Planetscope görüntüleri kullanılarak Tunçbilek açık ocak kömür madeni bölgesinde arazi kullanım ve örtü değişikliklerinin makine öğrenmesi tabanlı zamansal değişim tespiti
Yıl 2025,
Cilt: 14 Sayı: 3, 1001 - 1013, 15.07.2025
Recep Uğur Acar
,
Enes Zengin
,
Ali Samet Öngen
Öz
Bu çalışma, Batı Anadolu’da yoğun madencilik faaliyetlerinin yürütüldüğü bir bölge olan Kütahya’daki Tunçbilek açık ocak kömür madeni ve çevresindeki arazi kullanım ve örtü (LULC) değişimlerini incelemektedir. Yüzey madenciliği operasyonlarının uzun vadeli çevresel etkilerinin değerlendirilmesi ve sürdürülebilir arazi yönetiminin desteklenmesi açısından LULC dinamiklerinin anlaşılması büyük önem taşımaktadır. Bu amaçla, 2016 ve 2021 yıllarına ait yüksek çözünürlüklü PlanetScope uydu görüntüleri kullanılmış ve zamansal değişimlerin tespiti için Maksimum Olabilirlik Sınıflandırması (MLC) ile Destek Vektör Makineleri (SVM) olmak üzere iki denetimli makine öğrenme algoritması uygulanmıştır. Elde edilen sonuçlara göre, sınıflandırma doğruluğu açısından SVM, MLC’ye kıyasla daha yüksek performans göstermiştir. MLC için kappa katsayıları 2016 yılında 0.73, 2021 yılında ise 0,72 olarak belirlenirken; SVM için bu değerler sırasıyla 0.87 ve 0.84 olarak hesaplanmıştır. Özellikle orman ve ekili alan sınıflarında SVM, kullanıcı ve üretici doğruluklarında daha yüksek başarı elde etmiştir. 2016–2021 yılları arasında tarım alanlarında %6.83’lük bir artış, çıplak toprak alanlarında ise %7.9’luk bir azalma gözlemlenmiştir. Madencilik alanı ise yaklaşık %1.39 oranında genişlemiştir. Bu bulgular, LULC değişimlerinin izlenmesinde makine öğrenmesi tabanlı uzaktan algılama yöntemlerinin etkinliğini ortaya koymakta ve karmaşık, hassas peyzajlarda madencilik faaliyetlerinin çevresel etkilerinin daha iyi anlaşılmasına katkı sağlamaktadır.
Destekleyen Kurum
Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
DPÜ BAP 2024-01
Teşekkür
Bu çalışma Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından #2024-01 proje numarasıyla desteklenmiştir.
Kaynakça
-
K. Barış and S. Küçükali, Availibility of renewable energy sources in Turkey: Current situation, potential, government policies and the EU perspective, Energy Policy, vol. 42, pp. 377–391, 2012, https://doi.org/10.1016/j.enpol.2011.12.002.
-
Y. Huang, S. M. F. Raza, I. Hanif, M. Alharthi, Q. Abbas, and S. Zain-ul-Abidin, The role of forest resources, mineral resources, and oil extraction in economic progress of developing Asian economies, Resources Policy, vol. 69, p. 101878, 2020, https://doi.org/10.1016/j.resourpol.2020.101878.
-
A. E. Patiño Douce, Metallic Mineral Resources in the Twenty-First Century. I. Historical Extraction Trends and Expected Demand, Natural Resources Research, vol. 25, no. 1, pp. 71–90, 2016, https://doi.org/10.1007/s11053-015-9266-z.
-
M. M. Poulton, S. C. Jagers, S. Linde, D. Van Zyl, L. J. Danielson, and S. Matti, State of the World’s Nonfuel Mineral Resources: Supply, Demand, and Socio-Institutional Fundamentals, Annu Rev Environ Resour, vol. 38, no. 1, pp. 345–371, 2013, https://doi.org/10.1146/annurev-environ-022310-094734.
-
O. Vidal, H. Le Boulzec, B. Andrieu, and F. Verzier, Modelling the Demand and Access of Mineral Resources in a Changing World, Sustainability, vol. 14, no.1, p.11, 2021, https://doi.org/10.3390/su14010011.
-
K. Barış, The role of coal in energy policy and sustainable development of Turkey: Is it compatible to the EU energy policy?, Energy Policy, vol. 39, no. 3, pp. 1754–1763, Mar. 2011, https://doi.org/10.1016/j.enpol.2011.01.007.
-
Y. Kasap, C. Şensöğüt, and Ö. Ören, Efficiency change of coal used for energy production in Turkey, Resources Policy, vol. 65, p. 101577, 2020, https://doi.org/10.1016/j.resourpol.2019.101577.
-
Y. Kasap and F. Duman, Use Efficiency of Primary Energy Resources in Turkey, Energy Exploration & Exploitation, vol. 31, no. 6, pp. 937–952, 2013, https://doi.org/10.1260/0144-5987.31.6.937.
-
M. S. Delibalta, Türkiye madencilik sektöründe döngüsel ekonomi ve dijitalleşme uygulamaları, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2022, https://doi.org/10.28948/ngumuh.1141644.
-
M. S. DELİBALTA, Türkiye kömür rezervlerinin rasyonel değerlendirilmesi ve ekonomik önemi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2024, https://doi.org/10.28948/ngumuh.1391184.
-
Y. Shan, L. Čuček, P. S. Varbanov, J. J. Klemeš, K. Pan, and H. Zhu, Footprints Evaluation of China’s Coal Supply Chains, Computer Aided Chemical Engineering, vol. 33, pp. 1879–1884, Jan. 2014, https://doi.org/10.1016/B978-0-444-63455-9.50148-3.
-
R. D. Singh, Principles and Practices of Modern Coal Mining. New Age Publishing, 2005.
-
J. (Jim) Zhang and K. R. Smith, Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions, Environ Health Perspect, vol. 115, no. 6, pp. 848–855, 2007, https://doi.org/10.1289/ehp.9479.
-
J. Chang-sheng, C. Zhao-xue, and C. Qing-hua, Surface coal mining practice in China, Procedia Earth and Planetary Science, vol. 1, no. 1, pp. 76–80, 2009, https://doi.org/10.1016/j.proeps.2009.09.014.
