Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı bölgelerden temin edilen ticari ekşi nar konsantrelerinin kimyasal karakterizasyonu ve tağşiş riskinin değerlendirilmesi

Yıl 2025, Cilt: 14 Sayı: 3, 1059 - 1070, 15.07.2025
https://doi.org/10.28948/ngumuh.1671262

Öz

Ekşi nar konsantresi, kendine özgü tadı ve potansiyel sağlık yararları nedeniyle değerli bir geleneksel gıda ürünüdür. Ancak tağşişe yönelik artan endişeler, ayrıntılı kimyasal karakterizasyonu gerekli kılmıştır. Bu çalışmada, farklı bölgelerden geleneksel yöntemlerle üretilmiş ekşi nar konsantresi örneklerinin kimyasal bileşimi analiz edilmiştir. Örnekler; °Brix, pH, titrasyon asitliği, şeker içeriği, amino asit profili ve Fourier Dönüşümlü Kızılötesi (FTIR) spektroskopisi açısından değerlendirilmiştir. Sonuçlar, örneklerin °Brix değerlerinin %70.46 ile %74.36 arasında değiştiğini, glikoz ve fruktoz seviyelerinin ise sırasıyla 2.32–2.99 g/L ve 2.09–2.73 g/L aralığında olduğunu göstermiştir. Bir örnekte °Brix değeri yüksek olmasına rağmen (72.7%) şeker içeriği düşük bulunmuştur (glikoz: 0.64 g/L, fruktoz: 0.43 g/L); bu durum olası tağşişi işaret etmektedir. FTIR analizleri de karbonhidrat parmak izi bölgesinde sapmalar göstererek bu bulguyu desteklemiştir. Ayrıca, amino asit profillemesi örnekler arasında belirgin farklılıklar göstermiştir. Suruç örneği toplam esansiyel amino asit açısından en yüksek değere sahipti (126.2 µM) ve özellikle valin (18.7 µM), lizin (17.4 µM) ve treonin (15.9 µM) konsantrasyonları dikkat çekmiştir. Elde edilen bulgular, geleneksel üretim süreçlerinin standardizasyonu ve tağşişin tespitinde ileri analitik tekniklerin kullanımının önemini ortaya koymaktadır. Genişletilmiş örnek gruplarıyla yapılacak ileri çalışmalar, gıda sahteciliğinin önlenmesine ve geleneksel ürünlerin korunmasına katkı sağlayacaktır.

Kaynakça

  • X. Yang, Z. Niu, X. Wang, X. Lu, J. Sun, M. Carpena, M. A. Prieto, J. Simal-Gandara, J. Xiao, C. Liu and N. Li. The Nutritional and Bioactive Components, Potential Health Function and Comprehensive Utilization of Pomegranate: A Review, Food Reviews International, 39, 6420 6446, 2023. https://doi.org/10.1080/87559129.2022.2110260.
  •    F. Karadeniz, H. S. Burdurlu, N. Koca, and Y. Soyer, Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29, 297–303, 2005.
  •    W. Song, C. M. Derito, M. K. Liu, X. He, M. Dong, and R. H. Liu, Cellular Antioxidant Activity of Common Vegetables. Journal of Agricultural and Food Chemistry, 58, 6621–6629, 2010. https://doi.org/10.1021/jf9035832.
  •    S. Özmert Ergin, “Nar Meyvesi (Punica granatum L.) ile Farklı Nar Ürünlerinin Antioksidan Özellikleri. Akademik Gıda, 17, 243–251, 2019. https://doi.org/10.24323/akademik-gida.613590.
  •    B. İncedayı, Assessment of antioxidant properties and in-vitro bioaccessibility of some pomegranate products. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 96–110, 2021. https://doi.org/10.25092/baunfbed.829863.
  •    Z. Kalaycıoğlu and F. B. Erim, Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry, 221, 496–507, 2017. https://doi.org/10.1016/j.foodchem.2016.10.084.
  •    H. H. Orak, Evaluation of antioxidant activity, colour and some nutritional characteristics of pomegranate (Punica granatum L.) juice and its sour concentrate processed by conventional evaporation. International Journal of Food Sciences and Nutrition, 60, 1–11, 2009. https://doi.org/10.1080/09637480701523306.
  •    L. Ryan and S. L. Prescott, Stability of the antioxidant capacity of twenty‐five commercially available fruit juices subjected to an in vitro digestion. International Journal of Food Science & Technology, 45, 1191–1197, 2010. https://doi.org/10.1111/j.1365-2621.2010.02254.x.
