wazzan, A. Berisha, M. Cherkaoui, E. Mahdi Hbaiz and H. Cherkaoui, Electrochemical and theoretical studies on a bioactive Juniperus oxycedrus essential oil as a potential and ecofriendly corrosion inhibitor for mild steel in 1.0 M HCl environment. Inorganic Chemistry Communications, 162, 112196, 2024. https://doi.org/10.1016/j.inoche.2024.112196.
  • Y. Li, Z. Guo, H. Zhi, Y. Qiang, X. Liu, Y. Zhang, Y. Wan, T. Xiang and X. Li, Experimental and computational exploration of the biodegradable platanus acerifolia leaf extract against mild steel corrosion in hydrochloric acid. Journal of Materials Research and Technology, 30, 7830-7842, 2024. https://doi.org /10.1016/j.jmrt.2024.05.148.
  • D. I. Udunwa, O. D. Onukwuli, M. C. Menkiti, S. C. Nwanonenyi, C. B. Ezekannagha and C. O. Aniagor, Experimental, computational, and theoretical studies on the corrosion inhibition potential of green Gongronema latifolium extract as corrosion inhibitor for aluminum alloy in HCl solutions. Journal of Molecular Structure, 1302, 137508, 2024. https://doi.org/10.1016/j.molstruc.2024.137508.
  • Sheetal, A. K. Singh, V. C. Anadebe, M. Singh, N. Arshad, R. C. Barik, M. A. U. R. Qureshi, T. W. Quadri, E. D. Akpan, L. O. Olasunkanmi, S. K. Shukla, J. Tuteja, S. Thakur, B. Pani and E. E. Ebenso, Coordination chemistry of chalcones and derivatives and their use as corrosion inhibitors: A comprehensive review. Coordination Chemistry Reviews, 517, 215985, 2024. https://doi.org/10.1016 /j.ccr.2024.215985.
  • L. Ma, H. Yang, D. Zhang and W. Wu, Inhibition for atmospheric corrosion of mild steel by lysine salts with graphene oxide interlayer in situ modulation. Corrosion Science, 226, 111639, 2024. https://doi.org/10.1016/j.corsci.2023.111639.
  • O. Berkesi, T. Körtvélyesi, C. Hetényi, T. Németh, and I. Pálinkó, Hydrogen bonding interactions of benzylidene type Schiff bases studied by vibrational spectroscopic and computational methods. Physical Chemistry Chemical Physics, 5, 2009-2014, 2003. https://doi.org/10.1039/b301107k.
  • S. Li, C. Li and F. Wang, Computational experiments of metal corrosion studies: A review. Materials Today Chemistry, 37, 101986, 2024. https://doi.org/10.1016 /j.mtchem.2024.101986.
  • B. Li, L. Guo, X. Bai, S. Zhang, Z. Zhang, H. Zhou, H. Dong and Y. Li, Experimental and theoretical investigation of 1-Hexyl-3-methylimidazolium iodide as a corrosion inhibitor for mild steel in HCl environment. International Journal of Electrochemical Science, 19, 100580, 2024. https://doi.org/10.1016/j.ijoes.2024. 100580.
  • H. Lachhab, N. Benzbiria, A. Titi, S. Echihi, M. E. Belghiti, Y. Karzazi, A. Zarrouk, R. Touzani, C. Jama and F. Bentiss, Detailed experimental performance of two new pyrimidine-pyrazole derivatives as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond breaking upon adsorption. Colloids Surface Physicochemistry Engineering Aspects, 680, 132649, 2024. https://doi.org/10.1016/j.colsurfa.2023.132649.
  • R. Khanna, M. Dudi, B. Mangla, V. Kalia, A. Sihmar, H. Tanwar and H. Dahiya, Assessment of pyrazole Schiff base's corrosion inhibition effectiveness incorporating oxadiazole moiety on mild steel in 1 M HCl: A holistic theoretical and experimental analysis. Journal of Molecular Structure, 1317, 139066, 2024. https://doi.org/10.1016/j.molstruc.2024.139066.
  • W. M. I. W. M. Kamaruzzaman, M. S. Shaifudin, N. A. M. Nasir, M. A. Badruddin, N. Yusof, A. Adnan, N. A. Aziz, W. M. N. W. Nik, J. Haque, M. Murmu, P. Banerjee and M. S. Mohd Ghazali, Experimental, DFT and molecular dynamic simulation of Andrographis paniculata as corrosion inhibitor for mild steel in artificial seawater. Materials Chemistry and Physics, 312, 128642, 2024. https://doi.org/10.1016/j.matchem phys.2023.128642.
  • Z. N. Jiang, J. M. Duan, X. Q. Zeng, S. Y. Peng, Y. R. Li, W. Xiong, C. F. Dong and G. A. Zhang, Dramatic improvement in corrosion inhibition effect of carboxymethyl cellulose by modified with levodopa: Experimental study and first-principles calculations. Corrosion Science, 232, 112037, 2024. https://doi.org/10.1016/j.corsci.2024. 112037.
  • M. Errami, A. El-Asri, S. Fdil, S. Ourouadi, O. Iddelmouiden, A. Jmiai, L. Bazzi, A. Hadfi and R. A. Akbour, Green Ostrich fat waste extracts as a novel potential inhibitor to sustainable corrosion of steel in acidic environments: Electrochemical and DFT evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 689, 133684, 2024. https://doi.org/10.1016/j.colsurfa.2024. 133684.
  • A. H. Alamri, K. Rasheeda, S. J. Kamal, M. Aljohani, T. A. Aljohani, I. Baig, V. D. P. Alva, N. P. Swathi, I. B. Onyeachu and S. Samshuddin, Pyrimidine derivatives as efficient anticorrosive agents for acid corrosion of mild steel: Electrochemical and computational validation. Arabian Journal of Chemistry, 17, 105752, 2024. https://doi.org/10.1016/j.arabjc.2024.105752.
  • S. Ahmadi and A. Khormali, Optimization of the corrosion inhibition performance of 2-mercaptobenzothiazole for carbon steel in HCl media using response surface methodology. Fuel, 357, 129783, 2024. https://doi.org/10.1016/j.fuel.2023. 129783.
  • D. I. Udunwa, O. D. Onukwuli, M. C. Menkiti, V. C. Anadebe and M. A. Chidiebere, 1-Butyl-3-methylimidazolium methane sulfonate ionic liquid corrosion inhibitor for mild steel alloy: Experimental, optimization and theoretical studies. Heliyon, 9, e18353, 2023. https://doi.org/10.1016/j.heliyon.2023. e18353.
  • Z. N. Jiang, J. M. Duan, X. Q. Zeng, Y. R. Li, C. F. Dong and G. A. Zhang, Unveiling the adsorption and inhibition mechanism of thiadiazole derivatives for mild steel corrosion in hydrochloric acid based on experimental approaches and first-principles calculations. Corrosion Science, 224, 111492, 2023. https://doi.org/10.1016 /j.corsci.2023.111492.
  • D. I. Udunwa, O. D. Onukwuli and V. C. Anadebe, Synthesis and evaluation of 1-butyl-3-methylimidazolium chloride based ionic liquid for acid corrosion inhibition of aluminum alloy: Empirical, DFT/MD-simulation and RSM modeling. Journal of Molecular Liquids, 364, 120019, 2022. https://doi.org/10.1016/j.molliq.2022.120019.
  • D. Kumar, V. M. K, V. Jain and B. Rai, Integrating experiments, DFT and characterization for comprehensive corrosion inhibition studies – A case for cinnamaldehyde as an excellent green inhibitor for steels in acidic media. Corrosion Science, 208, 110623, 2022. https://doi.org/10.1016/j.corsci.2022. 110623.
  • A. Saady, Z. Rais, F. Benhiba, R. Salim, K. Ismaily Alaoui, N. Arrousse, F. Elhajjaji, M. Taleb, K. Jarmoni, Y. Kandri Rodi, I. Warad and A. Zarrouk, Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo[4,5-b] pyridine derivatives against mild steel corrosion. Corrosion Science, 189, 109621, 2021. https://doi.org/10.1016/ j.corsci.2021.109621.
  • V. C. Anadebe, P. C. Nnaji, O. D. Onukwuli, N. A. Okafor, F. E. Abeng, V. I. Chukwuike, C. C. Okoye, I. I. Udoh, M. A. Chidiebere, L. Guo and R. C. Barik, Multidimensional insight into the corrosion inhibition of salbutamol drug molecule on mild steel in oilfield acidizing fluid: Experimental and computer aided modeling approach. Journal of Molecular Liquids, 349, 118482, 2022. https://doi.org/10.1016/j.molliq.2022.118482.
  • D-Y. Wang, B-L. Nie, H-J. Li, W-W. Zhang, and Y-C. Wu, Anticorrosion performance of grape seed proanthocyanidins extract and Tween-80 for mild steel in hydrochloric acid medium. Journal of Molecular Liquids, 331, 115799, 2021. https://doi.org/10.1016 /j.molliq.2021.115799.
  • K. V. Thomas, K. J. Thomas, P. V. Rapheal, A. S. Sabu, K. Ragi and R. Johnson, Tinospora cordifolia extract as an environmentally benign green corrosion inhibitor in acid media: electrochemical, surface morphological, quantum chemical, and statistical investigations. Materials Today Sustainability, 13, 100076, 2021. https://doi.org/10.1016/j.mtsust.2021. 100076.
  • M. Murmu, S. K. Saha, N. C. Murmu and P. Banerjee, Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, 146, 134-151, 2019. https://doi.org/10.1016/j.corsci.2018.10.002.
  • E. Naseri, M. Hajisafari, A. Kosari, M. Talari, S. Hosseinpour and A. Davoodi, Inhibitive effect of Clopidogrel as a green corrosion inhibitor for mild steel; statistical modeling and quantum Monte Carlo simulation studies. Journal of Molecular Liquids, 269, 193-202, 2018. https://doi.org/10.1016/j.molliq.2018. 08.050.
  • J. Zhang, W. Li, X. Zuo, Y. Chen, W. Luo, Y. Zhang, A. Fu, B. Tan and S. Zhang, Combining experiment and theory researches to insight into anti-corrosion nature of a novel thiazole derivatives. Journal of the Taiwan Institute of Chemical Engineers, 122, 190-200, 2021. https://doi.org/10.1016/j.jtice.2021.04.035.
  • S. N. Costa, F. W. Q. Almeida-Neto, O. S. Campos, T. S. Fonseca, M. C. de Mattos, V. N. Freire, P. Homem-de-Mello, E. S. Marinho, N. K. V. Monteiro, A. N. Correia and P. de Lima-Neto, Carbon steel corrosion inhibition in acid medium by imidazole-based molecules: Experimental and molecular modelling approaches. Journal of Molecular Liquids, 326, 115330, 2021. https://doi.org/10.1016/j.molliq.2021.115330.
  • S. Aribo, S. J. Olusegun, G. L. S. Rodrigues, A. S. Ogunbadejo, B. Igbaroola, A. T. Alo, W. R. Rocha, N. D. S. Mohallem and P. A. Olubambi, Experimental and theoretical investigation on corrosion inhibition of hexamethylenetetramine [HMT] for mild steel in acidic solution. Journal of the Taiwan Institute of Chemical Engineers, 112, 222-231, 2020. https://doi. org/10.1016/j.jtice.2020.06.011.
  • R. Farahati, A. Ghaffarinejad, S. M. Mousavi-Khoshdel, J. Rezania, H. Behzadi and A. Shockravi, Synthesis and potential applications of some thiazoles as corrosion inhibitor of copper in 1 M HCl: Experimental and theoretical studies. Progress in Organic Coatings, 132, 417-28, 2019. https://doi.org/10.1016/j.porgcoat.2019. 04.005.
  • Bhaskaran, P. D. Pancharatna, S. Lata and G. Singh, Imidazolium based ionic liquid as an efficient and green corrosion constraint for mild steel at acidic pH levels. Journal of Molecular Liquids, 278, 467-476, 2019. https://doi.org/10.1016/j.molliq.2019.01.068.
  • M. Oubaaqa, M. Ouakki, M. Rbaa, A. S. Abousalem, M. Maatallah, F. Benhiba, A. Jarid, M. Ebn Touhami and A. Zarrouk, Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. Journal of Molecular Liquids, 334, 116520, 2021. https://doi.org/10.1016/j.molliq. 2021.116520.
  • A. Ehsani, M. G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi and H. M. Shiri H, Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. Journal of Colloid and Interface Science, 490, 444-451, 2017. https://doi.org/10.1016/j.jcis.2016.11.048.
  • J. Haque, V. Srivastava, C. Verma and M. A. Quraishi, Experimental and quantum chemical analysis of 2-amino-3-((4-((S)-2-amino-2-carboxyethyl)-1H-imidazol-2-yl)thio) propionic acid as new and green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. Journal of Molecular Liquids, 225, 848-855, 2016. https://doi.org/10.1016/j.molliq.2016. 11.011.
  • A. Manivel, S. Ramkumar, J. J. Wu, A. M. Asiri and S. Anandan, Exploration of (S)-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine as feasible corrosion inhibitor for mild steel in acidic media. Journal of Environmental Chemical Engineering, 2, 463-470, 2014. https://doi.org/10.1016/j.jece.2014.01. 018.
  • P. Mourya, S. Banerjee and M. M. Singh, Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corrosion Science, 85, 352-363, 2014. https://doi.org/10.1016/j.corsci.2014.04.036.
  • N. Soltani, N. Tavakkoli, M. K. Kashani, A. Mosavizadeh, E. E. Oguzie and M. R. Jalali, Silybum marianum extract as a natural source inhibitor for 304 stainless steel corrosion in 1.0 M HCl. Journal of Industrial and Engineering Chemistry, 20, 3217-3227, 2014. https://doi.org/10.1016/j.jiec.2013.12.002.
  • H. M. Abd El-Lateef, A. R. Sayed and K. Shalabi, Studying the effect of two isomer forms thiazole and thiadiazine on the inhibition of acidic chloride-induced steel corrosion: Empirical and Computer simulation explorations. Journal of Molecular Liquids, 356, 119044, 2022. https://doi.org/10.1016/j.molliq. erer2022.119044.
  • G. Gece and S. Bilgiç, A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corrosion Science, 52,3304-3308, 2010. https://doi.org/10.1016/j.corsci.2010.06.005.
  • D. Özkır, E. Bayol, A. Gürten, Y. Sürme and F. Kandemirli, Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution. Chemical Papers, 67, 202-12, 2013. https://doi.org/doi:10.2478/s11696-012-0255-y.
  • D. Özkır, K. Kayakırılmaz, E. Bayol, A. A. Gürten and F. Kandemirli, The inhibition effect of Azure A on mild steel in 1M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corrosion Science 56, 143-52, 2012. https://doi.org/10.1016/j.corsci.2011.11.010.
  • M. M. Abdelsalam, M. A. Bedair, A. M. Hassan, B. H. Heakal, A. Younis, Z. I. Elbialy, M. A. Badawy, H. E.-D. Fawzy and S. A. Fareed, Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution. Arabian Journal of Chemistry 15, 103491, 2022. https://doi.org/10.1016/j.arabjc.2021.103491.
  • A. F. Hamood, H. M. Habeeb, B. A. Abdulhussein, A. M. Mustafa, F. F. Sayyid, M. M. Hanoon, T. S. Gaaz, L. A. Hameed and A. A. A. Alamiery, Weight loss, electrochemical measurements and DFT studies on corrosion inhibition by 7-mercapto-4-methylcoumarin. Results in Engineering 23, 102677, 2024. https://doi.org/10.1016/j.rineng.2024.102677.
  • T. Karazehir, M. E. Mert and B. D. Mert, Corrosion prevention of mild steel in acidic medium by 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid: Theoretical and experimental approach. Journal of Indian Chemical Society, 99, 100642, 2022. https://doi.org/10.1016/j.jics.2022.100642.
  • M. G. Golafshani, H. Tavakoli, S. A. Hosseini and M. Akbari, MD and DFT computational simulations of Caffeoylquinic derivatives as a bio-corrosion inhibitor from quince extract with experimental investigation of corrosion protection on mild steel in 1M H2SO4. Journal of Molecular Structure, 1275, 134701, 2023. https://doi.org/10.1016/j.molstruc.2022.134701.
  • E. E. Elemike, H. U. Nwankwo, D. C. Onwudiwe and E. C. Hosten, Synthesis, structures, spectral properties and DFT quantum chemical calculations of (E)-4-(((4-propylphenyl)imino)methyl)phenol and (E)-4-((2-tolylimino)methyl)phenol; their corrosion inhibition studies of mild steel in aqueous HCl. Journal of Molecular Structure, 1141, 12-22, 2017. https://doi.org/10.1016/j.molstruc.2017.03.071.

Yumuşak çelik için korozyon inhibitörleri olarak salisilidenanilin türevlerinin DFT analizi

Yıl 2024, , 1408 - 1419, 15.10.2024
https://doi.org/10.28948/ngumuh.1506838

Öz

Schiff bazları, metal iyonları ile stabil kompleksler oluşturma yetenekleri ve metal yüzeylerinde koruyucu tabakalar oluşturma kapasiteleri sayesinde, çeşitli endüstriyel uygulamalarda yapısal malzemelerin ömrünü uzatmada korozyon inhibisyonunda önemlidirler. Bu çalışmada, Salisilidenanilin ve türevleri, DFT analizi yoluyla yumuşak çelik korozyon inhibitörü olarak incelendi. Bu amaçla salisilidenanilin, (2-(benzilidenamino)fenol, 4-(benzilidenamino)fenol, 2-fenildiazanilfenol, 2-fenilazo-4-metilfenol, 3-metil-2-fenildiazanilfenol, 2-[(2-metilfenil)diazenil]fenol, 4-fenildiazanilbenzen-1,3-diol) sekiz molekül seçildi. Gaussian 03 programı ve 6-311++G(d,p) temel seti kullanıldı. En yüksek dolu moleküler orbital enerjisi (EHOMO), en düşük dolu olmayan moleküler orbital enerjisi (ELUMO), LUMO ve HOMO arasındaki enerji farkı (∆E), dipol momenti ve atomları üzerindeki yükler gibi elektronik özellikler ve ESP belirlendi.

Teşekkür

We are greatly thankful to Prof. Birgül Yazıcı, Prof. Gülfeza Kardaş.

Kaynakça

  • M. Benmabrouk, S. Seridi, Y. Aimene and S. Almi, Synthesis, spectroscopic characterization, DFT, and molecular docking analysis of some Salicylideneaniline schiff base derivatives as potential antioxidant compounds. Polycyclic Aromatic Compounds, 1-27, 2023. https://doi.org/10.1080/ 10406638.2023.2276252.
  • Z. Moosavi-Tekyeh and N. Dastani, Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations. Journal of Molecular Structure, 1102, 314-322, 2015. https:// doi.org/10.1016/j.molstruc.2015.09.001.
  • S. Shahab, L. Filippovich, M. Aharodnikova, H. A. Almodarresiyeh, F. H. Hajikolaee, R. Kumar and M. Mashayekhi, Photochromic properties of the N-Salicylideneaniline in Polyvinyl Butyral matrix: Experimental and theoretical investigations. Journal of Molecular Structure, 1134, 530-537, 2017. https://doi. org/10.1016/j.molstruc.2016.12.038.
  • J-W Hu, H-Y Tsai, S-K Fang, C-W Chang, L-C Wang and K-Y Chen, Conformationally locked salicylideneaniline derivatives with strong ESIPT fluorescence. Dyes and Pigments, 145, 493-504, 2017. https://doi.org/10.1016/j.dyepig.2017.06.037.
  • E. D. Akpan, A. K. Singh, H. Lgaz, T. W. Quadri, S. K. Shukla, B. Mangla, A. Dwivedi, O. Dagdag, Sheetal, E. E. Inyang and E. E. Ebenso, Coordination compounds as corrosion inhibitors of metals: A review. Coordination Chemistry Reviews, 499, 215503, 2024. https://doi. org/10.1016/j.ccr.2023.215503.
  • Sheetal, A. K. Singh, S. Thakur, B. Pani and M. Singh, Heterocyclic compounds as corrosion inhibitors for iron alloys in various industrial processes: A review. Journal of Industrial and Engineering Chemistry, 130, 141-177, 2024. https://doi.org/10.10 16/j.jiec.2023.10.005.
  • X. Li, J. He, B. Xie, Y. He, C. Lai, W. Wang, J Zeng, B. Yao, W. Zhao and T. Long, 1,4-Phenylenediamine-based Schiff bases as eco-friendly and efficient corrosion inhibitors for mild steel in HCl medium: Experimental and theoretical approaches. Journal of Electroanalytical Chemistry, 955, 118052, 2024. https://doi.org/10.1016 /j.jelechem.2024.118052.
  • A. Fellah, Y. Harek, I. Ichchou, L. Larabi, H. Rouabhi, R. Bourzami and A. Ammari, Experimental and DFT studies of a novel salicylhydrazone derivative as a steel corrosion inhibitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 685, 133150, 2024. https://doi.org/10.1016/j.colsurfa.2024.133150.
  • N. Karakuş, Determination of ınhibition mechanism of mono-azo Naphthylamine dyes: A computational corrosion study. Turkish Computational and Theoretical Chemistry, 1, 35-44, 2017.
  • K. Sayin, N. Kurtoglu, M. Kose, D. Karakas and M Kurtoglu, Computational and experimental studies of 2-[(E)-hydrazinylidenemethyl]-6-methoxy-4-[(E)-phenyldiazenyl]phenol and its tautomers. Journal of Molecular Structure, 1119, 413-422, 2016. https://doi. org/10.1016/j.molstruc.2016.04.097.