-
D. B. Gesch, Analysis of Multi-Temporal Geospatial Data Sets to Assess the Landscape Effects of Surface Mining, Journal American Society of Mining and Reclamation, vol. 2005, no. 1, pp. 415–432, 2005, https://doi.org/10.21000/JASMR05010415.
-
Z. Li, Z. Ma, T. J. van der Kuijp, Z. Yuan, and L. Huang, A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Science of The Total Environment, vol. 468–469, pp. 843–853, 2014, https://doi.org/10.1016/j.scitotenv.2013.08.090.
-
D. Ruppen, J. Runnalls, R. M. Tshimanga, B. Wehrli, and D. Odermatt, Optical remote sensing of large-scale water pollution in Angola and DR Congo caused by the Catoca mine tailings spill, International Journal of Applied Earth Observation and Geoinformation, vol. 118, p. 103237, 2023, https://doi.org/10.1016/j.jag.2023.103237.
-
V. Schueler, T. Kuemmerle, and H. Schröder, Impacts of Surface Gold Mining on Land Use Systems in Western Ghana, Ambio, vol. 40, no. 5, pp. 528–539, 2011, https://doi.org/10.1007/s13280-011-0141-9.
-
R. N. Sousa and M. M. Veiga, Using Performance Indicators to Evaluate an Environmental Education Program in Artisanal Gold Mining Communities in the Brazilian Amazon, AMBIO: A Journal of the Human Environment, vol. 38, no. 1, pp. 40–46, 2009, https://doi.org/10.1579/0044-7447-38.1.40.
-
P. A. Townsend, D. P. Helmers, C. C. Kingdon, B. E. McNeil, K. M. de Beurs, and K. N. Eshleman, Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series, Remote Sens Environ, vol. 113, no. 1, pp. 62–72, 2009, https://doi.org/10.1016/j.rse.2008.08.012.
-
M. Hendrychová and M. Kabrna, An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future, Applied Geography, vol. 74, pp. 151–159, 2016, https://doi.org/10.1016/j.apgeog.2016.07.009.
-
N. Demirel, M. K. Emil, and H. S. Duzgun, Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery, Int J Coal Geol, vol. 86, no. 1, pp. 3–11, 2011, https://doi.org/10.1016/j.coal.2010.11.010.
-
W. Pei et al., Mapping and detection of land use change in a coal mining area using object-based image analysis, Environ Earth Sci, vol. 76, no. 3, 2017, https://doi.org/10.1007/s12665-017-6444-9.
-
S. K. Karan and S. R. Samadder, Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas, Environ Monit Assess, vol. 188, no. 8, 2016, https://doi.org/10.1007/s10661-016-5494-x.
-
S. Y. Çiçekli, Comparison of object based and pixel based classification methods in land use and land cover determination studies: The case of Yedigoze Reservoir Area, Bilim. Derg. / NOHU J. Eng. Sci, vol. 13, no. 4, pp. 1372–1381, 2024, https://doi.org/10.28948/ngmuh.1472869.
-
M. Allam, N. Bakr, and W. Elbably, Multi-temporal assessment of land use/land cover change in arid region based on landsat satellite imagery: Case study in Fayoum Region, Egypt, Remote Sens Appl, vol. 14, pp. 8–19, 2019, https://doi.org/10.1016/j.rsase.2019.02.002.
-
R. Mahmoud, M. Hassanin, H. Al Feel, and R. M. Badry, Machine Learning-Based Land Use and Land Cover Mapping Using Multi-Spectral Satellite Imagery: A Case Study in Egypt, Sustainability (Switzerland), vol. 15, no. 12, 2023, https://doi.org/10.3390/su15129467.
-
C. M. Viana, S. Oliveira, S. C. Oliveira, and J. Rocha, Land Use/Land Cover Change Detection and Urban Sprawl Analysis, in Spatial Modeling in GIS and R for Earth and Environmental Sciences, Elsevier, 2019, pp. 621–651. https://doi.org/10.1016/B978-0-12-815226-3.00029-6.
-
C. Marais Sicre, R. Fieuzal, and F. Baup, Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces, International Journal of Applied Earth Observation and Geoinformation, vol. 84, p. 101972, 2020, https://doi.org/10.1016/j.jag.2019.101972.
-
C. Zhang et al., Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion, Remote Sens (Basel), vol. 12, no. 2, p. 213, 2020, https://doi.org/10.3390/rs12020213.
-
E. K. Antwi, R. Krawczynski, and G. Wiegleb, Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS, Landsc Urban Plan, vol. 87, no. 1, pp. 22–32, 2008, https://doi.org/10.1016/j.landurbplan.2008.03.009.
-
J. Belmaker et al., Empirical evidence for the scale dependence of biotic interactions, Global Ecology and Biogeography, vol. 24, no. 7, pp. 750–761, Jul. 2015, https://doi.org/10.1111/geb.12311.
-
R. Latifovic, K. Fytas, J. Chen, and J. Paraszczak, Assessing land cover change resulting from large surface mining development, International Journal of Applied Earth Observation and Geoinformation, vol. 7, no. 1, pp. 29–48, May 2005, https://doi.org/10.1016/j.jag.2004.11.003.
-
R. V. O’Neill et al., Monitoring Environmental Quality at the Landscape Scale, Bioscience, vol. 47, no. 8, pp. 513–519, 1997, https://doi.org/10.2307/1313119.
-
G. P. Petropoulos, P. Partsinevelos, and Z. Mitraka, Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery, Geocarto Int, vol. 28, no. 4, pp. 323–342, 2013, https://doi.org/10.1080/10106049.2012.706648.
-
C. Zhang, P. A. Harrison, X. Pan, H. Li, I. Sargent, and P. M. Atkinson, Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification, Remote Sens Environ, vol. 237, p. 111593, 2020, https://doi.org/10.1016/j.rse.2019.111593.
-
L. Yu et al., Monitoring surface mining belts using multiple remote sensing datasets: A global perspective, Ore Geol Rev, vol. 101, pp. 675–687, Oct. 2018, https://doi.org/10.1016/j.oregeorev.2018.08.019.