  •    Y. Yilmaz, I. Çelik, and F. Isik, Mineral composition and total phenolic content of pomegranate molasses. Journal of Food, Agriculture and Environment, 5, 102–104, 2007.
  • S. Özmert Ergin, Investigation of the physicochemical, nutritional properties and antioxidant activities of commercial and traditional pomegranate molasses samples. Food and Health, 6, 177–185, 2020, https://doi.org/10.3153/FH20019.
  • S. A. Arafa, Chemical and biological studies on some pomegranate products. Egyptian Journal of Agricultural Sciences, 408, 396–408, 2013.
  • M. Bou Dargham, J. Matar Boumosleh, A. Farhat, S. Abdelkhalek, E. Bou-Maroun, and L. El Hosry, Antioxidant and anti-diabetic activities in commercial and homemade pomegranate molasses in Lebanon. Food Bioscience, 46, 101540, 2022. https://doi.org/10.1016/j.fbio.2021.101540.
  • Chalfoun-Mounayar, R. Nemr, P. Yared, S. Khairallah, and R. Chahine, Antioxidant and weight loss effects of pomegranate molasses. Journal of Applied Pharmaceutical Science, 2, 45–50, 2012. https://doi.org/10.7324/JAPS.2012.2602.
  • G. Nasser, A. Sabbah, N. Chokeir, A. Hijazi, H. Rammal, and M. Issa, Chemical composition and antioxidant capacity of Lebanese molasses pomegranate. American Journal of PharmTech Research, 7, 2017.
  • N. El Darra, H. N. Rajha, F. Saleh, R. Al-Oweini, R. G. Maroun, and N. Louka, Food fraud detection in commercial pomegranate molasses syrups by UV–VIS spectroscopy, ATR-FTIR spectroscopy and HPLC methods. Food Control, 78, 132–137, 2017. https://doi.org/10.1016/j.foodcont.2017.02.043.
  • Z. Izadi and S. Kiani, Pomegranate molasses authentication using hyperspectral imaging system coupled with automatic clustering algorithm. Journal of Food Science, 89, 4216–4228, 2024. https://doi.org/10.1111/1750-3841.17134.
  • M. Zor, K. Fettahoglu, and A. Menevseoglu, Chemometrics approach for the screening of potential adulterations in pomegranate sour by infrared spectroscopy and conventional methods. Journal of the Iranian Chemical Society, 21, 251–261, 2024. https://doi.org/10.1007/s13738-023-02922-7.
  • H. Vardin, A. Tay, B. Ozen, and L. Mauer, Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chemistry, 108, 742–748, 2008. https://doi.org/10.1016/j.foodchem.2007.11.027.
  • G. S. Kılınç and N. Bağdatlıoğlu, Investigation of Adulteration of Sugars in Pomegranate Concentrate. 7th International Students Science Congress, pp. 150-154, 2023, pp. 150–154, İzmir, Türkiye, 12-13 May 2023. https://doi.org/10.52460/issc.2023.023.
  • M. Oguz, B. Akar, and C. Baltaci, Physicochemical Analysis of Pomegranate Sours Produced by Traditional Method in Türkiye and The Investigation of Antioxidant Properties. Hittite Journal of Science and Engineering, 10, 125–134, 2023. https://doi.org/10.17350/HJSE19030000299.
  • Akpinar-Bayizit, T. Ozcan, L. Yilmaz-Ersan, and E. Yildiz, Evaluation of Antioxidant Activity of Pomegranate Molasses by 2,2-Diphenyl-l-Picrylhydrazyl (DPPH) Method. International Journal of Chemical Engineering and Applications, 7, 71–74, 2016. https://doi.org/10.7763/ijcea.2016.v7.545.
  • F. U. Turkmen, H. A. M. Takci, H. Saglam, and N. Sekeroglu, Investigation of some quality parameters of pomegranate, sumac and unripe grape sour products from Kilis markets. Quality Assurance and Safety of Crops & Foods, 11, 61–71, 2019. https://doi.org/10.3920/QAS2018.1293.
  • B. İncedayi, C. E. Tamer, and Ö. U. Çopur, A Research on the Composition of Pomegranate Molasses Nar Ekşilerinin Bileşimi Üzerine Bir Araştırma. Journal of Agricultural Faculty of Uludag University, 24, 37–47, 2010.
  • M. K. Abdygapparova, Zh. Serikuly, Z. K. Konarbaeva, S. A. Kumisbekov, and Sh. B. Tassybayeva, Research of The Composition of Pomegranate Juice in The South Kazastan Region. World Science, 2, 18–22, 2018.