  • D. Daoud, T. Douadi, H. Hamani, S. Chafaa and M. Al-Noaimi, Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study. Corrosion Science, 94, 21-37, 2015. https://doi.org/10.1016/ j.corsci.2015.01.025.
  • J. D. Margerum and J. A. Sous, Spectroscopic studies of substituted Benzalaniline. Applied Spectroscopy, 19, 91-97, 1965.
  • O. O. Emmanuel, O. B. Samuel, O. F. Kolawole, A. D. Dada, A. E. Oluwafisayo, E. B. Chibuzo and I. Nureni, Experimental and theoretical study on the corrosion ınhibitive potentials of schiff base of Aniline and Salicyaldehyde on mild steel in 0.5M HCl. Advanced Journal of Chemistry-Section B, 2, 197-208, 2020. https://doi.org/10.22034/ajcb.2020. 113664.
  • T. Umasankareswari and T. Jeyaraj, Salicylideneaniline as inhibitor for the corrosion of mild steel in 1.0 N hydrochloric acid. Journal of Chemical and Pharmaceutical Research, 4, 3414-3419, 2012.
  • S. M. Merdas, Synthesis, characterization and DFT studies of new azo-schiff base and evaluation as corrosion ınhibitor. Annals of the Romanian Society for Cell Biology, 25, 910-928, 2021. http://www.annalsofrscb.ro/index.php/journal/article/view/2519.
  • C. Verma, D. S. Chauhan, R. Aslam, P. Banerjee, J. Aslam, T. W. Quadri, M. A. Quraishi, D. K. Verma, A. AlFantazia and T. Rasheed, Principles and theories of green chemistry for corrosion science and engineering: design and application. Green Chemistry, 26, 4270-4357, 2024. https://doi.org/10.1039/d3gc05207a.
  • R. Sehrawat, P. Vashishth, H. Bairagi, S. K. Shukla, H. Kumar, G. Ji and B. Mangla, Coordination bonding and corrosion inhibition characteristics of chalcone compounds for metals: An inclusive review based on experimental as well as theoretical perspectives. Coordination Chemistry Reviews, 514, 215820, 2024. https://doi. org/10.1016/j.ccr.2024.215820.
  • R. Sehrawat, R. Pundeer, S. Yadav, P. Vashishth, H. Bairagi, S. K. Shukla and B. Mangla, Insights of newly synthesized novel pyrazole compounds for mild steel corrosion inhibition in an acidic environment by experimental and computational calculations. Journal of Molecular Structure 2024;1316. https://doi.org/10.1016/j.mol struc.2024.139017.
  • K. Mortadi, A. El Amri, M. Ouakki, R. Hsissou, A. Jebli, A. Lebkiri, Z. Safi, N. Wazzan, A. Berisha, M. Cherkaoui, E. Mahdi Hbaiz and H. Cherkaoui, Electrochemical and theoretical studies on a bioactive Juniperus oxycedrus essential oil as a potential and ecofriendly corrosion inhibitor for mild steel in 1.0 M HCl environment. Inorganic Chemistry Communications, 162, 112196, 2024. https://doi.org/10.1016/j.inoche.2024.112196.
  • Y. Li, Z. Guo, H. Zhi, Y. Qiang, X. Liu, Y. Zhang, Y. Wan, T. Xiang and X. Li, Experimental and computational exploration of the biodegradable platanus acerifolia leaf extract against mild steel corrosion in hydrochloric acid. Journal of Materials Research and Technology, 30, 7830-7842, 2024. https://doi.org /10.1016/j.jmrt.2024.05.148.
  • D. I. Udunwa, O. D. Onukwuli, M. C. Menkiti, S. C. Nwanonenyi, C. B. Ezekannagha and C. O. Aniagor, Experimental, computational, and theoretical studies on the corrosion inhibition potential of green Gongronema latifolium extract as corrosion inhibitor for aluminum alloy in HCl solutions. Journal of Molecular Structure, 1302, 137508, 2024. https://doi.org/10.1016/j.molstruc.2024.137508.
  • Sheetal, A. K. Singh, V. C. Anadebe, M. Singh, N. Arshad, R. C. Barik, M. A. U. R. Qureshi, T. W. Quadri, E. D. Akpan, L. O. Olasunkanmi, S. K. Shukla, J. Tuteja, S. Thakur, B. Pani and E. E. Ebenso, Coordination chemistry of chalcones and derivatives and their use as corrosion inhibitors: A comprehensive review. Coordination Chemistry Reviews, 517, 215985, 2024. https://doi.org/10.1016 /j.ccr.2024.215985.
  • L. Ma, H. Yang, D. Zhang and W. Wu, Inhibition for atmospheric corrosion of mild steel by lysine salts with graphene oxide interlayer in situ modulation. Corrosion Science, 226, 111639, 2024. https://doi.org/10.1016/j.corsci.2023.111639.
  • O. Berkesi, T. Körtvélyesi, C. Hetényi, T. Németh, and I. Pálinkó, Hydrogen bonding interactions of benzylidene type Schiff bases studied by vibrational spectroscopic and computational methods. Physical Chemistry Chemical Physics, 5, 2009-2014, 2003. https://doi.org/10.1039/b301107k.
  • S. Li, C. Li and F. Wang, Computational experiments of metal corrosion studies: A review. Materials Today Chemistry, 37, 101986, 2024. https://doi.org/10.1016 /j.mtchem.2024.101986.