-
H. Shih, D. A. Stow, and Y. H. Tsai, Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping, Int J Remote Sens, vol. 40, no. 4, pp. 1248–1274, 2019, https://doi.org/10.1080/01431161.2018.1524179.
-
M. G. Gumus and S. S. Durduran, The performance analyses of support vector machine classifiers for examination of the temporal change of land-use/cover in the Beyşehir Basin in Turkey (1984-2018), Journal of Geodesy and Geoinformation, vol. 8, no. 1, pp. 57–71, May 2021, https://doi.org/10.9733/JGG.2021R0005.E.
-
C. Huang, L. S. Davis, and J. R. G. Townshend, An assessment of support vector machines for land cover classification, Int J Remote Sens, vol. 23, no. 4, pp. 725–749, 2002, https://doi.org/10.1080/01431160110040323.
-
A. E. Maxwell, T. A. Warner, and F. Fang, Implementation of machine-learning classification in remote sensing: an applied review, Int J Remote Sens, vol. 39, no. 9, pp. 2784–2817, 2018, https://doi.org/10.1080/01431161.2018.1433343.
-
G. Mountrakis, J. Im, and C. Ogole, Support vector machines in remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247–259, 2011, https://doi.org/10.1016/j.isprsjprs.2010.11.001.
-
M. Pal, Random forest classifier for remote sensing classification, Int J Remote Sens, vol. 26, no. 1, pp. 217–222, 2005, https://doi.org/10.1080/01431160412331269698.
-
M. Pal and P. M. Mather, Support vector machines for classification in remote sensing, Int J Remote Sens, vol. 26, no. 5, pp. 1007–1011, 2005, https://doi.org/10.1080/01431160512331314083.
-
A. M. Abdi, Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data, GIsci Remote Sens, vol. 57, no. 1, pp. 1–20, 2020, https://doi.org/10.1080/15481603.2019.1650447.
-
B. Ghimire, J. Rogan, V. Galiano, P. Panday, and N. Neeti, An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA, GIsci Remote Sens, vol. 49, no. 5, pp. 623–643, 2012, https://doi.org/10.2747/1548-1603.49.5.623.
-
C. Huang, L. S. Davis, and J. R. G. Townshend, An assessment of support vector machines for land cover classification, Int J Remote Sens, vol. 23, no. 4, pp. 725–749, 2002, https://doi.org/10.1080/01431160110040323.
-
D. D. Gbedzi et al., Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa, Environmental Challenges, vol. 6, p. 100441, 2022, https://doi.org/10.1016/j.envc.2022.100441.
-
M. Siljander, Land use/land cover classification for the iron mining site of Kishushe, Kenya: A feasibility study of traditional and machine learning algorithms, 2020.
-
S. Vlachogianni, A. Servou, K. Karalidis, N. Paraskevis, M. Menegaki, and C. Roumpos, Remote sensing-based monitoring of land use and cover dynamics in surface lignite mining regions: a supervised classification approach, Earth Sci Inform, vol. 18, no. 2, p. 256, 2025, https://doi.org/10.1007/s12145-025-01781-5.
-
I. Vorovencii, Long-term land cover changes assessment in the Jiului Valley mining basin in Romania, Front Environ Sci, vol. 12, 2024, https://doi.org/10.3389/fenvs.2024.1320009.
-
M. Zhang, W. Zhou, and Y. Li, The analysis of object-based change detection in mining area: A case study with Pingshuo coal mine, in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, International Society for Photogrammetry and Remote Sensing, 2017. https://doi.org/10.5194/isprs-archives-XLII-2-W7-1017-2017.
-
M. Zhang, J. Wang, and Y. Feng, Temporal and spatial change of land use in a large-scale opencast coal mine area: A complex network approach, Land use policy, vol. 86, pp. 375–386, 2019, https://doi.org/10.1016/j.landusepol.2019.05.020.
-
Garp Lignite Operations Directorate, Faaliyetler. https://gli.tki.gov.tr/faaliyetler, Accessed 13 May 2025.
-
Planet Imagery Product Specifications, Planet Imagery Product Specifications. https://assets.planet.com/docs/combined-imagery-product-spec-april-2019.pdf Accessed 08 March 2025.
-
B. E. Lefulebe, A. Van der Walt, and S. Xulu, Fine-Scale Classification of Urban Land Use and Land Cover with PlanetScope Imagery and Machine Learning Strategies in the City of Cape Town, South Africa, Sustainability, vol. 14, no. 15, p. 9139, Jul. 2022, https://doi.org/10.3390/su14159139.
-
M. Xu, P. Watanachaturaporn, P. Varshney, and M. Arora, Decision tree regression for soft classification of remote sensing data, Remote Sens Environ, vol. 97, no. 3, pp. 322–336, 2005, https://doi.org/10.1016/j.rse.2005.05.008.
-
K. S. Rawat, S. Kumar, and N. Garg, Statistical comparison of simple and machine learning based land use and land cover classification algorithms: A case study, Journal of Water Management Modeling, 2024, https://doi.org/10.14796/JWMM.H524.
-
P. K. Srivastava, D. Han, M. A. Rico-Ramirez, M. Bray, and T. Islam, Selection of classification techniques for land use/land cover change investigation, Advances in Space Research, vol. 50, no. 9, pp. 1250–1265, 2012, https://doi.org/10.1016/j.asr.2012.06.032.
-
M. Ustuner, F. B. Sanli, and B. Dixon, Application of Support Vector Machines for Landuse Classification Using High-Resolution RapidEye Images: A Sensitivity Analysis, Eur J Remote Sens, vol. 48, no. 1, pp. 403–422, 2015, https://doi.org/10.5721/EuJRS20154823.
-
D. Gülçin, Arazi Kullanımlarının Sınıflandırılmasında Piksel ve Obje Tabanlı Sınıflandırmanın Karşılaştırılması, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, vol. 15, no. 2, pp. 43–49, 2018, https://doi.org/10.25308/aduziraat.423782.