  • F. Tezcan, S. Uzaşçı, G. Uyar, N. Öztekin, and F. B. Erim, Determination of amino acids in pomegranate juices and fingerprint for adulteration with apple juices. Food Chemistry, 141, 1187–1191, 2013. https://doi.org/10.1016/j.foodchem.2013.04.017.
  • Y. Li, P. Gu, L. Wang, S. Wang, H. Yang, B. Zhang, B. Zhu and C. Ma, Comparison of amino acid profile in the juice of six pomegranate cultivars from two cultivation regions in China. Journal of Food Processing and Preservation, 41, e13197, 2017. https://doi.org/10.1111/jfpp.13197.
  • N. Villa-Ruano, A. Rosas-Bautista, E. Rico-Arzate, Y. Cruz-Narvaez, L. G. Zepeda-Vallejo, L. Lalaleo, D. Hidalgo-Martínez and E. Becerra- Martínez, Study of nutritional quality of pomegranate (Punica granatum L.) juice using 1H NMR-based metabolomic approach: A comparison between conventionally and organically grown fruits. LWT, 134, 110222, 2020. https://doi.org/10.1016/j.lwt.2020.110222.
  • B. Cemeroğlu, Meyve ve Sebze İşleme Teknolojisi. Bizim Grup Basımevi, Ankara, 2013.
  • S. Karabiyikli and D. Kisla, Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir. International Journal of Food Microbiology, 155, 211–216, 2012. https://doi.org/10.1016/j.ijfoodmicro.2012.02.006.
  • F. Hepsağ, M. Ferliaslan, O. Duran, S. Okur, and Y. Yıldız, Osmaniye İlinde Geleneksel Ev Yapımı Üretilen Nar Ekşilerinin Kalite Özelliklerinin Belirlenmesi Üzerine Bir Araştırma. Batman University Journal of Life Sciences, 9, 95–107, 2019.
  • TS 12720, Traditional sour pomegranate concentrate. Turkish Standards Institute, Ankara, Türkiye, 2016.
  • M. Gündoğdu and H. Yılmaz, Bazı Standart Nar (Punica granatum L.) Çeşitleri ve Genotiplerine Ait Meyvelerin C Vitamini, Şeker ve Besin Elementleri İçeriklerinin Belirlenmesi. Yuzuncu Yıl University Journal of Agricultural Sciences, 23, 242–248, 2013.
  • M. Cam, Y. Hisil, and G. Durmaz, Characterisation of Pomegranate Juices from Ten Cultivars Grown in Turkey. International Journal of Food Properties, 12, 388–395, 2009. https://doi.org/10.1080/10942910701813917.
  • M. Salman, E. S. S. Abdel-Hameed, S. A. Bazaid, M. G. Al-Shamrani, and H. F. Mohamed, Liquid chromatography-mass spectrometry (LC-MS) method for the determination of sugars in fresh pomegranate fruit juices. Der Pharma Chemica, 6, 320–333, 2014.
  • Fadavi, M. Barzegar, M. H. Azizi, and M. Bayat, Note. Physicochemical Composition of Ten Pomegranate Cultivars (Punica granatum L.) Grown in Iran. Food Science and Technology International, 11, 113–119, 2005. https://doi.org/10.1177/1082013205052765.
  • P. Legua, P. Melgarejo, J. J. Martínez, R. Martínez, and F. Hernández, Evaluation of Spanish Pomegranate Juices: Organic Acids, Sugars, and Anthocyanins. International Journal of Food Properties, 15, 481–494, 2012. https://doi.org/10.1080/10942912.2010.491931.
  • S. P. Singh, R. K. Pal, M. K. Saini, J. Singh, N. Gaikwad, S. Parashuram and C. Kaur, Targeted metabolite profiling to gain chemometric insight into Indian pomegranate cultivars and elite germplasm. Journal of the Science of Food and Agriculture, 99, 5073–5082, 2019. https://doi.org/10.1002/jsfa.9751.
  • Y. Deng and S. Lu, Biosynthesis and Regulation of Phenylpropanoids in Plants. CRC Critical Reviews in Plant Sciences, 36, 257–290, 2017. https://doi.org/10.1080/07352689.2017.1402852.
  • E. Codorniu‐Hernández, A. Mesa-Ibirico, R. Herna´ Ndez-Santiesteban, L. A. Montero-Cabrera, F. Marti´Nez-Luzardo, J. L. Santana-Romero, T. Borrmann and W. D. Stohrer, Essential amino acids interacting with flavonoids: A theoretical approach. International Journal of Quantum Chemistry, 103, 82–104, 2005. https://doi.org/10.1002/qua.20391.
