Araştırma Makalesi
BibTex RIS Kaynak Göster

Hiper hız darbesi sırasında UHMWPE dalgalı plakalarda enkaz bulutu oluşumunun nümerik analizi

Yıl 2024, , 1517 - 1525, 15.10.2024
https://doi.org/10.28948/ngumuh.1536717

Öz

Bu çalışma, dört farklı yüzey dalgası profiline sahip ultra yüksek moleküler ağırlıklı polietilen (UHMWPE) plakalara karşı hiper hız etkisinin sayısal sonuçlarını sunmakta ve analiz etmektedir. UHMWPE dalgalı plakaların (WP), mikro göktaşı ve yörünge enkazına (MMOD) karşı darbe korumasında, uzay araçları için büyük önem taşıyan Whipple Kalkanı tampon plakasında kullanılması amaçlanmaktadır. Nümerik çalışma, yumuşatılmış parçacık hidrodinamiği (SPH) ve sonlu elemanlar modellemesinin (FEM) hibrit bir kombinasyonu olarak gerçekleştirilmiştir. Dairesel plakalar, 3000 m/s hızla hareket eden küresel bir alüminyum merminin hiper hızda çarpma etkisine maruz bırakılmıştır. Simülasyon sonuçları dalgalı plakaların enkaz bulutu oluşumu, mermi parçalanması ve darbe enerjisi dağıtma performansı açısından analiz edilmiştir ve geleneksel düz bir muadiliyle karşılaştırılmıştır. Bu çalışmanın sonuçları, yüzey dalga profilinin hiper hız darbesinden korunma performansı açısından açık bir şekilde olumlu etkiye sahip olduğunu göstermektedir.