-
J. D. DeWitt, P. G. Chirico, S. E. Bergstresser, and T. A. Warner, Multi-scale 46-year remote sensing change detection of diamond mining and land cover in a conflict and post-conflict setting, Remote Sens Appl, vol. 8, pp. 126–139, 2017, https://doi.org/10.1016/j.rsase.2017.08.002.
-
O. HAGNER and H. REESE, A method for calibrated maximum likelihood classification of forest types, Remote Sens Environ, vol. 110, no. 4, pp. 438–444, 2007, https://doi.org/10.1016/j.rse.2006.08.017.
-
J. A. Richards, Clustering and Unsupervised Classification, in Remote Sensing Digital Image Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 319–341., 2013, https://doi.org/10.1007/978-3-642-30062-2_9.
-
S. Y. Çiçekli, Arazi Kullanımı ve Arazi Örtüsü Belirleme Çalışmalarında Sınıflandırma Yöntemlerinin Karşılaştırılması: Yedigöze Baraj Gölü ve Çevresi Örneği, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2024, https://doi.org/10.28948/ngumuh.1472869.
-
B. F. Noble, Environmental Impact Assessment, in Encyclopedia of Life Sciences, Wiley, 2011. https://doi.org/10.1002/9780470015902.a0003253.pub2.
-
D. A. Pisner and D. M. Schnyer, Support vector machine, in Machine Learning, Elsevier, pp. 101–121, 2020. https://doi.org/10.1016/B978-0-12-815739-8.00006-7.
-
V. N. Vapnik and A. Y. Chervonenkis, On the Uniform Convergence of the Frequencies of Occurrence of Events to Their Probabilities, in Empirical Inference, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 7–12,2013,. https://doi.org/10.1007/978-3-642-41136-6_2.
-
H. Tamirat, M. Argaw, and M. Tekalign, Support vector machine-based spatiotemporal land use land cover change analysis in a complex urban and rural landscape of Akaki river catchment, a Suburb of Addis Ababa, Ethiopia, Heliyon, vol. 9, no. 11, 2023, https://doi.org/10.1016/j.heliyon.2023.e22510.
-
G. Mountrakis, J. Im, and C. Ogole, Support vector machines in remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247–259, 2011, https://doi.org/10.1016/j.isprsjprs.2010.11.001.
-
S. Martins, N. Bernardo, I. Ogashawara, and E. Alcantara, Support Vector Machine algorithm optimal parameterization for change detection mapping in Funil Hydroelectric Reservoir (Rio de Janeiro State, Brazil), Model Earth Syst Environ, vol. 2, no. 3, p. 138, 2016, https://doi.org/10.1007/s40808-016-0190-y.
-
C. Avcı, M. Budak, N. Yağmur, And F. Balçık, Comparison between random forest and support vector machine algorithms for LULC classification, International Journal of Engineering and Geosciences, vol. 8, no. 1, pp. 1–10, 2023, https://doi.org/10.26833/ijeg.987605.
-
S. R. Borra, S. A. V, Z. Alsalami, Y. Chanti, and G. Ramesh, Support Vector Machine with Linear and Radial Bias Function to Classify the Soil Erosion and Land Degradation, in 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC), IEEE, Sep. pp. 1–5, 2024,. https://doi.org/10.1109/ICDSCNC62492.2024.10940051.
-
T. Kavzoğlu and I. Çölkesen, A kernel functions analysis for support vector machines for land cover classification, International Journal of Applied Earth Observation and Geoinformation, vol. 11, no. 5, pp. 352–359,2009, https://doi.org/10.1016/j.jag.2009.06.002.
-
C. Homer and L. Yang, Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information , https://doi.org/10.14358/PERS.81.5.345.
-
J. Wickham, S. V. Stehman, D. G. Sorenson, L. Gass, and J. A. Dewitz, Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States, GIsci Remote Sens, vol. 60, no. 1, 2023, https://doi.org/10.1080/15481603.2023.2181143.
-
S. Aronoff, Classification Accuracy: A User Approach.
-
George, Rosenfield, and K. Fitzpatrick-Lins, A coefficient of agreement as a measure of thematic classification accuracy., Photogramm Eng Remote Sensing, vol. 52, pp. 223–227, 1986.
-
S. Koukoulas and G. A. Blackburn, Introducing New Indices for Accuracy Evaluation of Classified Images Representing Semi-Natural Woodland Environments., Photogramm Eng Remote Sensing, vol. 67, pp. 499–510, 2001.
-
F. Canters, Evaluating the Uncertainty of Area Estimates Derived from Fuuy Land-Cover Classification.
-
R. G. Congalton and K. Green, Assessing the Accuracy of Remotely Sensed Data. CRC Press, 2019. https://doi.org/10.1201/9780429052729.
-
S. Jalayer, A. Sharifi, D. Abbasi-Moghadam, A. Tariq, and S. Qin, Modeling and Predicting Land Use Land Cover Spatiotemporal Changes: A Case Study in Chalus Watershed, Iran, IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 15, pp. 5496–5513, 2022, https://doi.org/10.1109/JSTARS.2022.3189528.
-
J. Wright, T. M. Lillesand, and R. W. Kiefer, Remote Sensing and Image Interpretation, Geogr J, vol. 146, no. 3, p. 448, 1980, https://doi.org/10.2307/634969.
-
A. SINGH, Review Article Digital change detection techniques using remotely-sensed data, Int J Remote Sens, vol. 10, no. 6, pp. 989–1003, 1989, https://doi.org/10.1080/01431168908903939.
-
K. M. Brown, Per-pixel uncertainity in change detection using airborne remote sensing, Doctoral Thesis, University of Southampton, Southampton, 2005.
-
I. Vorovencii, Long-term land cover changes assessment in the Jiului Valley mining basin in Romania, Front Environ Sci, vol. 12, 2024, https://doi.org/10.3389/fenvs.2024.1320009.
-
A. A. Omeer, R. R. Deshmukh, R. S. Gupta, and J. N. Kayte, Land Use and Cover Mapping Using SVM and MLC Classifiers: A Case Study of Aurangabad City, Maharashtra, India, pp. 482–492, 2019. https://doi.org/10.1007/978-981-13-9187-3_43.