  • W. Elfalleh, H. Hannachi, A. Guetat, N. Tlili, F. Guasmi, A. Ferchichi and M. Ying, Storage protein and amino acid contents of Tunisian and Chinese pomegranate (Punica granatum L.) cultivars. Genetic Resources and Crop Evolution, 59, 999–1014, 2012. https://doi.org/10.1007/s10722-011-9739-9.
  • R. Tevatia, J. Allen, D. Rudrappa, D. White, T. E. Clemente, H. Cerutti, Y. Demirel and P. Blum, The taurine biosynthetic pathway of microalgae. Algal Research, 9, 21–26, 2015. https://doi.org/10.1016/j.algal.2015.02.012.
  • D. H. Lee, In Vitro Analysis of Taurine as Anti-stress Agent in Tomato (Solanum Lycopersicum)-Preliminary Study. Advances in Experimental Medicine and Biology, 803, 75–85, 2015. https://doi.org/10.1007/978-3-319-15126-7_7.
  • E. Nurafiah, E. L. Widiastuti, and H. W. Maharani, Analysis of Taurine Content in Microalgae Tetraselmis sp. Cultured at Different Salinities. Jurnal Ilmiah Biologi Eksperimen dan Keanekaragaman Hayati (J-BEKH), 10, 53–60, 2023. https://doi.org/10.23960/jbekh.v10i2.304.
  • H. Ripps and W. Shen, Review: Taurine: A ‘very essential’ amino acid. Molecular Vision, 18, 2673–86, 2012.
  • M. A. Ashraf, R. Rasheed, I. Hussain, M. Iqbal, M. U. Farooq, M. H. Saleem, S. Ali, Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum L. plants. Environmental Science and Pollution Research, 29, 45527–45548, 2022. https://doi.org/10.1007/s11356-022-19066-5.
  • E. Gabirondo, K. ´Swiderek, E. Marin, A. Maiz-Iginitz, A. Larranaga, V. Moliner, A. Etxeberria and H. Sardon, A Single Amino Acid Able to Promote High‐Temperature Ring‐Opening Polymerization by Dual Activation. Advanced Science, 11, 1–10, 2024. https://doi.org/10.1002/advs.202308956.
  • X. Liu, C. Wang, Q. Xu, D. Zhao, F. Liu, and B. Han, Metabolic Response of the Lycium barbarum Variety ‘Ningqi No. 7′ to Drought Stress. Plants, 13, 1935, 2024. https://doi.org/10.3390/plants13141935.
  • K. Kozłowicz, R. Różyło, B. Gładyszewska, A. Matwijczuk, G. Gładyszewski, D. Chocyk, K. Samborska, J. Piekutand M. Smolewska, Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction. Scientific Reports, 10, 16269, 2020. https://doi.org/10.1038/s41598-020-73306-7.
  • E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska and K. Malek, Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317–335, 2017. https://doi.org/10.1016/j.saa.2017.05.045.
  • R. Hill and I. W. Levin, Vibrational spectra and carbon–hydrogen stretching mode assignments for a series of n -alkyl carboxylic acids. The Journal of Chemical Physics, 70, 842–851, 1979. https://doi.org/10.1063/1.437517.
  • Hamid, N. S. Thakur, A. Thakur, and P. Kumar, Effect of different drying modes on phenolics and antioxidant potential of different parts of wild pomegranate fruits. Scientia Horticulturae, 274, 109656, 2020. https://doi.org/10.1016/j.scienta.2020.109656.
  • F. de Souza, V. A. Amaral, T. F. R. Alves, F. Batain, K. M. de M. Crescencio, C. T. de Barros, A. C. Rios and M. V. Chaud, Polyphenols isolated from pomegranate juice (Punica granatum L.): Evaluation of physical-chemical properties by FTIR and quantification of total polyphenols and anthocyanins contente. Brazilian Journal of Development, 6, 45355–45372, 2020. https://doi.org/10.34117/bjdv6n7-234.
  • Sadat and I. J. Joye, Peak Fitting Applied to Fourier Transform Infrared and Raman Spectroscopic Analysis of Proteins. Applied Sciences, 10, 5918, 2020. https://doi.org/10.3390/app10175918.
  • Degen, M. Hellwig, and T. Henle, 1,2-Dicarbonyl Compounds in Commonly Consumed Foods. Journal of Agricultural and Food Chemistry, 60, 7071–7079, 2012. https://doi.org/10.1021/jf301306g.
  • Ioannou, Real Time Monitoring the Maillard Reaction Intermediates by HPLC- FTIR. Journal of Physical Chemistry & Biophysics, 6, 6–10, 2016. https://doi.org/10.4172/2161-0398.1000210.
  • G. F. Mohsin, F. J. Schmitt, C. Kanzler, J. Dirk Epping, S. Flemig, and A. Hornemann, Structural characterization of melanoidin formed from D-glucose and L-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS. Food Chemistry, 245, 761-767, 2018. https://doi.org/10.1016/j.foodchem.2017.11.115.
  • G. F. Mohsin, W. J. Al-Kaabi, and A. K. Alzubaidi, Describing Polymers Synthesized from Reducing Sugars and Ammonia Employing FTIR Spectroscopy. Baghdad Science Journal, 19, 1297, 2022. https://doi.org/10.21123/bsj.2022.6527.
  • V. Adiani, S. Gupta, R. Ambolikar, and P. S. Variyar, Development of rapid method to assess microbial quality of minimally processed pomegranate arils using FTIR. Sensors and Actuators B: Chemical, 260, 800–807, 2018. https://doi.org/10.1016/j.snb.2018.01.095.
  • Aykac, C. Cavdaroglu, and B. Ozen, Authentication of pomegranate juice in binary and ternary mixtures with spectroscopic methods. Journal of Food Composition and Analysis, 117, 105100, 2023. https://doi.org/10.1016/j.jfca.2022.105100.
  • Ilaslan, M. Ozgolet, and S. Karasu, Rapid detection of maltodextrin adulteration in pomegranate sour using ATR-FTIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 140, 107313, 2025. https://doi.org/10.1016/j.jfca.2025.107313.
  • E. Arendse, H. Nieuwoudt, O. A. Fawole, and U. L. Opara, Effect of Different Extraction Methods on the Quality and Biochemical Attributes of Pomegranate Juice and the Application of Fourier Transformed Infrared Spectroscopy in Discriminating Between Different Extraction Methods. Frontiers in Plant Science, 12, 1–11, 2021. https://doi.org/10.3389/fpls.2021.702575.
  • Q. Guo, L. Ai, and S. Cui, Fourier Transform Infrared Spectroscopy (FTIR) for Carbohydrate Analysis. In: Methodology for Structural Analysis of Polysaccharides, Springer International Publishing, pp. 69-71, 2018. https://doi.org/10.1007/978-3-319-96370-9.
  • G. F. Mohamed, M. S. Shaheen, S. K. H. Khalil, A. M. S. Hussein, and M. M. Kamil, Application of FT-IR Spectroscopy for Rapid and Simultaneous Quality Determination of Some Fruit Products. Nature and Science, 9, 21–31, 2011.
  • Sahlan, S. Karwita, M. Gozan, H. Hermansyah, M. Yohda, Y. J. Yoo and D. K. Pratami, Identification and classification of honey’s authenticity by attenuated total reflectance Fourier-transform infrared spectroscopy and chemometric method. Veterinary World, 12, 1304–1310, 2019. https://doi.org/10.14202/vetworld.2019.1304-1310.

Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions

Yıl 2025, Cilt: 14 Sayı: 3, 1059 - 1070, 15.07.2025
https://doi.org/10.28948/ngumuh.1671262

Öz

Sour pomegranate concentrate is a traditional food product valued for its distinctive taste and potential health benefits. However, concerns about adulteration have necessitated detailed chemical characterization. This study analyzed the chemical composition of traditionally produced sour pomegranate concentrate samples from different regions. The samples were evaluated for °Brix, pH, titratable acidity, sugar content, amino acid profile, and Fourier Transform Infrared (FTIR) spectroscopy. The results revealed that most samples had a °Brix value between 70.46% and 74.36%, with corresponding glucose and fructose levels ranging from 2.32 to 2.99 g/L and 2.09 to 2.73 g/L, respectively. One sample exhibited an unusual °Brix value of 72.7% but had significantly lower glucose (0.64 g/L) and fructose (0.43 g/L) content, suggesting possible adulteration. FTIR spectra showed deviations in the carbohydrate fingerprint region, supporting this observation. Additionally, amino acid profiling revealed notable regional differences. The Suruç sample exhibited the highest total essential amino acid content (126.2 µM), including valine (18.7 µM), lysine (17.4 µM), and threonine (15.9 µM), while the Silifke sample had the lowest levels overall. These findings emphasize the importance of standardizing traditional production processes and implementing advanced analytical techniques to detect adulteration. Further studies incorporating a broader sample set and additional methods could enhance the detection of fraudulent practices and contribute to the protection of traditional food products.

Teşekkür

The authors gratefully acknowledge the Harran University Center for Science and Technology Application and Research (HÜBTAM) for their provision of laboratory infrastructure and technical assistance throughout the analytical procedures of this study.

Kaynakça

  • X. Yang, Z. Niu, X. Wang, X. Lu, J. Sun, M. Carpena, M. A. Prieto, J. Simal-Gandara, J. Xiao, C. Liu and N. Li. The Nutritional and Bioactive Components, Potential Health Function and Comprehensive Utilization of Pomegranate: A Review, Food Reviews International, 39, 6420 6446, 2023. https://doi.org/10.1080/87559129.2022.2110260.
  •    F. Karadeniz, H. S. Burdurlu, N. Koca, and Y. Soyer, Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29, 297–303, 2005.
  •    W. Song, C. M. Derito, M. K. Liu, X. He, M. Dong, and R. H. Liu, Cellular Antioxidant Activity of Common Vegetables. Journal of Agricultural and Food Chemistry, 58, 6621–6629, 2010. https://doi.org/10.1021/jf9035832.
  •    S. Özmert Ergin, “Nar Meyvesi (Punica granatum L.) ile Farklı Nar Ürünlerinin Antioksidan Özellikleri. Akademik Gıda, 17, 243–251, 2019. https://doi.org/10.24323/akademik-gida.613590.
  •    B. İncedayı, Assessment of antioxidant properties and in-vitro bioaccessibility of some pomegranate products. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 96–110, 2021. https://doi.org/10.25092/baunfbed.829863.
  •    Z. Kalaycıoğlu and F. B. Erim, Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry, 221, 496–507, 2017. https://doi.org/10.1016/j.foodchem.2016.10.084.
  •    H. H. Orak, Evaluation of antioxidant activity, colour and some nutritional characteristics of pomegranate (Punica granatum L.) juice and its sour concentrate processed by conventional evaporation. International Journal of Food Sciences and Nutrition, 60, 1–11, 2009. https://doi.org/10.1080/09637480701523306.
  •    L. Ryan and S. L. Prescott, Stability of the antioxidant capacity of twenty‐five commercially available fruit juices subjected to an in vitro digestion. International Journal of Food Science & Technology, 45, 1191–1197, 2010. https://doi.org/10.1111/j.1365-2621.2010.02254.x.
  •    Y. Yilmaz, I. Çelik, and F. Isik, Mineral composition and total phenolic content of pomegranate molasses. Journal of Food, Agriculture and Environment, 5, 102–104, 2007.
  • S. Özmert Ergin, Investigation of the physicochemical, nutritional properties and antioxidant activities of commercial and traditional pomegranate molasses samples. Food and Health, 6, 177–185, 2020, https://doi.org/10.3153/FH20019.
  • S. A. Arafa, Chemical and biological studies on some pomegranate products. Egyptian Journal of Agricultural Sciences, 408, 396–408, 2013.
  • M. Bou Dargham, J. Matar Boumosleh, A. Farhat, S. Abdelkhalek, E. Bou-Maroun, and L. El Hosry, Antioxidant and anti-diabetic activities in commercial and homemade pomegranate molasses in Lebanon. Food Bioscience, 46, 101540, 2022. https://doi.org/10.1016/j.fbio.2021.101540.
  • Chalfoun-Mounayar, R. Nemr, P. Yared, S. Khairallah, and R. Chahine, Antioxidant and weight loss effects of pomegranate molasses. Journal of Applied Pharmaceutical Science, 2, 45–50, 2012. https://doi.org/10.7324/JAPS.2012.2602.
  • G. Nasser, A. Sabbah, N. Chokeir, A. Hijazi, H. Rammal, and M. Issa, Chemical composition and antioxidant capacity of Lebanese molasses pomegranate. American Journal of PharmTech Research, 7, 2017.
  • N. El Darra, H. N. Rajha, F. Saleh, R. Al-Oweini, R. G. Maroun, and N. Louka, Food fraud detection in commercial pomegranate molasses syrups by UV–VIS spectroscopy, ATR-FTIR spectroscopy and HPLC methods. Food Control, 78, 132–137, 2017. https://doi.org/10.1016/j.foodcont.2017.02.043.
  • Z. Izadi and S. Kiani, Pomegranate molasses authentication using hyperspectral imaging system coupled with automatic clustering algorithm. Journal of Food Science, 89, 4216–4228, 2024. https://doi.org/10.1111/1750-3841.17134.
  • M. Zor, K. Fettahoglu, and A. Menevseoglu, Chemometrics approach for the screening of potential adulterations in pomegranate sour by infrared spectroscopy and conventional methods. Journal of the Iranian Chemical Society, 21, 251–261, 2024. https://doi.org/10.1007/s13738-023-02922-7.
  • H. Vardin, A. Tay, B. Ozen, and L. Mauer, Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chemistry, 108, 742–748, 2008. https://doi.org/10.1016/j.foodchem.2007.11.027.
  • G. S. Kılınç and N. Bağdatlıoğlu, Investigation of Adulteration of Sugars in Pomegranate Concentrate. 7th International Students Science Congress, pp. 150-154, 2023, pp. 150–154, İzmir, Türkiye, 12-13 May 2023. https://doi.org/10.52460/issc.2023.023.
  • M. Oguz, B. Akar, and C. Baltaci, Physicochemical Analysis of Pomegranate Sours Produced by Traditional Method in Türkiye and The Investigation of Antioxidant Properties. Hittite Journal of Science and Engineering, 10, 125–134, 2023. https://doi.org/10.17350/HJSE19030000299.
  • Akpinar-Bayizit, T. Ozcan, L. Yilmaz-Ersan, and E. Yildiz, Evaluation of Antioxidant Activity of Pomegranate Molasses by 2,2-Diphenyl-l-Picrylhydrazyl (DPPH) Method. International Journal of Chemical Engineering and Applications, 7, 71–74, 2016. https://doi.org/10.7763/ijcea.2016.v7.545.
  • F. U. Turkmen, H. A. M. Takci, H. Saglam, and N. Sekeroglu, Investigation of some quality parameters of pomegranate, sumac and unripe grape sour products from Kilis markets. Quality Assurance and Safety of Crops & Foods, 11, 61–71, 2019. https://doi.org/10.3920/QAS2018.1293.
  • B. İncedayi, C. E. Tamer, and Ö. U. Çopur, A Research on the Composition of Pomegranate Molasses Nar Ekşilerinin Bileşimi Üzerine Bir Araştırma. Journal of Agricultural Faculty of Uludag University, 24, 37–47, 2010.
  • M. K. Abdygapparova, Zh. Serikuly, Z. K. Konarbaeva, S. A. Kumisbekov, and Sh. B. Tassybayeva, Research of The Composition of Pomegranate Juice in The South Kazastan Region. World Science, 2, 18–22, 2018.
  • F. Tezcan, S. Uzaşçı, G. Uyar, N. Öztekin, and F. B. Erim, Determination of amino acids in pomegranate juices and fingerprint for adulteration with apple juices. Food Chemistry, 141, 1187–1191, 2013. https://doi.org/10.1016/j.foodchem.2013.04.017.
  • Y. Li, P. Gu, L. Wang, S. Wang, H. Yang, B. Zhang, B. Zhu and C. Ma, Comparison of amino acid profile in the juice of six pomegranate cultivars from two cultivation regions in China. Journal of Food Processing and Preservation, 41, e13197, 2017. https://doi.org/10.1111/jfpp.13197.
  • N. Villa-Ruano, A. Rosas-Bautista, E. Rico-Arzate, Y. Cruz-Narvaez, L. G. Zepeda-Vallejo, L. Lalaleo, D. Hidalgo-Martínez and E. Becerra- Martínez, Study of nutritional quality of pomegranate (Punica granatum L.) juice using 1H NMR-based metabolomic approach: A comparison between conventionally and organically grown fruits. LWT, 134, 110222, 2020. https://doi.org/10.1016/j.lwt.2020.110222.
  • B. Cemeroğlu, Meyve ve Sebze İşleme Teknolojisi. Bizim Grup Basımevi, Ankara, 2013.
  • S. Karabiyikli and D. Kisla, Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir. International Journal of Food Microbiology, 155, 211–216, 2012. https://doi.org/10.1016/j.ijfoodmicro.2012.02.006.
  • F. Hepsağ, M. Ferliaslan, O. Duran, S. Okur, and Y. Yıldız, Osmaniye İlinde Geleneksel Ev Yapımı Üretilen Nar Ekşilerinin Kalite Özelliklerinin Belirlenmesi Üzerine Bir Araştırma. Batman University Journal of Life Sciences, 9, 95–107, 2019.
  • TS 12720, Traditional sour pomegranate concentrate. Turkish Standards Institute, Ankara, Türkiye, 2016.
  • M. Gündoğdu and H. Yılmaz, Bazı Standart Nar (Punica granatum L.) Çeşitleri ve Genotiplerine Ait Meyvelerin C Vitamini, Şeker ve Besin Elementleri İçeriklerinin Belirlenmesi. Yuzuncu Yıl University Journal of Agricultural Sciences, 23, 242–248, 2013.
  • M. Cam, Y. Hisil, and G. Durmaz, Characterisation of Pomegranate Juices from Ten Cultivars Grown in Turkey. International Journal of Food Properties, 12, 388–395, 2009. https://doi.org/10.1080/10942910701813917.
  • M. Salman, E. S. S. Abdel-Hameed, S. A. Bazaid, M. G. Al-Shamrani, and H. F. Mohamed, Liquid chromatography-mass spectrometry (LC-MS) method for the determination of sugars in fresh pomegranate fruit juices. Der Pharma Chemica, 6, 320–333, 2014.
  • Fadavi, M. Barzegar, M. H. Azizi, and M. Bayat, Note. Physicochemical Composition of Ten Pomegranate Cultivars (Punica granatum L.) Grown in Iran. Food Science and Technology International, 11, 113–119, 2005. https://doi.org/10.1177/1082013205052765.
  • P. Legua, P. Melgarejo, J. J. Martínez, R. Martínez, and F. Hernández, Evaluation of Spanish Pomegranate Juices: Organic Acids, Sugars, and Anthocyanins. International Journal of Food Properties, 15, 481–494, 2012. https://doi.org/10.1080/10942912.2010.491931.
  • S. P. Singh, R. K. Pal, M. K. Saini, J. Singh, N. Gaikwad, S. Parashuram and C. Kaur, Targeted metabolite profiling to gain chemometric insight into Indian pomegranate cultivars and elite germplasm. Journal of the Science of Food and Agriculture, 99, 5073–5082, 2019. https://doi.org/10.1002/jsfa.9751.
  • Y. Deng and S. Lu, Biosynthesis and Regulation of Phenylpropanoids in Plants. CRC Critical Reviews in Plant Sciences, 36, 257–290, 2017. https://doi.org/10.1080/07352689.2017.1402852.
  • E. Codorniu‐Hernández, A. Mesa-Ibirico, R. Herna´ Ndez-Santiesteban, L. A. Montero-Cabrera, F. Marti´Nez-Luzardo, J. L. Santana-Romero, T. Borrmann and W. D. Stohrer, Essential amino acids interacting with flavonoids: A theoretical approach. International Journal of Quantum Chemistry, 103, 82–104, 2005. https://doi.org/10.1002/qua.20391.
  • W. Elfalleh, H. Hannachi, A. Guetat, N. Tlili, F. Guasmi, A. Ferchichi and M. Ying, Storage protein and amino acid contents of Tunisian and Chinese pomegranate (Punica granatum L.) cultivars. Genetic Resources and Crop Evolution, 59, 999–1014, 2012. https://doi.org/10.1007/s10722-011-9739-9.
  • R. Tevatia, J. Allen, D. Rudrappa, D. White, T. E. Clemente, H. Cerutti, Y. Demirel and P. Blum, The taurine biosynthetic pathway of microalgae. Algal Research, 9, 21–26, 2015. https://doi.org/10.1016/j.algal.2015.02.012.
  • D. H. Lee, In Vitro Analysis of Taurine as Anti-stress Agent in Tomato (Solanum Lycopersicum)-Preliminary Study. Advances in Experimental Medicine and Biology, 803, 75–85, 2015. https://doi.org/10.1007/978-3-319-15126-7_7.
  • E. Nurafiah, E. L. Widiastuti, and H. W. Maharani, Analysis of Taurine Content in Microalgae Tetraselmis sp. Cultured at Different Salinities. Jurnal Ilmiah Biologi Eksperimen dan Keanekaragaman Hayati (J-BEKH), 10, 53–60, 2023. https://doi.org/10.23960/jbekh.v10i2.304.
  • H. Ripps and W. Shen, Review: Taurine: A ‘very essential’ amino acid. Molecular Vision, 18, 2673–86, 2012.
  • M. A. Ashraf, R. Rasheed, I. Hussain, M. Iqbal, M. U. Farooq, M. H. Saleem, S. Ali, Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum L. plants. Environmental Science and Pollution Research, 29, 45527–45548, 2022. https://doi.org/10.1007/s11356-022-19066-5.
  • E. Gabirondo, K. ´Swiderek, E. Marin, A. Maiz-Iginitz, A. Larranaga, V. Moliner, A. Etxeberria and H. Sardon, A Single Amino Acid Able to Promote High‐Temperature Ring‐Opening Polymerization by Dual Activation. Advanced Science, 11, 1–10, 2024. https://doi.org/10.1002/advs.202308956.
  • X. Liu, C. Wang, Q. Xu, D. