Araştırma Makalesi
BibTex RIS Kaynak Göster

Incremental social learning-based differential evolution algorithms for large-scale convex and nonconvex economic power dispatch problems

Yıl 2025, Cilt: 14 Sayı: 3, 907 - 931, 15.07.2025
https://doi.org/10.28948/ngumuh.1612958

Öz

The economic power dispatch problem, which is one of the important problems of power systems engineering, is a problem that must be solved quickly for the optimum operation of the existing system. This problem is defined in the literature as the ability to meet the loads in the system at the least cost by all power generation units under different constraints. In many different studies, solutions to the problem have been sought for many different power systems. Since power systems differ from each other in terms of structure and constraints, the problem remains current. This study solves the economic power dispatch problem for both convex and non-convex fuel cost functions for a large-scale power system with modified IEEE 118 bus 54 generators. Transmission line losses were considered in the sample power system, and AC load flow analysis was performed using the Newton-Raphson method to calculate these losses. In both problems with different structures, the incremental social learning structure was integrated into the differential evolution algorithm in five different ways to calculate the minimum fuel cost values, and new incremental social learning-based differential evolution algorithms were developed and applied. By comparing the numerical values obtained in solutions made with six different algorithms, the most appropriate method specific to the problems was determined. All results are evaluated using tables, graphs, and figures. In this study, transmission line losses are realistically taken into account with Newton-Raphson based AC load flow and incremental social learning structures are integrated into the classical differential evolution algorithm to improve solution quality and algorithm stability.

Kaynakça

  • S. Özyön, C. Yaşar, H. Temurtaş, A novel hybrid algorithm for nonconvex economic power dispatch problems. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 11(6), 92-101, 2016. https://doi.org/10.9790/1676.11060392101
  • C. Yaşar, S. Özyön, A new hybrid approach for nonconvex economic dispatch problem with valve point effect. Energy, 36(10), 5838-45, 2011. https://doi.org/10.1016/j.energy.2011.08.041
  • C. Dai, Z. Hu, Q. Su, An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects. Energy, 239(122461), 1-18, 2022. https://doi.org/10.1016/j.energy.2021.122461
  • A. Bhattacharya, P. K. Chattopadhyay, Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst, 25(4), 1955-64, 2010. https://doi.org/10.1109/TPWRS.2010.2043270
  • T. Liu, G. Xiong, A.W. Mohamed, P. N. Suganthan, Opposition-mutual learning differential evolution with hybrid mutation strategy for large-scale economic load dispatch problems with valve-point effects and multi-fuel options. Inf Sci, 609, 1721-45, 2022. https://doi.org/10.1016/j.ins.2022.07.148
  • M. A. Al-Betar, M.A. Awadallah, S.N. Makhadmed, I.A. Doush, R.A. Zitar, S. Alshathri, M. Abd Elaziz, A hybrid Harris Hawks optimizer for economic load dispatch problems. Alexandria Eng J, 64, 365-89, 2023. https://doi.org/10.1016/j.aej.2022.09.010
  • M. H. Hassan, S. Kamel, F. Jurado, U. Desideri, Global optimization of economic load dispatch in large scale power systems using an enhanced social network search algorithm. Int J Electr Power Energy Syst, 156(109719), 1-30, 2024. https://doi.org/10.1016/j.ijepes.2023.109719
  • M. H. Hassan, S. Kamel, A. Eid, L. Nasrat, F, Jurado, M.F. Elnaggar, A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Eng J, 14(102083), 1-25, 2023. https://doi.org/10.1016/j.asej.2022.102083
  • Z. Hu, C. Dai, Q. Su, Adaptive backtracking search optimization algorithm with a dual-learning strategy for dynamic economic dispatch with valve-point effects. Energy, 248(123558), 1-16, 2022. https://doi.org/10.1016/j.energy.2022.123558
  • Y. Sharifian, H. Abdi, Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm. Energy, 267(126550), 1-12, 2023. https://doi.org/10.1016/j.energy.2022.126550
  • M. N. Iqbal, A. R. Bhatti, A. D. Butt, Y. A. Sheikh, K. N. Paracha, R. H. Ashique, Solution of economic dispatch problem using hybrid multi-verse optimizer. Electr Power Syst Res, 208(107912), 1-8, 2022. https://doi.org/10.1016/j.epsr.2022.107912
  • H. Sharifzadeh, Two efficient logarithmic formulations to solve nonconvex economic dispatch. Electr Power Syst Res, 229(110123), 1-10, 2024. https://doi.org/10.1016/j.epsr.2024.110123
  • W. Luo, X. Yu, Reinforcement learning-based modified cuckoo search algorithm for economic dispatch problems. Knowledge-Based Syst, 257(109844), 1-17, 2022, https://doi.org/10.1016/j.knosys.2022.109844
  • C. Chen, L. Qu, M. L. Tseng, L. Li, C. C. Chen, M. K. Lim, Reducing fuel cost and enhancing the resource utilization rate in energy economic load dispatch problem. J Cleaner Prod, 364(132709), 1-13, 2022. https://doi.org/10.1016/j.jclepro.2022.132709
  • X. Y. Zhang, W. K. Hao, J. S. Wang, J. H. Zhu, X. R. Zhao, Y. Zheng, Manta ray foraging optimization algorithm with mathematical spiral foraging strategies for solving economic load dispatching problems in power systems. Alexandria Eng J, 70, 613-40, 2023. https://doi.org/10.1016/j.aej.2023.03.017
  • M. H. Hassan, S. Kamel, F. Jurado, M. Ebeed, M. F. Elnaggar, Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer. Alexandria Eng J, 72, 573-91, 2023. https://doi.org/10.1016/j.aej.2023.04.002
  • L. Fu, H. Ouyang, C. Zhang, S. Li, A. W. Mohamed, A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems. Appl Soft Comput, 121(108719), 1-18, 2022. https://doi.org/10.1016/j.asoc.2022.108719
  • X. Yu, Q. Zhao, T. Wang, Y. Li, An antigravity-based fuzzy Gravitational Search Algorithm for economic dispatch problems. Appl Soft Comput, 145(110630), 1-23, 2023. https://doi.org/10.1016/j.asoc.2023.110630
  • T. Visutarrom, T. C. Chiang, Economic dispatch using metaheuristics: Algorithms, problems, and solutions. Appl Soft Comput, 150(110891), 1-43, 2024. https://doi.org/10.1016/j.asoc.2023.110891
  • J. S. Pan, J. Shan, S. C. Chu, S. J. Jiang, S. G. Zheng, L. Liao, A multigroup marine predator algorithm and its application for the power system economic load dispatch. Energy Sci Eng, 10(6), 1840-54, 2022. https://doi.org/10.1002/ese3.957
  • R. P. Parouha, P. Verma, An innovative hybrid algorithm to solve nonconvex economic load dispatch problem with or without valve point effects. Int Trans Electr Energy Syst, 31(1), 1-67, 2021. https://doi.org/10.1002/2050-7038.12682