Kaynakça

  • F.L. Whipple, Meteorites and space travel, Astronomical Journal, 52, 131, 1947. https://doi.org/10.1086/106009.
  • M. V. Silnikov, I. V. Guk, A. F. Nechunaev, and N.N Smirnov, Numerical simulation of hypervelocity impact problem for spacecraft shielding elements, Acta Astronautica, 150, 56–62, 2018. https://doi.org/10.1016/j.actaastro.2017.08.030.
  • S. Ryan and E. L. Christiansen, Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding, Acta Astronautica,83, 216–31, 2013. https://doi.org/10.1016/j.actaastro.2012.09.012.
  • E. L. Christiansen, J. L. Crews, J. E. Williamsen, J. H. Robinson, and A. M. Nolen, Enhanced meteoroid and orbital debris shielding, International Journal of Impact Engineering, 17, 217–28, 1995. https://doi.org/10.1016/0734-743X(95)99848-L.
  • A. Pai, R. Divakaran, S. Anand, and S. B. Shenoy, Advances in the Whipple Shield Design and Development: A Brief Review, Journal of Dynamic Behavior of Materials, 8, 20–38, 2022. https://doi.org/10.1007/s40870-021-00314-7.
  • K. Wen, X. W. Chen, and Y. G. Lu, Research and development on hypervelocity impact protection using Whipple shield: An overview, Defence Technology, 17, 1864–86, 2021. https://doi.org/10.1016/j.dt.2020.11.005.
  • S. Lemmens and F. Letizia, ESA’S Annual Space Environment Report, ESA Space Debris Office, Darmstadt, Germany, GEN-DB-LOG-00288-OPS-SD, 22 April 2022.
  • S. Lemmens and F. Letizia, ESA’s Annual Space Environment Report, Darmstadt, Germany, GEN-DB-LOG-00271-OPS-SD, 30 April 2019.
  • B. G. Cour-Palais and J. L. Crews, A multi-shock concept for spacecraft shielding, International Journal of Impact Engineering, 10, 135–46, 1990. https://doi.org/10.1016/0734-743X(90)90054-Y.
  • Y. W. Nam, S. K. Sathish Kumar, V. A. Ankem, and C. G. Kim, Multi-functional aramid/epoxy composite for stealth space hypervelocity impact shielding system, Composite Structures,193, 113–20, 2018. https://doi.org/10.1016/j.compstruct.2018.03.046.
  • F. W. Ke, J. Huang, X. Z. Wen, Z. X. Ma, and S. Liu, Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact, Acta Astronautica, 127, 553–60, 2016. https://doi.org/10.1016/j.actaastro.2016.06.037.
  • A. H. Baluch, Y. Park, and C. G. Kim, Hypervelocity impact on carbon/epoxy composites in low Earth orbit environment, Composite Structures, 96, 554–60, 2013. https://doi.org/10.1016/j.compstruct.2012.09.010.
  • J. A. Rogers, A. Mote, P. T. Mead, K. Harrison, G. D. Lukasik, K. R. Kota, W. D. Kulatilaka, J. W. Wilkerson, and T. E. Lacy, Hypervelocity impact response of monolithic UHMWPE and HDPE plates, International Journal of Impact Engineering, 161, 104081, 1-11, 2022. https://doi.org/10.1016/j.ijimpeng.2021.104081.
  • A. Pai, A. Sharma, I. M. Eby, C. R. Kini, and S. B. Shenoy, A numerical approach for response of whipple shields with coated and monolithic front bumper to hypervelocity impact by spherical projectiles, Acta Astronautica, 202, 433–41, 2023. https://doi.org/10.1016/j.actaastro.2022.10.041.
  • A. Önder, Projectile fragmentation and debris cloud formation behaviour of wavy plates in hypervelocity impact, International Journal of Impact Engineering, 183, 104788, 1-13, 2024. https://doi.org/10.1016/j.ijimpeng.2023.104788.
  • Z. Song, X. Pei, J. Yu, J. Zhao, and F. Tan, Hypervelocity impact tests on a Whipple shield using a flyer plate in the velocity range from 4 km/s to 12 km/s, International Journal of Impact Engineering, 156, 103899, 1-14, 2021. https://doi.org/10.1016/j.ijimpeng.2021.103899.
  • G. R. Johnson and W. H. Cook, A Computational Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Pressures, The Seventh International Symposium on Ballistics, pp. 541–547, Hague, Netherlands, 1983.
  • H. B. Zeng, S. Pattofatto, H. Zhao, Y. Girard, and V. Fascio, Perforation of sandwich plates with graded hollow sphere cores under impact loading, International Journal of Impact Engineering, 37, 1083–91, 2010. https://doi.org/10.1016/j.ijimpeng.2010.05.002.
  • T. Lässig, L. Nguyen, M. May, W. Riedel, U. Heisserer, H. Van Der Werff, and S. Hiermaier, A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations, International Journal of Impact Engineering, 75, 110–22, 2015. https://doi.org/10.1016/j.ijimpeng.2014.07.004.
  • K. Wen, X. W. Chen, R. Q. Chi, and Y. G. Lu, Analysis on the fragmentation pattern of sphere hypervelocity impacting on thin plate. International Journal of Impact Engineering, 146, 103721, 1-15, 2020. https://doi.org/10.1016/j.ijimpeng.2020.103721.
  • K. Loft, M. C. Price, M. J. Cole, and M. Burchell, Impacts into metals targets at velocities greater than 1 km/s: A new online resource for the hypervelocity impact community and an illustration of the geometric change of debris cloud impact patterns with impact velocity, International Journal of Impact Engineering, 56, 47–60, 2013. https://doi.org/http://dx.doi.org/10.1016/j.ijimpeng.2012.07.007.
  • J. Mespoulet, P. L. Héreil, H. Abdulhamid, P. Deconinck, and C. Puillet, Experimental study of hypervelocity impacts on space shields above 8 km/s, Procedia Engineering, 204, 508-515, 2017. https://doi.org/10.1016/j.proeng.2017.09.748.

Numerical analysis of debris cloud formation in UHMWPE wavy plates during hypervelocity impact

Yıl 2024, , 1517 - 1525, 15.10.2024
https://doi.org/10.28948/ngumuh.1536717

Öz

This paper presents and analyses the numerical results of hypervelocity impact against ultra-high molecular weight polyethylene (UHMWPE) plates with four different surface wave profiles. UHMWPE wavy plates (WP) are intended to be used in Whipple Shield bumper plate, which is of paramount importance for space vehicles against micro-meteorite and orbital debris (MMOD) impact protection. Numerical work was carried out as a hybrid combination of smoothed particle hydrodynamics (SPH) and finite element modelling (FEM). Circular plates were subjected to hypervelocity impact of a spherical aluminium projectile travelling at 3000 m/s. The outcomes of the simulations were analysed in terms of debris cloud generation, projectile fragmentation, and impact energy dissipation performance of wavy plates, and compared with a conventional flat counterpart. Results of this study indicate that surface wave profile has a clear positive influence in terms of hypervelocity impact protection performance.