-
I. Vorovencii, Comparing the Performance of Different Classification Algorithms for Mapping and Assessing Land Cover Changes in Areas with Surface Mining and Complex Landscape Using Landsat Imagery, 2023. https://doi.org/10.20944/preprints202305.1345.v1.
-
B. R. Deilmai, B. Bin Ahmad, and H. Zabihi, Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia, IOP Conf Ser Earth Environ Sci, vol. 20, p. 012052, 2014, https://doi.org/10.1088/1755-1315/20/1/012052.
Machine learning-based temporal change detection of land use and land cover changes in the Tunçbilek open pit coal mine region using Planetscope imagery
Yıl 2025,
Cilt: 14 Sayı: 3, 1001 - 1013, 15.07.2025
Recep Uğur Acar
,
Enes Zengin
,
Ali Samet Öngen
Öz
This study investigates land use and land cover (LULC) changes in the Tunçbilek open-pit coal mine and its surroundings, a region experiencing intense mining activity in western Türkiye. Understanding LULC dynamics is crucial for assessing the long-term environmental impacts of surface mining operations and supporting sustainable land management. High-resolution PlanetScope imagery from 2016 and 2021 was used in conjunction with two supervised machine learning algorithms Maximum Likelihood Classification (MLC) and Support Vector Machine (SVM) to detect temporal changes in six land cover classes. The results show that SVM outperformed MLC in classification accuracy. The kappa values for MLC were 0.73 (2016) and 0.72 (2021), whereas SVM achieved 0.87 and 0.84, respectively. SVM also provided higher user and producer accuracy rates, particularly for the forest and planted classes. Between 2016 and 2021, notable land cover transitions were observed, including a 6.83% increase in cultivated lands and a 7.9% decrease in barren land. The mining area itself expanded by approximately 1.39%. These results highlight the effectiveness of machine learning-based remote sensing methods in monitoring LULC changes and contribute to a better understanding of the environmental impacts of mining activities in complex and sensitive landscapes.
Destekleyen Kurum
Kütahya Dumlupınar University Scientific Research Projects Coordination Office
Proje Numarası
DPÜ BAP 2024-01
Teşekkür
This study has been supported by Kütahya Dumlupınar University Scientific Research Projects Coordination Office under grant number #2024-01.
Kaynakça
-
K. Barış and S. Küçükali, Availibility of renewable energy sources in Turkey: Current situation, potential, government policies and the EU perspective, Energy Policy, vol. 42, pp. 377–391, 2012, https://doi.org/10.1016/j.enpol.2011.12.002.
-
Y. Huang, S. M. F. Raza, I. Hanif, M. Alharthi, Q. Abbas, and S. Zain-ul-Abidin, The role of forest resources, mineral resources, and oil extraction in economic progress of developing Asian economies, Resources Policy, vol. 69, p. 101878, 2020, https://doi.org/10.1016/j.resourpol.2020.101878.
-
A. E. Patiño Douce, Metallic Mineral Resources in the Twenty-First Century. I. Historical Extraction Trends and Expected Demand, Natural Resources Research, vol. 25, no. 1, pp. 71–90, 2016, https://doi.org/10.1007/s11053-015-9266-z.
-
M. M. Poulton, S. C. Jagers, S. Linde, D. Van Zyl, L. J. Danielson, and S. Matti, State of the World’s Nonfuel Mineral Resources: Supply, Demand, and Socio-Institutional Fundamentals, Annu Rev Environ Resour, vol. 38, no. 1, pp. 345–371, 2013, https://doi.org/10.1146/annurev-environ-022310-094734.
-
O. Vidal, H. Le Boulzec, B. Andrieu, and F. Verzier, Modelling the Demand and Access of Mineral Resources in a Changing World, Sustainability, vol. 14, no.1, p.11, 2021, https://doi.org/10.3390/su14010011.
-
K. Barış, The role of coal in energy policy and sustainable development of Turkey: Is it compatible to the EU energy policy?, Energy Policy, vol. 39, no. 3, pp. 1754–1763, Mar. 2011, https://doi.org/10.1016/j.enpol.2011.01.007.
-
Y. Kasap, C. Şensöğüt, and Ö. Ören, Efficiency change of coal used for energy production in Turkey, Resources Policy, vol. 65, p. 101577, 2020, https://doi.org/10.1016/j.resourpol.2019.101577.
-
Y. Kasap and F. Duman, Use Efficiency of Primary Energy Resources in Turkey, Energy Exploration & Exploitation, vol. 31, no. 6, pp. 937–952, 2013, https://doi.org/10.1260/0144-5987.31.6.937.
-
M. S. Delibalta, Türkiye madencilik sektöründe döngüsel ekonomi ve dijitalleşme uygulamaları, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2022, https://doi.org/10.28948/ngumuh.1141644.
-
M. S. DELİBALTA, Türkiye kömür rezervlerinin rasyonel değerlendirilmesi ve ekonomik önemi, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2024, https://doi.org/10.28948/ngumuh.1391184.
-
Y. Shan, L. Čuček, P. S. Varbanov, J. J. Klemeš, K. Pan, and H. Zhu, Footprints Evaluation of China’s Coal Supply Chains, Computer Aided Chemical Engineering, vol. 33, pp. 1879–1884, Jan. 2014, https://doi.org/10.1016/B978-0-444-63455-9.50148-3.
-
R. D. Singh, Principles and Practices of Modern Coal Mining. New Age Publishing, 2005.
-
J. (Jim) Zhang and K. R. Smith, Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions, Environ Health Perspect, vol. 115, no. 6, pp. 848–855, 2007, https://doi.org/10.1289/ehp.9479.
-
J. Chang-sheng, C. Zhao-xue, and C. Qing-hua, Surface coal mining practice in China, Procedia Earth and Planetary Science, vol. 1, no. 1, pp. 76–80, 2009, https://doi.org/10.1016/j.proeps.2009.09.014.
-
D. B. Gesch, Analysis of Multi-Temporal Geospatial Data Sets to Assess the Landscape Effects of Surface Mining, Journal American Society of Mining and Reclamation, vol. 2005, no. 1, pp. 415–432, 2005, https://doi.org/10.21000/JASMR05010415.