  • R. Ramalingam, D. Karunanidy, S. S. Alshamrani, M. Rashid, S. Mathumohan, A. Dumka, Oppositional pigeon-inspired optimizer for solving the non-convex economic load dispatch problem in power systems. Mathematics, 10(18)(3315), 1-24, 2022. https://doi.org/10.3390/math10183315
  • Q. Liu, G. Xiong, X. Fu, A. W. Mohamed, J. Zhang, M. A. Al-Betar, S. Xu, Hybridizing gaining–sharing knowledge and differential evolution for large-scale power system economic dispatch problems. J Comput Des Eng, 10(2), 615-31, 2023. https://doi.org/10.1093/jcde/qwad008
  • M. Braik, M. A. Awadallah, M. A. Al-Betar, A. I. Hammouri, A hybrid capuchin search algorithm with gradient search algorithm for economic dispatch problem. Soft Comput, 27(22), 16809-41, 2023. https://doi.org/10.1007/s00500-023-09019-6
  • T. Singh, Chaotic slime mould algorithm for economic load dispatch problems. Appl Intell, 52(13), 15325-44, 2023. https://doi.org/10.1007/s10489-022-03179-y
  • M. S. Braik, M. A. Awadallah, M. A. Al-Betar, A. I. Hammouri, R. A. Zitar, A non-convex economic load dispatch problem using chameleon swarm algorithm with roulette wheel and Levy flight methods. Appl Intell, 53, 17508-47, 2023. https://doi.org/10.1007/s10489-022-04363-w
  • V. Garg, K. Deep, N. P. Padhee, Constrained laplacian biogeography-based optimization for economic load dispatch problems. Process Integr Optim Sustainability, 6(2), 483-96, 2022. https://doi.org/10.1007/s41660-022-00227-5
  • M. A. Montes de Oca, T. Stützle, K. Van den Enden, M. Dorigo, Incremental social learning in particle swarms. IEEE Trans. Syst. Man Cybern. Part B Cybern, 41(2), 368-84, 2011. https://doi.org/10.1109/TSMCB.2010.2055848
  • T. Liao, M. A. Montes de Oca, D. Aydın, T. Stützle, M. Dorigo, An incremental ant colony algorithm with local search for continuous optimization problems. In: Proceeding of genetic and evolutionary computation conference (GECCO 2011), 125-32. https://doi.org/10.1145/2001576.2001594
  • D. Aydın, S. Özyön, Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search. Appl. Soft Comput, 13(5), 2456-66, 2013. https://doi.org/10.1016/j.asoc.2012.12.002
  • S. Özyön, D. Aydın, Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones. Energy Convers. Manage, 65, 397-407, 2013. https://doi.org/10.1016/j.enconman.2012.07.005
  • D. Aydın, S. Özyön, C. Yaşar, L. Tianjun, Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. Int. J. Electr. Power Energy Syst, 54, 144-153, 2014. https://doi.org/10.1016/j.ijepes.2013.06.020
  • S. Özyön, C. Yaşar, H. Temurtaş, Incremental gravitational search algorithm for high-dimensional benchmark functions. Neural Comput. Appl, 31(8), 3779-3803, 2019. https://doi.org/10.1007/s00521-017-3334-8
  • C. Yaşar, S. Özyön, A modified incremental gravitational search algorithm for short-term hydrothermal scheduling with variable head. Eng. Appl. Artif. Intell, 95(103845), 1-17, 2020. https://doi.org/10.1016/j.engappai.2020.103845
  • S. Özyön, Differential evolution algorithm with incremental social learning. Bilecik Şeyh Edebali University J. Sci. Technol, 7, 133-63, 2020. https://doi.org/10.35193/bseufbd.666626
  • D. Karaboğa, Artificial Intelligence Optimization Algorithms (Turkish), Atlas Publishing Distribution, First Edition, Turkey, 2004.
  • A. J. Wood, B. F. Wollenberg, G. B. Sheble, Power Generation Operation and Control, IEEE & Wiley, Third Edition, USA, 2013.
  • D. P. Kothari, J. S. Dhillon. Power System Optimization, PHI, New Delhi, 2007.
  • P. Rossoni, W. M. Rosa, E. A. Belati, Linearized AC load flow applied to analysis in electric power systems, IEEE Lat. Am. Trans, 14(9), 4048-53, 2016. https://doi.org/10.1109/TLA.2016.7785932
  • C. Yaşar, S. Özyön, H. Temurtaş, A new program design developed for AC load flow analysis problems. Kırıkkale University Faculty of Engineering Int. J. Eng. Res. Dev, 9(3), 207-22, 2017. https://doi.org/10.29137/umagd.372979
  • J. Lin, F. H. Magnago, Power System Economic Dispatch, in Electricity Markets: Theories and Applications, Wiley-IEEE Press, 119-46, 2017. https://doi.org/10.1002/9781119179382.ch5
  • Al-roomi Power. https://www.al-roomi.org/power-flow/118-bus-system . Erişim tarihi 02 Ocak 2025.
  • S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15, 617-44, 2019.
  • H. Zhang, Z. Wang, D. Liu, A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems, 25(7), 1229-62, 2014.
  • Matlab Help Center. https://www.mathworks.com/ help/stats/ranksum.html. Erişim tarihi 02 Ocak 2025.
  • Matlab Help Center. https://www.mathworks.com/ help/stats/signrank.html. Erişim tarihi 02 Ocak 2025.

Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları

Yıl 2025, Cilt: 14 Sayı: 3, 907 - 931, 15.07.2025
https://doi.org/10.28948/ngumuh.1612958

Öz

Güç sistemleri mühendisliğinin önemli problemlerinden biri olan, ekonomik güç dağıtımı problemi, mevcut sistemin optimum işletimi için hızlı bir şekilde çözülmesi gereken bir problemdir. Bu problem literatürde, sistemdeki yüklerin farklı kısıtlar altında bütün güç üretim birimleri tarafından en az maliyetle karşılanması şeklinde tanımlanır. Farklı birçok çalışmada, farklı birçok güç sistemi için probleme çözüm aranmıştır. Güç sistemleri yapı ve kısıtlar bakımından birbirlerinden farklı olduklarından problem güncelliğini korumaktadır. Bu çalışmada, modifiye edilmiş IEEE 118 bara 54 generatörlü büyük ölçekli bir güç sistemi için hem konveks yakıt maliyeti fonksiyonları için hem de konveks olmayan yakıt maliyeti fonksiyonları için probleminin çözümü yapılmıştır. Örnek güç sisteminde iletim hattı kayıpları dikkate alınmış ve bu kayıpların hesaplanabilmesi için Newton-Raphson metodu kullanılarak AC yük akışı analizi yapılmıştır. Farklı yapıdaki her iki probleminde, minimum yakıt maliyeti değerlerinin hesaplanabilmesi için diferansiyel gelişim algoritmasına artırımlı sosyal öğrenme yapısı beş farklı şekilde entegre edilerek yeni artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları geliştirilmiş ve uygulanmıştır. Altı farklı algoritma ile yapılan çözümlerde elde edilen sayısal değerler karşılaştırılarak, problemlere özgü en uygun metot belirlenmeye çalışılmıştır. Bütün sonuçlar farklı tablo, grafik ve şekillerle verilmiş ve değerlendirilmiştir. Çalışmada iletim hattı kayıpları Newton-Raphson temelli AC yük akışı ile gerçekçi şekilde hesaba katılmış, ayrıca klasik diferansiyel gelişim algoritmasına artımlı sosyal öğrenme yapıları entegre edilerek çözüm kalitesi ve algoritma kararlılığı artırılarak literatüre katkı sağlanmıştır.

Teşekkür

Kütahya Dumlupınar Üniversitesi, Akıllı Sistemler Tasarımı Uygulama ve Araştırma Merkezi (ASTAM)’a bu çalışma için gerekli bazı temel araştırma olanaklarını sağladığı için teşekkür ederim.

