Araştırma Makalesi
BibTex RIS Kaynak Göster

3U küp uydu platformlarında VHF ve UHF turnike antenlerinin kurulu performansları üzerine bir inceleme

Yıl 2025, Cilt: 14 Sayı: 3, 827 - 836, 15.07.2025
https://doi.org/10.28948/ngumuh.1659981

Öz

Bu makalede, küp uydularda yaygın olarak kullanılan VHF ve UHF turnike antenlerinin 3U boyutundaki platformlarına yerleşim konumlarına göre operasyonel performans değişimleri incelenmiştir. Küp uydulardaki kullanılabilir alan kısıtlamaları ve yörüngesel dağıtıcı kasasının hacmi göz önünde bulundurularak, sırasıyla 145 MHz ve 435 MHz'de tasarlanan VHF ve UHF antenler için platforma entegre konuşlandırılabilir turnike anten konsepti uygulanmıştır. Kavramsal dağıtılabilir turnike anten tasarımlarının performansları, 3U küp uydu platformunun merkez ve kenar bölgelerine ayrı ayrı yerleştirilerek optimize edilmiştir. Daha sonra, aynı platformda birlikte kullanım senaryosundaki performansları da incelenmiştir. Elde edilen sonuçlar, antenlerin yerleşiminin tek tek yerleşimlerde performansları önemli ölçüde etkilemediğini, ancak VHF ve UHF'nin aynı platforma yerleştirildiği merkezi yerleşimde UHF anteninin performansının önemli ölçüde arttığını göstermektedir.