Kaynakça

  • F.L. Whipple, Meteorites and space travel, Astronomical Journal, 52, 131, 1947. https://doi.org/10.1086/106009.
  • M. V. Silnikov, I. V. Guk, A. F. Nechunaev, and N.N Smirnov, Numerical simulation of hypervelocity impact problem for spacecraft shielding elements, Acta Astronautica, 150, 56–62, 2018. https://doi.org/10.1016/j.actaastro.2017.08.030.
  • S. Ryan and E. L. Christiansen, Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding, Acta Astronautica,83, 216–31, 2013. https://doi.org/10.1016/j.actaastro.2012.09.012.
  • E. L. Christiansen, J. L. Crews, J. E. Williamsen, J. H. Robinson, and A. M. Nolen, Enhanced meteoroid and orbital debris shielding, International Journal of Impact Engineering, 17, 217–28, 1995. https://doi.org/10.1016/0734-743X(95)99848-L.
  • A. Pai, R. Divakaran, S. Anand, and S. B. Shenoy, Advances in the Whipple Shield Design and Development: A Brief Review, Journal of Dynamic Behavior of Materials, 8, 20–38, 2022. https://doi.org/10.1007/s40870-021-00314-7.
  • K. Wen, X. W. Chen, and Y. G. Lu, Research and development on hypervelocity impact protection using Whipple shield: An overview, Defence Technology, 17, 1864–86, 2021. https://doi.org/10.1016/j.dt.2020.11.005.
  • S. Lemmens and F. Letizia, ESA’S Annual Space Environment Report, ESA Space Debris Office, Darmstadt, Germany, GEN-DB-LOG-00288-OPS-SD, 22 April 2022.
  • S. Lemmens and F. Letizia, ESA’s Annual Space Environment Report, Darmstadt, Germany, GEN-DB-LOG-00271-OPS-SD, 30 April 2019.
  • B. G. Cour-Palais and J. L. Crews, A multi-shock concept for spacecraft shielding, International Journal of Impact Engineering, 10, 135–46, 1990. https://doi.org/10.1016/0734-743X(90)90054-Y.
  • Y. W. Nam, S. K. Sathish Kumar, V. A. Ankem, and C. G. Kim, Multi-functional aramid/epoxy composite for stealth space hypervelocity impact shielding system, Composite Structures,193, 113–20, 2018. https://doi.org/10.1016/j.compstruct.2018.03.046.
  • F. W. Ke, J. Huang, X. Z. Wen, Z. X. Ma, and S. Liu, Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact, Acta Astronautica, 127, 553–60, 2016. https://doi.org/10.1016/j.actaastro.2016.06.037.
  • A. H. Baluch, Y. Park, and C. G. Kim, Hypervelocity impact on carbon/epoxy composites in low Earth orbit environment, Composite Structures, 96, 554–60, 2013. https://doi.org/10.1016/j.compstruct.2012.09.010.
  • J. A. Rogers, A. Mote, P. T. Mead, K. Harrison, G. D. Lukasik, K. R. Kota, W. D. Kulatilaka, J. W. Wilkerson, and T. E. Lacy, Hypervelocity impact response of monolithic UHMWPE and HDPE plates, International Journal of Impact Engineering, 161, 104081, 1-11, 2022. https://doi.org/10.1016/j.ijimpeng.2021.104081.
  • A. Pai, A. Sharma, I. M. Eby, C. R. Kini, and S. B. Shenoy, A numerical approach for response of whipple shields with coated and monolithic front bumper to hypervelocity impact by spherical projectiles, Acta Astronautica, 202, 433–41, 2023. https://doi.org/10.1016/j.actaastro.2022.10.041.
  • A. Önder, Projectile fragmentation and debris cloud formation behaviour of wavy plates in hypervelocity impact, International Journal of Impact Engineering, 183, 104788, 1-13, 2024. https://doi.org/10.1016/j.ijimpeng.2023.104788.
  • Z. Song, X. Pei, J. Yu, J. Zhao, and F. Tan, Hypervelocity impact tests on a Whipple shield using a flyer plate in the velocity range from 4 km/s to 12 km/s, International Journal of Impact Engineering, 156, 103899, 1-14, 2021. https://doi.org/10.1016/j.ijimpeng.2021.103899.
  • G. R. Johnson and W. H. Cook, A Computational Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Pressures, The Seventh International Symposium on Ballistics, pp. 541–547, Hague, Netherlands, 1983.
  • H. B. Zeng, S. Pattofatto, H. Zhao, Y. Girard, and V. Fascio, Perforation of sandwich plates with graded hollow sphere cores under impact loading, International Journal of Impact Engineering, 37, 1083–91, 2010. https://doi.org/10.1016/j.ijimpeng.2010.05.002.
  • T. Lässig, L. Nguyen, M. May, W. Riedel, U. Heisserer, H. Van Der Werff, and S. Hiermaier, A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations, International Journal of Impact Engineering, 75, 110–22, 2015. https://doi.org/10.1016/j.ijimpeng.2014.07.004.
  • K. Wen, X. W. Chen, R. Q. Chi, and Y. G. Lu, Analysis on the fragmentation pattern of sphere hypervelocity impacting on thin plate. International Journal of Impact Engineering, 146, 103721, 1-15, 2020. https://doi.org/10.1016/j.ijimpeng.2020.103721.
  • K. Loft, M. C. Price, M. J. Cole, and M. Burchell, Impacts into metals targets at velocities greater than 1 km/s: A new online resource for the hypervelocity impact community and an illustration of the geometric change of debris cloud impact patterns with impact velocity, International Journal of Impact Engineering, 56, 47–60, 2013. https://doi.org/http://dx.doi.org/10.1016/j.ijimpeng.2012.07.007.
  • J. Mespoulet, P. L. Héreil, H. Abdulhamid, P. Deconinck, and C. Puillet, Experimental study of hypervelocity impacts on space shields above 8 km/s, Procedia Engineering, 204, 508-515, 2017. https://doi.org/10.1016/j.proeng.2017.09.748.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balistik Sistemleri, Katı Mekanik, Sayısal Modelleme ve Mekanik Karakterizasyon, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Asım Anıl Önder 0000-0002-5930-0046

Erken Görünüm Tarihi 8 Ekim 2024
Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 21 Ağustos 2024
Kabul Tarihi 27 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Önder, A. A. (2024). Numerical analysis of debris cloud formation in UHMWPE wavy plates during hypervelocity impact. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1517-1525. https://doi.org/10.28948/ngumuh.1536717
AMA Önder AA. Numerical analysis of debris cloud formation in UHMWPE wavy plates during hypervelocity impact. NÖHÜ Müh. Bilim. Derg. Ekim 2024;13(4):1517-1525. doi:10.28948/ngumuh.1536717
Chicago Önder, Asım Anıl. “Numerical Analysis of Debris Cloud Formation in UHMWPE Wavy Plates During Hypervelocity Impact”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 4 (Ekim 2024): 1517-25. https://doi.org/10.28948/ngumuh.1536717.
EndNote Önder AA (01 Ekim 2024) Numerical analysis of debris cloud formation in UHMWPE wavy plates during hypervelocity impact. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1517–1525.
IEEE A. A. Önder, “Numerical analysis of debris cloud formation in UHMWPE wavy plates during hypervelocity impact”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 4, ss. 1517–1525, 2024, doi: 10.28948/ngumuh.1536717.
ISNAD Önder, Asım Anıl. “Numerical Analysis of Debris Cloud Formation in UHMWPE Wavy Plates During Hypervelocity Impact”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (Ekim 2024), 1517-1525. https://doi.org/10.28948/ngumuh.1536717.
JAMA Önder AA. Numerical analysis of debris cloud formation in UHMWPE wavy plates during hypervelocity impact. NÖHÜ Müh. Bilim. Derg. 2024;13:1517–1525.
MLA Önder, Asım Anıl. “Numerical Analysis of Debris Cloud Formation in UHMWPE Wavy Plates During Hypervelocity Impact”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 4, 2024, ss. 1517-25, doi:10.28948/ngumuh.1536717.
Vancouver Önder AA. Numerical analysis of debris cloud formation in UHMWPE wavy plates during hypervelocity impact. NÖHÜ Müh. Bilim. Derg. 2024;13(4):1517-25.

download