Kaynakça

  • S. Özyön, C. Yaşar, H. Temurtaş, A novel hybrid algorithm for nonconvex economic power dispatch problems. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 11(6), 92-101, 2016. https://doi.org/10.9790/1676.11060392101
  • C. Yaşar, S. Özyön, A new hybrid approach for nonconvex economic dispatch problem with valve point effect. Energy, 36(10), 5838-45, 2011. https://doi.org/10.1016/j.energy.2011.08.041
  • C. Dai, Z. Hu, Q. Su, An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects. Energy, 239(122461), 1-18, 2022. https://doi.org/10.1016/j.energy.2021.122461
  • A. Bhattacharya, P. K. Chattopadhyay, Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst, 25(4), 1955-64, 2010. https://doi.org/10.1109/TPWRS.2010.2043270
  • T. Liu, G. Xiong, A.W. Mohamed, P. N. Suganthan, Opposition-mutual learning differential evolution with hybrid mutation strategy for large-scale economic load dispatch problems with valve-point effects and multi-fuel options. Inf Sci, 609, 1721-45, 2022. https://doi.org/10.1016/j.ins.2022.07.148
  • M. A. Al-Betar, M.A. Awadallah, S.N. Makhadmed, I.A. Doush, R.A. Zitar, S. Alshathri, M. Abd Elaziz, A hybrid Harris Hawks optimizer for economic load dispatch problems. Alexandria Eng J, 64, 365-89, 2023. https://doi.org/10.1016/j.aej.2022.09.010
  • M. H. Hassan, S. Kamel, F. Jurado, U. Desideri, Global optimization of economic load dispatch in large scale power systems using an enhanced social network search algorithm. Int J Electr Power Energy Syst, 156(109719), 1-30, 2024. https://doi.org/10.1016/j.ijepes.2023.109719
  • M. H. Hassan, S. Kamel, A. Eid, L. Nasrat, F, Jurado, M.F. Elnaggar, A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Eng J, 14(102083), 1-25, 2023. https://doi.org/10.1016/j.asej.2022.102083
  • Z. Hu, C. Dai, Q. Su, Adaptive backtracking search optimization algorithm with a dual-learning strategy for dynamic economic dispatch with valve-point effects. Energy, 248(123558), 1-16, 2022. https://doi.org/10.1016/j.energy.2022.123558
  • Y. Sharifian, H. Abdi, Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm. Energy, 267(126550), 1-12, 2023. https://doi.org/10.1016/j.energy.2022.126550
  • M. N. Iqbal, A. R. Bhatti, A. D. Butt, Y. A. Sheikh, K. N. Paracha, R. H. Ashique, Solution of economic dispatch problem using hybrid multi-verse optimizer. Electr Power Syst Res, 208(107912), 1-8, 2022. https://doi.org/10.1016/j.epsr.2022.107912
  • H. Sharifzadeh, Two efficient logarithmic formulations to solve nonconvex economic dispatch. Electr Power Syst Res, 229(110123), 1-10, 2024. https://doi.org/10.1016/j.epsr.2024.110123
  • W. Luo, X. Yu, Reinforcement learning-based modified cuckoo search algorithm for economic dispatch problems. Knowledge-Based Syst, 257(109844), 1-17, 2022, https://doi.org/10.1016/j.knosys.2022.109844
  • C. Chen, L. Qu, M. L. Tseng, L. Li, C. C. Chen, M. K. Lim, Reducing fuel cost and enhancing the resource utilization rate in energy economic load dispatch problem. J Cleaner Prod, 364(132709), 1-13, 2022. https://doi.org/10.1016/j.jclepro.2022.132709
  • X. Y. Zhang, W. K. Hao, J. S. Wang, J. H. Zhu, X. R. Zhao, Y. Zheng, Manta ray foraging optimization algorithm with mathematical spiral foraging strategies for solving economic load dispatching problems in power systems. Alexandria Eng J, 70, 613-40, 2023. https://doi.org/10.1016/j.aej.2023.03.017
  • M. H. Hassan, S. Kamel, F. Jurado, M. Ebeed, M. F. Elnaggar, Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer. Alexandria Eng J, 72, 573-91, 2023. https://doi.org/10.1016/j.aej.2023.04.002
  • L. Fu, H. Ouyang, C. Zhang, S. Li, A. W. Mohamed, A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems. Appl Soft Comput, 121(108719), 1-18, 2022. https://doi.org/10.1016/j.asoc.2022.108719
  • X. Yu, Q. Zhao, T. Wang, Y. Li, An antigravity-based fuzzy Gravitational Search Algorithm for economic dispatch problems. Appl Soft Comput, 145(110630), 1-23, 2023. https://doi.org/10.1016/j.asoc.2023.110630
  • T. Visutarrom, T. C. Chiang, Economic dispatch using metaheuristics: Algorithms, problems, and solutions. Appl Soft Comput, 150(110891), 1-43, 2024. https://doi.org/10.1016/j.asoc.2023.110891
  • J. S. Pan, J. Shan, S. C. Chu, S. J. Jiang, S. G. Zheng, L. Liao, A multigroup marine predator algorithm and its application for the power system economic load dispatch. Energy Sci Eng, 10(6), 1840-54, 2022. https://doi.org/10.1002/ese3.957
  • R. P. Parouha, P. Verma, An innovative hybrid algorithm to solve nonconvex economic load dispatch problem with or without valve point effects. Int Trans Electr Energy Syst, 31(1), 1-67, 2021. https://doi.org/10.1002/2050-7038.12682