Kaynakça

  • R. Sandau, Status and trends of small satellite missions for earth observation. Acta Astronautica, 66, 1–12, 2010. https://doi.org/ 10.1016/j.actaastro.2009.06.008 .
  • S. Clark, A chat with Bob Twiggs, father of the CubeSat. https://spaceflightnow.com/news/n1403/ 08cubesats/index2.html, Accessed 14 March 2025.
  • CalPoly USA, CubeSat design specification. http://www. cubesat.org/cubesatinfo/, Accessed 14 March 2025.
  • N. Chahat, CubeSat Antenna Design. John Wiley & Sons, Hoboken, New Jersey, 2020.
  • E. Kulu, Nanosats Database. https://www.nanosats.eu/database, Accessed 14 March 2025.
  • S. Gao, Antennas for Modern Small Satellites. IEEE Antennas Propag. Mag., 51, 4, 2009. https://doi.org/ 10.1109/MAP.2009.5338683.
  • ISIS Space, VHF Uplink/UHF downlink full duplex transceiver. https://www.isispace.nl/product/isis-uhf-downlink-vhf-uplink-full-duplex-transceiver/, Accessed 14 March 2025.
  • B. Dinç, TAMSAT CubeSat VHF/UHF transponder v1.0. http://www.tamsat.org.tr/tr/ tamsat-cubesat-vhf-uhf-transponder-v1-0/, Accessed 14 March 2025.
  • Clyde Space, CPUT VUTRX transceiver. https://www.aac-clyde.space/what-we-do/space-products-components/communications/pulsar-vutrx, Accessed 14 March 2025.
  • C. Kakoyiannis and P. Constantinou, Electrically Small Microstrip Antennas Targeting Miniaturized Satellites: the CubeSat Paradigm, Microstrip Antennas, InTech, Vienna, pp. 273–316, 2011.
  • T. Dolapçı, Design, simulation, and fabrication of cubesat antenna systems. Master Thesis, Middle East Technical University, Ankara, Türkiye, 2020.
  • A. Guillen et al., PhoneSat in-flight experience results. Small Satellites Systems and Services Symposium, pp.1-19, Majorca, Spain, 2014.
  • Y. Tsuda et al., University of Tokyo’s CubeSat project - it’s educaitonal and technological significance. 15th Annual AIAA/USU Conference on Small Satellites, pp.1-8, Utah, USA, 2001.
  • E. S. Moghaddam, N. Aboutorablad, S. Amiri, S. Nikmehr, and P. Rezaei, design and analysis of a dualband antenna for small leo satellite applications. 3rd International Conference on Computational Electromagnetics and Its Applications, pp. 228–231, Beijing, China,2004.
  • K. Keyghobad, J. M. Baabuei, and T. Heydari, Design & fabrication of turnstile antenna with feed network optimization for LEO satellites. 6th International Conference on Antenna Theory and Techniques, pp. 286, Sevastopol, Ukraine, 2007.
  • E. S. Moghaddam and S. Amiri, Development of separated turnstile antenna for space applications. IEEE Antennas and Propagation Magazine, 50, 84–93, 2008. https://doi.org/ 10.1109/MAP.2008.4653665.
  • S. X. Ta, I. Park, and R. W. Ziolkowski, Crossed dipole antennas: a review. IEEE Antennas and Propagation Magazine, 57, 5, 107–122, 2015. https://doi.org/ 10.1109/MAP.2015.2470680.
  • S. D. Kulkarni and S. N. Makarov, A circularly polarized UHF antenna at 550- 700 MHz. IEEE Antennas and Propagation Society International Symposium, pp. 2981–2984, Honolulu, USA, 2007.
  • I. Radnovi´c, A. Neši´c, and B. Milovanovi´c, A new type of turnstile antenna. IEEE Antennas and Propagation Magazine, 52, 5, 168–171, 2010. https://doi.org/ 10.1109/MAP.2010.5687522.
  • O. Kiris, K. Topalli and L. Kuzu, A wideband circularly polarized GNSS antenna for satellite platforms. 2019 International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1-2 Miami, FL, USA, 2019.
  • O. Kiris, A vibration resistant GNSS antenna with reduced size and weight for wideband satellite applications. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 1841-1842, Montreal, QC, Canada, 2020.
  • O. Kiris, A vibration-proof wideband GNSS antenna for space applications. IEEE Aerospace and Electronic Systems Magazine, 39, 2, 34-38, 2024. https://doi.org/ 10.1109/MAES.2023.3340649.
  • O. Kiris, A compact all-band spacecraft antenna with stable gain for multi-band GNSS applications. Applied Science, 14, 19, 8761, 2024. https://doi.org/10.3390/app14198761.
  • O. Kiriş, Wideband circularly polarized antenna for multiband GNSS receiver on IMECE. 10th International Conference on Recent Advances in Air and Space Technologies (RAST), pp. 1-4, Istanbul, Türkiye, 2023.
  • E. Karapinar, Modification and verification of an antenna design for petite amateur navy satellite (PANSAT) using NEC. Master’s thesis, Naval Postgraduate School, California, USA, 1995.
  • ISIS Space, CubeSat Antenna System for 1U/3U. https://www.isispace.nl/product/cubesat-antenna-system-1u-3u/, Accessed 14 March 2025.
  • GOMSpace, NanoCom ANT430. https://gomspace.com/shop/subsystems/communication-systems/nanocom-ant430.aspx, Accessed 14 March 2025.
  • O. Kiris, F. Ozturk and M. Gokten, A dielectric measurement-based design approach for x-band applications on FR4 substrate. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 783-784, Montreal, QC, Canada, 2020.
  • O. Kiris, F. Ozturk, Dielectric characterization using waveguide method for antenna and radome materials in space applications. Microwave and Optical Technology Letters, 66, e34246 https://doi.org/10.1002/mop.34246.
  • O. Kiris, X-Bant uydu uygulamaları için dielektrik ölçüm yaklaşımı tabanlı kompakt U-yarıklı yama anten tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12 (1), 119-125, 2023. https://doi.org/ 10.28948/ngumuh.1194496.

