Araştırma Makalesi
BibTex RIS Kaynak Göster

Safety distance control approach in moving block signaling systems

Yıl 2025, Cilt: 14 Sayı: 3, 974 - 980, 15.07.2025
https://doi.org/10.28948/ngumuh.1644645

Öz

As technology progresses in recent years, the advances in transportation continue rapidly. Some of these advances are seen in the railway industry. Especially the innovations in the railway interlocking system make this industry more preferable. One of these innovations is moving block signaling. In an urban rail transport system, moving block signaling has gradually started to replace the fixed block signaling with the development of driverless and communication-based control systems. In this study, an approach has been proposed for moving block signaling. The movement situations between the stations have been shown, by determining a reference speed profile and the relationship between the locations for the following railway vehicles have been evaluated by simulations obtained by MATLAB/SimulinkTM.

Kaynakça

  • S. Yasunobu, S. Miyamoto, and H. Ihara, Fuzzy Control For Automatıc Traın Operatıon System, in Control in Transportation Systems, 1984, pp. 33–39, doi: 10.1016/B978-0-08-029365-3.50010-9.
  • W. Carvajal-Carreño, A. P. Cucala, and A. Fernández-Cardador, Fuzzy train tracking algorithm for the energy efficient operation of CBTC equipped metro lines, Eng. Appl. Artif. Intell., vol. 53, pp. 19–31, 2016, doi: 10.1016/j.engappai.2016.03.011.
  • W. Carvajal-carreño, A. P. Cucala, and A. Fernández-cardador, Engineering Applications of Artificial Intelligence Optimal design of energy-efficient ATO CBTC driving for metro lines based on NSGA-II with fuzzy parameters, Eng. Appl. Artif. Intell., vol. 36, pp. 164–177, 2014, doi: 10.1016/j.engappai.2014.07.019.
  • K. P. Li, Z. Y. Gao, and B. H. Mao, Energy-optimal control model for train movements, Chinese Phys., vol. 16, no. 2, pp. 359–364, 2007, doi: 10.1088/1009-1963/16/2/015.
  • B. Bu, J. Yang, S. Wen, and L. Zhu, Predictive function control for communication-based train control (CBTC) systems, Int. J. Adv. Robot. Syst., vol. 10, 2013, doi: 10.5772/53514.
  • J. Yin, D. Chen, and L. Li, Intelligent train operation algorithms for subway by expert system and reinforcement learning, IEEE Trans. Intell. Transp. Syst., vol. 15, no. 6, pp. 2561–2571, 2014, doi: 10.1109/TITS.2014.2320757.
  • Q. Gu, Y. Meng, and F. Ma, Energy saving for automatic train control in moving block signaling system, China Commun., vol. 11, no. 14, pp. 12–22, 2014, doi: 10.1109/ITSC.2011.6082964.
  • H. Wang, F. R. Yu, L. Zhu, T. Tang, and B. Ning, Finite-state Markov modeling for wireless channels in tunnel communication-based train control systems, IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 1083–1090, 2014, doi: 10.1109/TITS.2014.2298038.
  • M. S. Durmus, K. Ucak, G. Oke, and M. T. Soylemez, Train speed control in moving-block railway systems: An online adaptive pd controller design, in IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 1, no. PART 1, pp. 7–12, doi: 10.3182/20130916-2-TR-4042.00022.
  • A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points, Transp. Res. Part B Methodol., vol. 94, pp. 482–508, 2016, doi: 10.1016/j.trb.2015.07.023
  • R. Liu and I. M. Golovitcher, Energy-efficient operation of rail vehicles, Transp. Res. Part A Policy Pract., vol. 37, no. 10, pp. 917–932, 2003, doi: 10.1016/j.tra.2003.07.001.
  • S. Su, X. Li, T. Tang, and Z. Gao, A Subway Train Timetable Optimization Approach Based on Energy-Efficient Operation Strategy, vol. 14, no. 2, pp. 883–893, 2013, doi: 10.1109/TITS.2013.2244885.
  • Y. Wang, B. De Schutter, J. J. Van Den Boom, and B. Ning, Optimal trajectory planning for trains under fixed and moving signaling systems using mixed integer linear programming, Control Eng. Pract., vol. 22, pp. 44–56, 2013, doi: 10.1016/j.conengprac.2013.09.011.
  • J. Yin, T. Tang, L. Yang, J. Xun, Y. Huang, and Z. Gao, Research and development of automatic train operation for railway transportation systems: A survey, Transportation Research Part C: Emerging Technologies, vol. 85. pp. 548–572, 2017, doi: 10.1016/j.trc.2017.09.009.
  • R. Takagi, Synchronisation control of trains on the railway track controlled by the moving block signalling system, IET Electr. Syst. Transp., vol. 2, no. 3, p. 130, 2012, doi: 10.1049/iet-est.2011.0053.
  • B. Allotta, L. Chisci, P. D’Adamio, S. Papini, and L. Pugi, Design of an Automatic Train Operation (ATO) system based on CBTC for the management of driverless suburban railways, 12th IMEKO TC10 Work. Tech. Diagnostics New Perspect. Meas. Tools Tech. Ind. Appl. Proc., vol. 0, pp. 84–89, 2013.
  • CEE 3604 Rail Transportation: Addendum Rail Resistance Equations.

Hareketli blok sinyalizasyon sistemlerinde emniyet mesafesi kontrolü yaklaşımı

Yıl 2025, Cilt: 14 Sayı: 3, 974 - 980, 15.07.2025
https://doi.org/10.28948/ngumuh.1644645

Öz

Son yıllarda teknoloji ilerledikçe, ulaşım sektöründeki ilerleyiş de hızla devam etmektedir. Bu ilerlemelerden bazıları da demiryolu endüstrisinde görülmektedir. Özellikle demiryolu anklaşman sisteminde ortaya çıkan yenilikler bu endüstriyi daha tercih edilir hale getirmektedir. Bu yeniliklerden birisi, hareketli blok sinyalizasyonudur. Şehirlerdeki hafif raylı ulaşım sistemlerinde hareketli blok sinyalizasyonu, sürücüsüz ve haberleşme tabanlı kontrol sistemlerinin gelişmesiyle, yavaş yavaş sabit bloklu sinyalizasyonun yerine geçmeye başlamıştır. Bu çalışmada da, hareketli blok sinyalizasyonu için bir yaklaşım önerilmiştir. Bir referans hız değeri belirlenerek, istasyonlar arasındaki hareket durumları gösterilmiş ve birbirlerini takip eden demiryolu araçları için konumlar arasındaki ilişki değerlendirilmiştir.