  • R. Ramalingam, D. Karunanidy, S. S. Alshamrani, M. Rashid, S. Mathumohan, A. Dumka, Oppositional pigeon-inspired optimizer for solving the non-convex economic load dispatch problem in power systems. Mathematics, 10(18)(3315), 1-24, 2022. https://doi.org/10.3390/math10183315
  • Q. Liu, G. Xiong, X. Fu, A. W. Mohamed, J. Zhang, M. A. Al-Betar, S. Xu, Hybridizing gaining–sharing knowledge and differential evolution for large-scale power system economic dispatch problems. J Comput Des Eng, 10(2), 615-31, 2023. https://doi.org/10.1093/jcde/qwad008
  • M. Braik, M. A. Awadallah, M. A. Al-Betar, A. I. Hammouri, A hybrid capuchin search algorithm with gradient search algorithm for economic dispatch problem. Soft Comput, 27(22), 16809-41, 2023. https://doi.org/10.1007/s00500-023-09019-6
  • T. Singh, Chaotic slime mould algorithm for economic load dispatch problems. Appl Intell, 52(13), 15325-44, 2023. https://doi.org/10.1007/s10489-022-03179-y
  • M. S. Braik, M. A. Awadallah, M. A. Al-Betar, A. I. Hammouri, R. A. Zitar, A non-convex economic load dispatch problem using chameleon swarm algorithm with roulette wheel and Levy flight methods. Appl Intell, 53, 17508-47, 2023. https://doi.org/10.1007/s10489-022-04363-w
  • V. Garg, K. Deep, N. P. Padhee, Constrained laplacian biogeography-based optimization for economic load dispatch problems. Process Integr Optim Sustainability, 6(2), 483-96, 2022. https://doi.org/10.1007/s41660-022-00227-5
  • M. A. Montes de Oca, T. Stützle, K. Van den Enden, M. Dorigo, Incremental social learning in particle swarms. IEEE Trans. Syst. Man Cybern. Part B Cybern, 41(2), 368-84, 2011. https://doi.org/10.1109/TSMCB.2010.2055848
  • T. Liao, M. A. Montes de Oca, D. Aydın, T. Stützle, M. Dorigo, An incremental ant colony algorithm with local search for continuous optimization problems. In: Proceeding of genetic and evolutionary computation conference (GECCO 2011), 125-32. https://doi.org/10.1145/2001576.2001594
  • D. Aydın, S. Özyön, Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search. Appl. Soft Comput, 13(5), 2456-66, 2013. https://doi.org/10.1016/j.asoc.2012.12.002
  • S. Özyön, D. Aydın, Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones. Energy Convers. Manage, 65, 397-407, 2013. https://doi.org/10.1016/j.enconman.2012.07.005
  • D. Aydın, S. Özyön, C. Yaşar, L. Tianjun, Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. Int. J. Electr. Power Energy Syst, 54, 144-153, 2014. https://doi.org/10.1016/j.ijepes.2013.06.020
  • S. Özyön, C. Yaşar, H. Temurtaş, Incremental gravitational search algorithm for high-dimensional benchmark functions. Neural Comput. Appl, 31(8), 3779-3803, 2019. https://doi.org/10.1007/s00521-017-3334-8
  • C. Yaşar, S. Özyön, A modified incremental gravitational search algorithm for short-term hydrothermal scheduling with variable head. Eng. Appl. Artif. Intell, 95(103845), 1-17, 2020. https://doi.org/10.1016/j.engappai.2020.103845
  • S. Özyön, Differential evolution algorithm with incremental social learning. Bilecik Şeyh Edebali University J. Sci. Technol, 7, 133-63, 2020. https://doi.org/10.35193/bseufbd.666626
  • D. Karaboğa, Artificial Intelligence Optimization Algorithms (Turkish), Atlas Publishing Distribution, First Edition, Turkey, 2004.
  • A. J. Wood, B. F. Wollenberg, G. B. Sheble, Power Generation Operation and Control, IEEE & Wiley, Third Edition, USA, 2013.
  • D. P. Kothari, J. S. Dhillon. Power System Optimization, PHI, New Delhi, 2007.
  • P. Rossoni, W. M. Rosa, E. A. Belati, Linearized AC load flow applied to analysis in electric power systems, IEEE Lat. Am. Trans, 14(9), 4048-53, 2016. https://doi.org/10.1109/TLA.2016.7785932
  • C. Yaşar, S. Özyön, H. Temurtaş, A new program design developed for AC load flow analysis problems. Kırıkkale University Faculty of Engineering Int. J. Eng. Res. Dev, 9(3), 207-22, 2017. https://doi.org/10.29137/umagd.372979
  • J. Lin, F. H. Magnago, Power System Economic Dispatch, in Electricity Markets: Theories and Applications, Wiley-IEEE Press, 119-46, 2017. https://doi.org/10.1002/9781119179382.ch5
  • Al-roomi Power. https://www.al-roomi.org/power-flow/118-bus-system . Erişim tarihi 02 Ocak 2025.
  • S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15, 617-44, 2019.
  • H. Zhang, Z. Wang, D. Liu, A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems, 25(7), 1229-62, 2014.
  • Matlab Help Center. https://www.mathworks.com/ help/stats/ranksum.html. Erişim tarihi 02 Ocak 2025.
  • Matlab Help Center. https://www.mathworks.com/ help/stats/signrank.html. Erişim tarihi 02 Ocak 2025.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Tesisleri
Bölüm Araştırma Makalesi
Yazarlar