An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms

Yıl 2025, Cilt: 14 Sayı: 3, 827 - 836, 15.07.2025
https://doi.org/10.28948/ngumuh.1659981

Öz

In this article, operational performance variations of VHF and UHF turnstile antennas widely utilized in Cube Satellites (CubeSats) are investigated according to their placement positions on 3U size platforms. Considering the utilizable space constraints in CubeSats and the volume of the orbital deployer case, a platform-integrated deployable turnstile antenna concept is applied for VHF and UHF antennas designed at 145 MHz and 435 MHz, respectively. The performances of conceptual deployable turnstile antenna designs are optimized by placing them separately in the central and edge regions of the 3U CubeSat platform. Then, their performances in the scenarios of joint use on the same platform are also investigated. The obtained results show that while the location of the antennas does not significantly affect the performances in individual placements, the performance of the UHF antenna is substantially increased in the central placement where VHF and UHF are installed on the same platform.

Kaynakça

  • R. Sandau, Status and trends of small satellite missions for earth observation. Acta Astronautica, 66, 1–12, 2010. https://doi.org/ 10.1016/j.actaastro.2009.06.008 .
  • S. Clark, A chat with Bob Twiggs, father of the CubeSat. https://spaceflightnow.com/news/n1403/ 08cubesats/index2.html, Accessed 14 March 2025.
  • CalPoly USA, CubeSat design specification. http://www. cubesat.org/cubesatinfo/, Accessed 14 March 2025.
  • N. Chahat, CubeSat Antenna Design. John Wiley & Sons, Hoboken, New Jersey, 2020.
  • E. Kulu, Nanosats Database. https://www.nanosats.eu/database, Accessed 14 March 2025.
  • S. Gao, Antennas for Modern Small Satellites. IEEE Antennas Propag. Mag., 51, 4, 2009. https://doi.org/ 10.1109/MAP.2009.5338683.
  • ISIS Space, VHF Uplink/UHF downlink full duplex transceiver. https://www.isispace.nl/product/isis-uhf-downlink-vhf-uplink-full-duplex-transceiver/, Accessed 14 March 2025.
  • B. Dinç, TAMSAT CubeSat VHF/UHF transponder v1.0. http://www.tamsat.org.tr/tr/ tamsat-cubesat-vhf-uhf-transponder-v1-0/, Accessed 14 March 2025.
  • Clyde Space, CPUT VUTRX transceiver. https://www.aac-clyde.space/what-we-do/space-products-components/communications/pulsar-vutrx, Accessed 14 March 2025.
  • C. Kakoyiannis and P. Constantinou, Electrically Small Microstrip Antennas Targeting Miniaturized Satellites: the CubeSat Paradigm, Microstrip Antennas, InTech, Vienna, pp. 273–316, 2011.
  • T. Dolapçı, Design, simulation, and fabrication of cubesat antenna systems. Master Thesis, Middle East Technical University, Ankara, Türkiye, 2020.
  • A. Guillen et al., PhoneSat in-flight experience results. Small Satellites Systems and Services Symposium, pp.1-19, Majorca, Spain, 2014.
  • Y. Tsuda et al., University of Tokyo’s CubeSat project - it’s educaitonal and technological significance. 15th Annual AIAA/USU Conference on Small Satellites, pp.1-8, Utah, USA, 2001.
  • E. S. Moghaddam, N. Aboutorablad, S. Amiri, S. Nikmehr, and P. Rezaei, design and analysis of a dualband antenna for small leo satellite applications. 3rd International Conference on Computational Electromagnetics and Its Applications, pp. 228–231, Beijing, China,2004.
  • K. Keyghobad, J. M. Baabuei, and T. Heydari, Design & fabrication of turnstile antenna with feed network optimization for LEO satellites. 6th International Conference on Antenna Theory and Techniques, pp. 286, Sevastopol, Ukraine, 2007.
  • E. S. Moghaddam and S. Amiri, Development of separated turnstile antenna for space applications. IEEE Antennas and Propagation Magazine, 50, 84–93, 2008. https://doi.org/ 10.1109/MAP.2008.4653665.
  • S. X. Ta, I. Park, and R. W. Ziolkowski, Crossed dipole antennas: a review. IEEE Antennas and Propagation Magazine, 57, 5, 107–122, 2015. https://doi.org/ 10.1109/MAP.2015.2470680.
  • S. D. Kulkarni and S. N. Makarov, A circularly polarized UHF antenna at 550- 700 MHz. IEEE Antennas and Propagation Society International Symposium, pp. 2981–2984, Honolulu, USA, 2007.
  • I. Radnovi´c, A. Neši´c, and B. Milovanovi´c, A new type of turnstile antenna. IEEE Antennas and Propagation Magazine, 52, 5, 168–171, 2010. https://doi.org/ 10.1109/MAP.2010.5687522.
  • O. Kiris, K. Topalli and L. Kuzu, A wideband circularly polarized GNSS antenna for satellite platforms. 2019 International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1-2 Miami, FL, USA, 2019.
  • O. Kiris, A vibration resistant GNSS antenna with reduced size and weight for wideband satellite applications. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 1841-1842, Montreal, QC, Canada, 2020.
  • O. Kiris, A vibration-proof wideband GNSS antenna for space applications. IEEE Aerospace and Electronic Systems Magazine, 39, 2, 34-38, 2024. https://doi.org/ 10.1109/MAES.2023.3340649.
  • O. Kiris, A compact all-band spacecraft antenna with stable gain for multi-band GNSS applications. Applied Science, 14, 19, 8761, 2024. https://doi.org/10.3390/app14198761.
  • O. Kiriş, Wideband circularly polarized antenna for multiband GNSS receiver on IMECE. 10th International Conference on Recent Advances in Air and Space Technologies (RAST), pp. 1-4, Istanbul, Türkiye, 2023.
  • E. Karapinar, Modification and verification of an antenna design for petite amateur navy satellite (PANSAT) using NEC. Master’s thesis, Naval Postgraduate School, California, USA, 1995.
  • ISIS Space, CubeSat Antenna System for 1U/3U. https://www.isispace.nl/product/cubesat-antenna-system-1u-3u/, Accessed 14 March 2025.
  • GOMSpace, NanoCom ANT430. https://gomspace.com/shop/subsystems/communication-systems/nanocom-ant430.aspx, Accessed 14 March 2025.
  • O. Kiris, F. Ozturk and M. Gokten, A dielectric measurement-based design approach for x-band applications on FR4 substrate. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 783-784, Montreal, QC, Canada, 2020.
  • O. Kiris, F. Ozturk, Dielectric characterization using waveguide method for antenna and radome materials in space applications. Microwave and Optical Technology Letters, 66, e34246 https://doi.org/10.1002/mop.34246.
  • O. Kiris, X-Bant uydu uygulamaları için dielektrik ölçüm yaklaşımı tabanlı kompakt U-yarıklı yama anten tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12 (1), 119-125, 2023. https://doi.org/ 10.28948/ngumuh.1194496.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği
Bölüm Araştırma Makalesi
Yazarlar

Orçun Kiriş 0000-0001-7392-0949

Erken Görünüm Tarihi 2 Haziran 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 17 Mart 2025
Kabul Tarihi 8 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Kiriş, O. (2025). An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 827-836. https://doi.org/10.28948/ngumuh.1659981
AMA Kiriş O. An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms. NÖHÜ Müh. Bilim. Derg. Temmuz 2025;14(3):827-836. doi:10.28948/ngumuh.1659981
Chicago Kiriş, Orçun. “An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 3 (Temmuz 2025): 827-36. https://doi.org/10.28948/ngumuh.1659981.
EndNote Kiriş O (01 Temmuz 2025) An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 827–836.
IEEE O. Kiriş, “An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 3, ss. 827–836, 2025, doi: 10.28948/ngumuh.1659981.
ISNAD Kiriş, Orçun. “An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (Temmuz2025), 827-836. https://doi.org/10.28948/ngumuh.1659981.
JAMA Kiriş O. An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms. NÖHÜ Müh. Bilim. Derg. 2025;14:827–836.
MLA Kiriş, Orçun. “An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, 2025, ss. 827-36, doi:10.28948/ngumuh.1659981.
Vancouver Kiriş O. An investigation on installed performances of VHF and UHF turnstile antennas on 3U CubeSat platforms. NÖHÜ Müh. Bilim. Derg. 2025;14(3):827-36.

download