  • B. Li, L. Guo, X. Bai, S. Zhang, Z. Zhang, H. Zhou, H. Dong and Y. Li, Experimental and theoretical investigation of 1-Hexyl-3-methylimidazolium iodide as a corrosion inhibitor for mild steel in HCl environment. International Journal of Electrochemical Science, 19, 100580, 2024. https://doi.org/10.1016/j.ijoes.2024. 100580.
  • H. Lachhab, N. Benzbiria, A. Titi, S. Echihi, M. E. Belghiti, Y. Karzazi, A. Zarrouk, R. Touzani, C. Jama and F. Bentiss, Detailed experimental performance of two new pyrimidine-pyrazole derivatives as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond breaking upon adsorption. Colloids Surface Physicochemistry Engineering Aspects, 680, 132649, 2024. https://doi.org/10.1016/j.colsurfa.2023.132649.
  • R. Khanna, M. Dudi, B. Mangla, V. Kalia, A. Sihmar, H. Tanwar and H. Dahiya, Assessment of pyrazole Schiff base's corrosion inhibition effectiveness incorporating oxadiazole moiety on mild steel in 1 M HCl: A holistic theoretical and experimental analysis. Journal of Molecular Structure, 1317, 139066, 2024. https://doi.org/10.1016/j.molstruc.2024.139066.
  • W. M. I. W. M. Kamaruzzaman, M. S. Shaifudin, N. A. M. Nasir, M. A. Badruddin, N. Yusof, A. Adnan, N. A. Aziz, W. M. N. W. Nik, J. Haque, M. Murmu, P. Banerjee and M. S. Mohd Ghazali, Experimental, DFT and molecular dynamic simulation of Andrographis paniculata as corrosion inhibitor for mild steel in artificial seawater. Materials Chemistry and Physics, 312, 128642, 2024. https://doi.org/10.1016/j.matchem phys.2023.128642.
  • Z. N. Jiang, J. M. Duan, X. Q. Zeng, S. Y. Peng, Y. R. Li, W. Xiong, C. F. Dong and G. A. Zhang, Dramatic improvement in corrosion inhibition effect of carboxymethyl cellulose by modified with levodopa: Experimental study and first-principles calculations. Corrosion Science, 232, 112037, 2024. https://doi.org/10.1016/j.corsci.2024. 112037.
  • M. Errami, A. El-Asri, S. Fdil, S. Ourouadi, O. Iddelmouiden, A. Jmiai, L. Bazzi, A. Hadfi and R. A. Akbour, Green Ostrich fat waste extracts as a novel potential inhibitor to sustainable corrosion of steel in acidic environments: Electrochemical and DFT evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 689, 133684, 2024. https://doi.org/10.1016/j.colsurfa.2024. 133684.
  • A. H. Alamri, K. Rasheeda, S. J. Kamal, M. Aljohani, T. A. Aljohani, I. Baig, V. D. P. Alva, N. P. Swathi, I. B. Onyeachu and S. Samshuddin, Pyrimidine derivatives as efficient anticorrosive agents for acid corrosion of mild steel: Electrochemical and computational validation. Arabian Journal of Chemistry, 17, 105752, 2024. https://doi.org/10.1016/j.arabjc.2024.105752.
  • S. Ahmadi and A. Khormali, Optimization of the corrosion inhibition performance of 2-mercaptobenzothiazole for carbon steel in HCl media using response surface methodology. Fuel, 357, 129783, 2024. https://doi.org/10.1016/j.fuel.2023. 129783.
  • D. I. Udunwa, O. D. Onukwuli, M. C. Menkiti, V. C. Anadebe and M. A. Chidiebere, 1-Butyl-3-methylimidazolium methane sulfonate ionic liquid corrosion inhibitor for mild steel alloy: Experimental, optimization and theoretical studies. Heliyon, 9, e18353, 2023. https://doi.org/10.1016/j.heliyon.2023. e18353.
  • Z. N. Jiang, J. M. Duan, X. Q. Zeng, Y. R. Li, C. F. Dong and G. A. Zhang, Unveiling the adsorption and inhibition mechanism of thiadiazole derivatives for mild steel corrosion in hydrochloric acid based on experimental approaches and first-principles calculations. Corrosion Science, 224, 111492, 2023. https://doi.org/10.1016 /j.corsci.2023.111492.
  • D. I. Udunwa, O. D. Onukwuli and V. C. Anadebe, Synthesis and evaluation of 1-butyl-3-methylimidazolium chloride based ionic liquid for acid corrosion inhibition of aluminum alloy: Empirical, DFT/MD-simulation and RSM modeling. Journal of Molecular Liquids, 364, 120019, 2022. https://doi.org/10.1016/j.molliq.2022.120019.
  • D. Kumar, V. M. K, V. Jain and B. Rai, Integrating experiments, DFT and characterization for comprehensive corrosion inhibition studies – A case for cinnamaldehyde as an excellent green inhibitor for steels in acidic media. Corrosion Science, 208, 110623, 2022. https://doi.org/10.1016/j.corsci.2022. 110623.
  • A. Saady, Z. Rais, F. Benhiba, R. Salim, K. Ismaily Alaoui, N. Arrousse, F. Elhajjaji, M. Taleb, K. Jarmoni, Y. Kandri Rodi, I. Warad and A. Zarrouk, Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo[4,5-b] pyridine derivatives against mild steel corrosion. Corrosion Science, 189, 109621, 2021. https://doi.org/10.1016/ j.corsci.2021.109621.