Serdar Özyön 0000-0002-4469-3908

Erken Görünüm Tarihi 3 Temmuz 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 3 Ocak 2025
Kabul Tarihi 27 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Özyön, S. (2025). Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 907-931. https://doi.org/10.28948/ngumuh.1612958
AMA Özyön S. Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları. NÖHÜ Müh. Bilim. Derg. Temmuz 2025;14(3):907-931. doi:10.28948/ngumuh.1612958
Chicago Özyön, Serdar. “Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 3 (Temmuz 2025): 907-31. https://doi.org/10.28948/ngumuh.1612958.
EndNote Özyön S (01 Temmuz 2025) Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 907–931.
IEEE S. Özyön, “Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 3, ss. 907–931, 2025, doi: 10.28948/ngumuh.1612958.
ISNAD Özyön, Serdar. “Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (Temmuz2025), 907-931. https://doi.org/10.28948/ngumuh.1612958.
JAMA Özyön S. Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları. NÖHÜ Müh. Bilim. Derg. 2025;14:907–931.
MLA Özyön, Serdar. “Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, 2025, ss. 907-31, doi:10.28948/ngumuh.1612958.
Vancouver Özyön S. Büyük ölçekli konveks ve konveks olmayan ekonomik güç dağıtım problemleri için artırımlı sosyal öğrenme tabanlı diferansiyel gelişim algoritmaları. NÖHÜ Müh. Bilim. Derg. 2025;14(3):907-31.

download