-
Z. Li, Z. Ma, T. J. van der Kuijp, Z. Yuan, and L. Huang, A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Science of The Total Environment, vol. 468–469, pp. 843–853, 2014, https://doi.org/10.1016/j.scitotenv.2013.08.090.
-
D. Ruppen, J. Runnalls, R. M. Tshimanga, B. Wehrli, and D. Odermatt, Optical remote sensing of large-scale water pollution in Angola and DR Congo caused by the Catoca mine tailings spill, International Journal of Applied Earth Observation and Geoinformation, vol. 118, p. 103237, 2023, https://doi.org/10.1016/j.jag.2023.103237.
-
V. Schueler, T. Kuemmerle, and H. Schröder, Impacts of Surface Gold Mining on Land Use Systems in Western Ghana, Ambio, vol. 40, no. 5, pp. 528–539, 2011, https://doi.org/10.1007/s13280-011-0141-9.
-
R. N. Sousa and M. M. Veiga, Using Performance Indicators to Evaluate an Environmental Education Program in Artisanal Gold Mining Communities in the Brazilian Amazon, AMBIO: A Journal of the Human Environment, vol. 38, no. 1, pp. 40–46, 2009, https://doi.org/10.1579/0044-7447-38.1.40.
-
P. A. Townsend, D. P. Helmers, C. C. Kingdon, B. E. McNeil, K. M. de Beurs, and K. N. Eshleman, Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series, Remote Sens Environ, vol. 113, no. 1, pp. 62–72, 2009, https://doi.org/10.1016/j.rse.2008.08.012.
-
M. Hendrychová and M. Kabrna, An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future, Applied Geography, vol. 74, pp. 151–159, 2016, https://doi.org/10.1016/j.apgeog.2016.07.009.
-
N. Demirel, M. K. Emil, and H. S. Duzgun, Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery, Int J Coal Geol, vol. 86, no. 1, pp. 3–11, 2011, https://doi.org/10.1016/j.coal.2010.11.010.
-
W. Pei et al., Mapping and detection of land use change in a coal mining area using object-based image analysis, Environ Earth Sci, vol. 76, no. 3, 2017, https://doi.org/10.1007/s12665-017-6444-9.
-
S. K. Karan and S. R. Samadder, Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas, Environ Monit Assess, vol. 188, no. 8, 2016, https://doi.org/10.1007/s10661-016-5494-x.
-
S. Y. Çiçekli, Comparison of object based and pixel based classification methods in land use and land cover determination studies: The case of Yedigoze Reservoir Area, Bilim. Derg. / NOHU J. Eng. Sci, vol. 13, no. 4, pp. 1372–1381, 2024, https://doi.org/10.28948/ngmuh.1472869.
-
M. Allam, N. Bakr, and W. Elbably, Multi-temporal assessment of land use/land cover change in arid region based on landsat satellite imagery: Case study in Fayoum Region, Egypt, Remote Sens Appl, vol. 14, pp. 8–19, 2019, https://doi.org/10.1016/j.rsase.2019.02.002.
-
R. Mahmoud, M. Hassanin, H. Al Feel, and R. M. Badry, Machine Learning-Based Land Use and Land Cover Mapping Using Multi-Spectral Satellite Imagery: A Case Study in Egypt, Sustainability (Switzerland), vol. 15, no. 12, 2023, https://doi.org/10.3390/su15129467.
-
C. M. Viana, S. Oliveira, S. C. Oliveira, and J. Rocha, Land Use/Land Cover Change Detection and Urban Sprawl Analysis, in Spatial Modeling in GIS and R for Earth and Environmental Sciences, Elsevier, 2019, pp. 621–651. https://doi.org/10.1016/B978-0-12-815226-3.00029-6.
-
C. Marais Sicre, R. Fieuzal, and F. Baup, Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces, International Journal of Applied Earth Observation and Geoinformation, vol. 84, p. 101972, 2020, https://doi.org/10.1016/j.jag.2019.101972.
-
C. Zhang et al., Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion, Remote Sens (Basel), vol. 12, no. 2, p. 213, 2020, https://doi.org/10.3390/rs12020213.
-
E. K. Antwi, R. Krawczynski, and G. Wiegleb, Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS, Landsc Urban Plan, vol. 87, no. 1, pp. 22–32, 2008, https://doi.org/10.1016/j.landurbplan.2008.03.009.
-
J. Belmaker et al., Empirical evidence for the scale dependence of biotic interactions, Global Ecology and Biogeography, vol. 24, no. 7, pp. 750–761, Jul. 2015, https://doi.org/10.1111/geb.12311.
-
R. Latifovic, K. Fytas, J. Chen, and J. Paraszczak, Assessing land cover change resulting from large surface mining development, International Journal of Applied Earth Observation and Geoinformation, vol. 7, no. 1, pp. 29–48, May 2005, https://doi.org/10.1016/j.jag.2004.11.003.
-
R. V. O’Neill et al., Monitoring Environmental Quality at the Landscape Scale, Bioscience, vol. 47, no. 8, pp. 513–519, 1997, https://doi.org/10.2307/1313119.
-
G. P. Petropoulos, P. Partsinevelos, and Z. Mitraka, Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery, Geocarto Int, vol. 28, no. 4, pp. 323–342, 2013, https://doi.org/10.1080/10106049.2012.706648.
-
C. Zhang, P. A. Harrison, X. Pan, H. Li, I. Sargent, and P. M. Atkinson, Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification, Remote Sens Environ, vol. 237, p. 111593, 2020, https://doi.org/10.1016/j.rse.2019.111593.
-
L. Yu et al., Monitoring surface mining belts using multiple remote sensing datasets: A global perspective, Ore Geol Rev, vol. 101, pp. 675–687, Oct. 2018, https://doi.org/10.1016/j.oregeorev.2018.08.019.
-
H. Shih, D. A. Stow, and Y. H. Tsai, Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping, Int J Remote Sens, vol. 40, no. 4, pp. 1248–1274, 2019, https://doi.org/10.1080/01431161.2018.1524179.
-
M. G. Gumus and S. S. Durduran, The performance analyses of support vector machine classifiers for examination of the temporal change of land-use/cover in the Beyşehir Basin in Turkey (1984-2018), Journal of Geodesy and Geoinformation, vol. 8, no. 1, pp. 57–71, May 2021, https://doi.org/10.9733/JGG.2021R0005.E.
-
C. Huang, L. S. Davis, and J. R. G. Townshend, An assessment of support vector machines for land cover classification, Int J Remote Sens, vol. 23, no. 4, pp. 725–749, 2002, https://doi.org/10.1080/01431160110040323.
-
A. E. Maxwell, T. A. Warner, and F. Fang, Implementation of machine-learning classification in remote sensing: an applied review, Int J Remote Sens, vol. 39, no. 9, pp. 2784–2817, 2018, https://doi.org/10.1080/01431161.2018.1433343.
-
G. Mountrakis, J. Im, and C. Ogole, Support vector machines in remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247–259, 2011, https://doi.org/10.1016/j.isprsjprs.2010.11.001.
-
M. Pal, Random forest classifier for remote sensing classification, Int J Remote Sens, vol. 26, no. 1, pp. 217–222, 2005, https://doi.org/10.1080/01431160412331269698.
-
M. Pal and P. M. Mather, Support vector machines for classification in remote sensing, Int J Remote Sens, vol. 26, no. 5, pp. 1007–1011, 2005, https://doi.org/10.1080/01431160512331314083.
-
A. M. Abdi, Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data, GIsci Remote Sens, vol. 57, no. 1, pp. 1–20, 2020, https://doi.org/10.1080/15481603.2019.1650447.
-
B. Ghimire, J. Rogan, V. Galiano, P. Panday, and N. Neeti, An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA, GIsci Remote Sens, vol. 49, no. 5, pp. 623–643, 2012, https://doi.org/10.2747/1548-1603.49.5.623.
-
C. Huang, L. S. Davis, and J. R. G. Townshend, An assessment of support vector machines for land cover classification, Int J Remote Sens, vol. 23, no. 4, pp. 725–749, 2002, https://doi.org/10.1080/01431160110040323.
-
D. D. Gbedzi et al., Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa, Environmental Challenges, vol. 6, p. 100441, 2022, https://doi.org/10.1016/j.envc.2022.100441.
-
M. Siljander, Land use/land cover classification for the iron mining site of Kishushe, Kenya: A feasibility study of traditional and machine learning algorithms, 2020.
-
S. Vlachogianni, A. Servou, K. Karalidis, N. Paraskevis, M. Menegaki, and C. Roumpos, Remote sensing-based monitoring of land use and cover dynamics in surface lignite mining regions: a supervised classification approach, Earth Sci Inform, vol. 18, no. 2, p. 256, 2025, https://doi.org/10.1007/s12145-025-01781-5.
-
I. Vorovencii, Long-term land cover changes assessment in the Jiului Valley mining basin in Romania, Front Environ Sci, vol. 12, 2024, https://doi.org/10.3389/fenvs.2024.1320009.
-
M. Zhang, W. Zhou, and Y. Li, The analysis of object-based change detection in mining area: A case study with Pingshuo coal mine, in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, International Society for Photogrammetry and Remote Sensing, 2017. https://doi.org/10.5194/isprs-archives-XLII-2-W7-1017-2017.
-
M. Zhang, J. Wang, and Y. Feng, Temporal and spatial change of land use in a large-scale opencast coal mine area: A complex network approach, Land use policy, vol. 86, pp. 375–386, 2019, https://doi.org/10.1016/j.landusepol.2019.05.020.
-
Garp Lignite Operations Directorate, Faaliyetler. https://gli.tki.gov.tr/faaliyetler, Accessed 13 May 2025.
-
Planet Imagery Product Specifications, Planet Imagery Product Specifications. https://assets.planet.com/docs/combined-imagery-product-spec-april-2019.pdf Accessed 08 March 2025.
-
B. E. Lefulebe, A. Van der Walt, and S. Xulu, Fine-Scale Classification of Urban Land Use and Land Cover with PlanetScope Imagery and Machine Learning Strategies in the City of Cape Town, South Africa, Sustainability, vol. 14, no. 15, p. 9139, Jul. 2022, https://doi.org/10.3390/su14159139.
-
M. Xu, P. Watanachaturaporn, P. Varshney, and M. Arora, Decision tree regression for soft classification of remote sensing data, Remote Sens Environ, vol. 97, no. 3, pp. 322–336, 2005, https://doi.org/10.1016/j.rse.2005.05.008.
-
K. S. Rawat, S. Kumar, and N. Garg, Statistical comparison of simple and machine learning based land use and land cover classification algorithms: A case study, Journal of Water Management Modeling, 2024, https://doi.org/10.14796/JWMM.H524.
-
P. K. Srivastava, D. Han, M. A. Rico-Ramirez, M. Bray, and T. Islam, Selection of classification techniques for land use/land cover change investigation, Advances in Space Research, vol. 50, no. 9, pp. 1250–1265, 2012, https://doi.org/10.1016/j.asr.2012.06.032.
-
M. Ustuner, F. B. Sanli, and B. Dixon, Application of Support Vector Machines for Landuse Classification Using High-Resolution RapidEye Images: A Sensitivity Analysis, Eur J Remote Sens, vol. 48, no. 1, pp. 403–422, 2015, https://doi.org/10.5721/EuJRS20154823.
-
D. Gülçin, Arazi Kullanımlarının Sınıflandırılmasında Piksel ve Obje Tabanlı Sınıflandırmanın Karşılaştırılması, Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, vol. 15, no. 2, pp. 43–49, 2018, https://doi.org/10.25308/aduziraat.423782.
-
J. D. DeWitt, P. G. Chirico, S. E. Bergstresser, and T. A. Warner, Multi-scale 46-year remote sensing change detection of diamond mining and land cover in a conflict and post-conflict setting, Remote Sens Appl, vol. 8, pp. 126–139, 2017, https://doi.org/10.1016/j.rsase.2017.08.002.
-
O. HAGNER and H. REESE, A method for calibrated maximum likelihood classification of forest types, Remote Sens Environ, vol. 110, no. 4, pp. 438–444, 2007, https://doi.org/10.1016/j.rse.2006.08.017.
-
J. A. Richards, Clustering and Unsupervised Classification, in Remote Sensing Digital Image Analysis, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 319–341., 2013, https://doi.org/10.1007/978-3-642-30062-2_9.
-
S. Y. Çiçekli, Arazi Kullanımı ve Arazi Örtüsü Belirleme Çalışmalarında Sınıflandırma Yöntemlerinin Karşılaştırılması: Yedigöze Baraj Gölü ve Çevresi Örneği, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2024, https://doi.org/10.28948/ngumuh.1472869.
-
B. F. Noble, Environmental Impact Assessment, in Encyclopedia of Life Sciences, Wiley, 2011. https://doi.org/10.1002/9780470015902.a0003253.pub2.
-
D. A. Pisner and D. M. Schnyer, Support vector machine, in Machine Learning, Elsevier, pp. 101–121, 2020. https://doi.org/10.1016/B978-0-12-815739-8.00006-7.
-
V. N. Vapnik and A. Y. Chervonenkis, On the Uniform Convergence of the Frequencies of Occurrence of Events to Their Probabilities, in Empirical Inference, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 7–12,2013,. https://doi.org/10.1007/978-3-642-41136-6_2.
-
H. Tamirat, M. Argaw, and M. Tekalign, Support vector machine-based spatiotemporal land use land cover change analysis in a complex urban and rural landscape of Akaki river catchment, a Suburb of Addis Ababa, Ethiopia, Heliyon, vol. 9, no. 11, 2023, https://doi.org/10.1016/j.heliyon.2023.e22510.
-
G. Mountrakis, J. Im, and C. Ogole, Support vector machines in remote sensing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247–259, 2011, https://doi.org/10.1016/j.isprsjprs.2010.11.001.
-
S. Martins, N. Bernardo, I. Ogashawara, and E. Alcantara, Support Vector Machine algorithm optimal parameterization for change detection mapping in Funil Hydroelectric Reservoir (Rio de Janeiro State, Brazil), Model Earth Syst Environ, vol. 2, no. 3, p. 138, 2016, https://doi.org/10.1007/s40808-016-0190-y.
-
C. Avcı, M. Budak, N. Yağmur, And F. Balçık, Comparison between random forest and support vector machine algorithms for LULC classification, International Journal of Engineering and Geosciences, vol. 8, no. 1, pp. 1–10, 2023, https://doi.org/10.26833/ijeg.987605.
-
S. R. Borra, S. A. V, Z. Alsalami, Y. Chanti, and G. Ramesh, Support Vector Machine with Linear and Radial Bias Function to Classify the Soil Erosion and Land Degradation, in 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC), IEEE, Sep. pp. 1–5, 2024,. https://doi.org/10.1109/ICDSCNC62492.2024.10940051.
-
T. Kavzoğlu and I. Çölkesen, A kernel functions analysis for support vector machines for land cover classification, International Journal of Applied Earth Observation and Geoinformation, vol. 11, no. 5, pp. 352–359,2009, https://doi.org/10.1016/j.jag.2009.06.002.
-
C. Homer and L. Yang, Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information , https://doi.org/10.14358/PERS.81.5.345.
-
J. Wickham, S. V. Stehman, D. G. Sorenson, L. Gass, and J. A. Dewitz, Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States, GIsci Remote Sens, vol. 60, no. 1, 2023, https://doi.org/10.1080/15481603.2023.2181143.
-
S. Aronoff, Classification Accuracy: A User Approach.
-
George, Rosenfield, and K. Fitzpatrick-Lins, A coefficient of agreement as a measure of thematic classification accuracy., Photogramm Eng Remote Sensing, vol. 52, pp. 223–227, 1986.
-
S. Koukoulas and G. A. Blackburn, Introducing New Indices for Accuracy Evaluation of Classified Images Representing Semi-Natural Woodland Environments., Photogramm Eng Remote Sensing, vol. 67, pp. 499–510, 2001.
-
F. Canters, Evaluating the Uncertainty of Area Estimates Derived from Fuuy Land-Cover Classification.
-
R. G. Congalton and K. Green, Assessing the Accuracy of Remotely Sensed Data. CRC Press, 2019. https://doi.org/10.1201/9780429052729.
-
S. Jalayer, A. Sharifi, D. Abbasi-Moghadam, A. Tariq, and S. Qin, Modeling and Predicting Land Use Land Cover Spatiotemporal Changes: A Case Study in Chalus Watershed, Iran, IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 15, pp. 5496–5513, 2022, https://doi.org/10.1109/JSTARS.2022.3189528.
-
J. Wright, T. M. Lillesand, and R. W. Kiefer, Remote Sensing and Image Interpretation, Geogr J, vol. 146, no. 3, p. 448, 1980, https://doi.org/10.2307/634969.
-
A. SINGH, Review Article Digital change detection techniques using remotely-sensed data, Int J Remote Sens, vol. 10, no. 6, pp. 989–1003, 1989, https://doi.org/10.1080/01431168908903939.
-
K. M. Brown, Per-pixel uncertainity in change detection using airborne remote sensing, Doctoral Thesis, University of Southampton, Southampton, 2005.
-
I. Vorovencii, Long-term land cover changes assessment in the Jiului Valley mining basin in Romania, Front Environ Sci, vol. 12, 2024, https://doi.org/10.3389/fenvs.2024.1320009.
-
A. A. Omeer, R. R. Deshmukh, R. S. Gupta, and J. N. Kayte, Land Use and Cover Mapping Using SVM and MLC Classifiers: A Case Study of Aurangabad City, Maharashtra, India, pp. 482–492, 2019. https://doi.org/10.1007/978-981-13-9187-3_43.
-
I. Vorovencii, Comparing the Performance of Different Classification Algorithms for Mapping and Assessing Land Cover Changes in Areas with Surface Mining and Complex Landscape Using Landsat Imagery, 2023. https://doi.org/10.20944/preprints202305.1345.v1.
-
B. R. Deilmai, B. Bin Ahmad, and H. Zabihi, Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia, IOP Conf Ser Earth Environ Sci, vol. 20, p. 012052, 2014, https://doi.org/10.1088/1755-1315/20/1/012052.