  • V. C. Anadebe, P. C. Nnaji, O. D. Onukwuli, N. A. Okafor, F. E. Abeng, V. I. Chukwuike, C. C. Okoye, I. I. Udoh, M. A. Chidiebere, L. Guo and R. C. Barik, Multidimensional insight into the corrosion inhibition of salbutamol drug molecule on mild steel in oilfield acidizing fluid: Experimental and computer aided modeling approach. Journal of Molecular Liquids, 349, 118482, 2022. https://doi.org/10.1016/j.molliq.2022.118482.
  • D-Y. Wang, B-L. Nie, H-J. Li, W-W. Zhang, and Y-C. Wu, Anticorrosion performance of grape seed proanthocyanidins extract and Tween-80 for mild steel in hydrochloric acid medium. Journal of Molecular Liquids, 331, 115799, 2021. https://doi.org/10.1016 /j.molliq.2021.115799.
  • K. V. Thomas, K. J. Thomas, P. V. Rapheal, A. S. Sabu, K. Ragi and R. Johnson, Tinospora cordifolia extract as an environmentally benign green corrosion inhibitor in acid media: electrochemical, surface morphological, quantum chemical, and statistical investigations. Materials Today Sustainability, 13, 100076, 2021. https://doi.org/10.1016/j.mtsust.2021. 100076.
  • M. Murmu, S. K. Saha, N. C. Murmu and P. Banerjee, Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, 146, 134-151, 2019. https://doi.org/10.1016/j.corsci.2018.10.002.
  • E. Naseri, M. Hajisafari, A. Kosari, M. Talari, S. Hosseinpour and A. Davoodi, Inhibitive effect of Clopidogrel as a green corrosion inhibitor for mild steel; statistical modeling and quantum Monte Carlo simulation studies. Journal of Molecular Liquids, 269, 193-202, 2018. https://doi.org/10.1016/j.molliq.2018. 08.050.
  • J. Zhang, W. Li, X. Zuo, Y. Chen, W. Luo, Y. Zhang, A. Fu, B. Tan and S. Zhang, Combining experiment and theory researches to insight into anti-corrosion nature of a novel thiazole derivatives. Journal of the Taiwan Institute of Chemical Engineers, 122, 190-200, 2021. https://doi.org/10.1016/j.jtice.2021.04.035.
  • S. N. Costa, F. W. Q. Almeida-Neto, O. S. Campos, T. S. Fonseca, M. C. de Mattos, V. N. Freire, P. Homem-de-Mello, E. S. Marinho, N. K. V. Monteiro, A. N. Correia and P. de Lima-Neto, Carbon steel corrosion inhibition in acid medium by imidazole-based molecules: Experimental and molecular modelling approaches. Journal of Molecular Liquids, 326, 115330, 2021. https://doi.org/10.1016/j.molliq.2021.115330.
  • S. Aribo, S. J. Olusegun, G. L. S. Rodrigues, A. S. Ogunbadejo, B. Igbaroola, A. T. Alo, W. R. Rocha, N. D. S. Mohallem and P. A. Olubambi, Experimental and theoretical investigation on corrosion inhibition of hexamethylenetetramine [HMT] for mild steel in acidic solution. Journal of the Taiwan Institute of Chemical Engineers, 112, 222-231, 2020. https://doi. org/10.1016/j.jtice.2020.06.011.
  • R. Farahati, A. Ghaffarinejad, S. M. Mousavi-Khoshdel, J. Rezania, H. Behzadi and A. Shockravi, Synthesis and potential applications of some thiazoles as corrosion inhibitor of copper in 1 M HCl: Experimental and theoretical studies. Progress in Organic Coatings, 132, 417-28, 2019. https://doi.org/10.1016/j.porgcoat.2019. 04.005.
  • Bhaskaran, P. D. Pancharatna, S. Lata and G. Singh, Imidazolium based ionic liquid as an efficient and green corrosion constraint for mild steel at acidic pH levels. Journal of Molecular Liquids, 278, 467-476, 2019. https://doi.org/10.1016/j.molliq.2019.01.068.
  • M. Oubaaqa, M. Ouakki, M. Rbaa, A. S. Abousalem, M. Maatallah, F. Benhiba, A. Jarid, M. Ebn Touhami and A. Zarrouk, Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. Journal of Molecular Liquids, 334, 116520, 2021. https://doi.org/10.1016/j.molliq. 2021.116520.
  • A. Ehsani, M. G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi and H. M. Shiri H, Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. Journal of Colloid and Interface Science, 490, 444-451, 2017. https://doi.org/10.1016/j.jcis.2016.11.048.
  • J. Haque, V. Srivastava, C. Verma and M. A. Quraishi, Experimental and quantum chemical analysis of 2-amino-3-((4-((S)-2-amino-2-carboxyethyl)-1H-imidazol-2-yl)thio) propionic acid as new and green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. Journal of Molecular Liquids, 225, 848-855, 2016. https://doi.org/10.1016/j.molliq.2016. 11.011.
  • A. Manivel, S. Ramkumar, J. J. Wu, A. M. Asiri and S. Anandan, Exploration of (S)-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine as feasible corrosion inhibitor for mild steel in acidic media. Journal of Environmental Chemical Engineering, 2, 463-470, 2014. https://doi.org/10.1016/j.jece.2014.01. 018.
  • P. Mourya, S. Banerjee and M. M. Singh, Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corrosion Science, 85, 352-363, 2014. https://doi.org/10.1016/j.corsci.2014.04.036.
  • N. Soltani, N. Tavakkoli, M. K. Kashani, A. Mosavizadeh, E. E. Oguzie and M. R. Jalali, Silybum marianum extract as a natural source inhibitor for 304 stainless steel corrosion in 1.0 M HCl. Journal of Industrial and Engineering Chemistry, 20, 3217-3227, 2014. https://doi.org/10.1016/j.jiec.2013.12.002.
  • H. M. Abd El-Lateef, A. R. Sayed and K. Shalabi, Studying the effect of two isomer forms thiazole and thiadiazine on the inhibition of acidic chloride-induced steel corrosion: Empirical and Computer simulation explorations. Journal of Molecular Liquids, 356, 119044, 2022. https://doi.org/10.1016/j.molliq. erer2022.119044.
  • G. Gece and S. Bilgiç, A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corrosion Science, 52,3304-3308, 2010. https://doi.org/10.1016/j.corsci.2010.06.005.
  • D. Özkır, E. Bayol, A. Gürten, Y. Sürme and F. Kandemirli, Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution. Chemical Papers, 67, 202-12, 2013. https://doi.org/doi:10.2478/s11696-012-0255-y.
  • D. Özkır, K. Kayakırılmaz, E. Bayol, A. A. Gürten and F. Kandemirli, The inhibition effect of Azure A on mild steel in 1M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corrosion Science 56, 143-52, 2012. https://doi.org/10.1016/j.corsci.2011.11.010.
  • M. M. Abdelsalam, M. A. Bedair, A. M. Hassan, B. H. Heakal, A. Younis, Z. I. Elbialy, M. A. Badawy, H. E.-D. Fawzy and S. A. Fareed, Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution. Arabian Journal of Chemistry 15, 103491, 2022. https://doi.org/10.1016/j.arabjc.2021.103491.
  • A. F. Hamood, H. M. Habeeb, B. A. Abdulhussein, A. M. Mustafa, F. F. Sayyid, M. M. Hanoon, T. S. Gaaz, L. A. Hameed and A. A. A. Alamiery, Weight loss, electrochemical measurements and DFT studies on corrosion inhibition by 7-mercapto-4-methylcoumarin. Results in Engineering 23, 102677, 2024. https://doi.org/10.1016/j.rineng.2024.102677.
  • T. Karazehir, M. E. Mert and B. D. Mert, Corrosion prevention of mild steel in acidic medium by 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid: Theoretical and experimental approach. Journal of Indian Chemical Society, 99, 100642, 2022. https://doi.org/10.1016/j.jics.2022.100642.
  • M. G. Golafshani, H. Tavakoli, S. A. Hosseini and M. Akbari, MD and DFT computational simulations of Caffeoylquinic derivatives as a bio-corrosion inhibitor from quince extract with experimental investigation of corrosion protection on mild steel in 1M H2SO4. Journal of Molecular Structure, 1275, 134701, 2023. https://doi.org/10.1016/j.molstruc.2022.134701.
  • E. E. Elemike, H. U. Nwankwo, D. C. Onwudiwe and E. C. Hosten, Synthesis, structures, spectral properties and DFT quantum chemical calculations of (E)-4-(((4-propylphenyl)imino)methyl)phenol and (E)-4-((2-tolylimino)methyl)phenol; their corrosion inhibition studies of mild steel in aqueous HCl. Journal of Molecular Structure, 1141, 12-22, 2017. https://doi.org/10.1016/j.molstruc.2017.03.071.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrokimyasal Teknolojiler
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Erman Mert 0000-0002-0114-8707

Başak Doğru Mert 0000-0002-2270-9032

Erken Görünüm Tarihi 24 Eylül 2024
Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 28 Haziran 2024
Kabul Tarihi 5 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Mert, M. E., & Doğru Mert, B. (2024). DFT analysis of salicylideneaniline derivatives as corrosion inhibitors for mild steel. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1408-1419. https://doi.org/10.28948/ngumuh.1506838
AMA Mert ME, Doğru Mert B. DFT analysis of salicylideneaniline derivatives as corrosion inhibitors for mild steel. NÖHÜ Müh. Bilim. Derg. Ekim 2024;13(4):1408-1419. doi:10.28948/ngumuh.1506838
Chicago Mert, Mehmet Erman, ve Başak Doğru Mert. “DFT Analysis of Salicylideneaniline Derivatives As Corrosion Inhibitors for Mild Steel”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Ekim 2024): 1408-19. https://doi.org/10.28948/ngumuh.1506838.
EndNote Mert ME, Doğru Mert B (01 Ekim 2024) DFT analysis of salicylideneaniline derivatives as corrosion inhibitors for mild steel. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1408–1419.
IEEE M. E. Mert ve B. Doğru Mert, “DFT analysis of salicylideneaniline derivatives as corrosion inhibitors for mild steel”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1408–1419, 2024, doi: 10.28948/ngumuh.1506838.
ISNAD Mert, Mehmet Erman - Doğru Mert, Başak. “DFT Analysis of Salicylideneaniline Derivatives As Corrosion Inhibitors for Mild Steel”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Ekim 2024), 1408-1419. https://doi.org/10.28948/ngumuh.1506838.
JAMA Mert ME, Doğru Mert B. DFT analysis of salicylideneaniline derivatives as corrosion inhibitors for mild steel. NÖHÜ Müh. Bilim. Derg. 2024;13:1408–1419.
MLA Mert, Mehmet Erman ve Başak Doğru Mert. “DFT Analysis of Salicylideneaniline Derivatives As Corrosion Inhibitors for Mild Steel”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1408-19, doi:10.28948/ngumuh.1506838.
Vancouver Mert ME, Doğru Mert B. DFT analysis of salicylideneaniline derivatives as corrosion inhibitors for mild steel. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1408-19.

download