Kaynakça

  • S. Yasunobu, S. Miyamoto, and H. Ihara, Fuzzy Control For Automatıc Traın Operatıon System, in Control in Transportation Systems, 1984, pp. 33–39, doi: 10.1016/B978-0-08-029365-3.50010-9.
  • W. Carvajal-Carreño, A. P. Cucala, and A. Fernández-Cardador, Fuzzy train tracking algorithm for the energy efficient operation of CBTC equipped metro lines, Eng. Appl. Artif. Intell., vol. 53, pp. 19–31, 2016, doi: 10.1016/j.engappai.2016.03.011.
  • W. Carvajal-carreño, A. P. Cucala, and A. Fernández-cardador, Engineering Applications of Artificial Intelligence Optimal design of energy-efficient ATO CBTC driving for metro lines based on NSGA-II with fuzzy parameters, Eng. Appl. Artif. Intell., vol. 36, pp. 164–177, 2014, doi: 10.1016/j.engappai.2014.07.019.
  • K. P. Li, Z. Y. Gao, and B. H. Mao, Energy-optimal control model for train movements, Chinese Phys., vol. 16, no. 2, pp. 359–364, 2007, doi: 10.1088/1009-1963/16/2/015.
  • B. Bu, J. Yang, S. Wen, and L. Zhu, Predictive function control for communication-based train control (CBTC) systems, Int. J. Adv. Robot. Syst., vol. 10, 2013, doi: 10.5772/53514.
  • J. Yin, D. Chen, and L. Li, Intelligent train operation algorithms for subway by expert system and reinforcement learning, IEEE Trans. Intell. Transp. Syst., vol. 15, no. 6, pp. 2561–2571, 2014, doi: 10.1109/TITS.2014.2320757.
  • Q. Gu, Y. Meng, and F. Ma, Energy saving for automatic train control in moving block signaling system, China Commun., vol. 11, no. 14, pp. 12–22, 2014, doi: 10.1109/ITSC.2011.6082964.
  • H. Wang, F. R. Yu, L. Zhu, T. Tang, and B. Ning, Finite-state Markov modeling for wireless channels in tunnel communication-based train control systems, IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 1083–1090, 2014, doi: 10.1109/TITS.2014.2298038.
  • M. S. Durmus, K. Ucak, G. Oke, and M. T. Soylemez, Train speed control in moving-block railway systems: An online adaptive pd controller design, in IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 1, no. PART 1, pp. 7–12, doi: 10.3182/20130916-2-TR-4042.00022.
  • A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points, Transp. Res. Part B Methodol., vol. 94, pp. 482–508, 2016, doi: 10.1016/j.trb.2015.07.023
  • R. Liu and I. M. Golovitcher, Energy-efficient operation of rail vehicles, Transp. Res. Part A Policy Pract., vol. 37, no. 10, pp. 917–932, 2003, doi: 10.1016/j.tra.2003.07.001.
  • S. Su, X. Li, T. Tang, and Z. Gao, A Subway Train Timetable Optimization Approach Based on Energy-Efficient Operation Strategy, vol. 14, no. 2, pp. 883–893, 2013, doi: 10.1109/TITS.2013.2244885.
  • Y. Wang, B. De Schutter, J. J. Van Den Boom, and B. Ning, Optimal trajectory planning for trains under fixed and moving signaling systems using mixed integer linear programming, Control Eng. Pract., vol. 22, pp. 44–56, 2013, doi: 10.1016/j.conengprac.2013.09.011.
  • J. Yin, T. Tang, L. Yang, J. Xun, Y. Huang, and Z. Gao, Research and development of automatic train operation for railway transportation systems: A survey, Transportation Research Part C: Emerging Technologies, vol. 85. pp. 548–572, 2017, doi: 10.1016/j.trc.2017.09.009.
  • R. Takagi, Synchronisation control of trains on the railway track controlled by the moving block signalling system, IET Electr. Syst. Transp., vol. 2, no. 3, p. 130, 2012, doi: 10.1049/iet-est.2011.0053.
  • B. Allotta, L. Chisci, P. D’Adamio, S. Papini, and L. Pugi, Design of an Automatic Train Operation (ATO) system based on CBTC for the management of driverless suburban railways, 12th IMEKO TC10 Work. Tech. Diagnostics New Perspect. Meas. Tools Tech. Ind. Appl. Proc., vol. 0, pp. 84–89, 2013.
  • CEE 3604 Rail Transportation: Addendum Rail Resistance Equations.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kontrol Teorisi ve Uygulamaları
Bölüm Araştırma Makalesi
Yazarlar

Ertuğrul Ateş 0000-0001-6628-5350

İlker Üstoğlu 0000-0003-3192-2246

Erken Görünüm Tarihi 23 Mayıs 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 21 Şubat 2025
Kabul Tarihi 16 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Ateş, E., & Üstoğlu, İ. (2025). Safety distance control approach in moving block signaling systems. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 974-980. https://doi.org/10.28948/ngumuh.1644645
AMA Ateş E, Üstoğlu İ. Safety distance control approach in moving block signaling systems. NÖHÜ Müh. Bilim. Derg. Temmuz 2025;14(3):974-980. doi:10.28948/ngumuh.1644645
Chicago Ateş, Ertuğrul, ve İlker Üstoğlu. “Safety distance control approach in moving block signaling systems”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 3 (Temmuz 2025): 974-80. https://doi.org/10.28948/ngumuh.1644645.
EndNote Ateş E, Üstoğlu İ (01 Temmuz 2025) Safety distance control approach in moving block signaling systems. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 974–980.
IEEE E. Ateş ve İ. Üstoğlu, “Safety distance control approach in moving block signaling systems”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 3, ss. 974–980, 2025, doi: 10.28948/ngumuh.1644645.
ISNAD Ateş, Ertuğrul - Üstoğlu, İlker. “Safety distance control approach in moving block signaling systems”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (Temmuz2025), 974-980. https://doi.org/10.28948/ngumuh.1644645.
JAMA Ateş E, Üstoğlu İ. Safety distance control approach in moving block signaling systems. NÖHÜ Müh. Bilim. Derg. 2025;14:974–980.
MLA Ateş, Ertuğrul ve İlker Üstoğlu. “Safety distance control approach in moving block signaling systems”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, 2025, ss. 974-80, doi:10.28948/ngumuh.1644645.
Vancouver Ateş E, Üstoğlu İ. Safety distance control approach in moving block signaling systems. NÖHÜ Müh. Bilim. Derg. 2025;14(3):974-80.

download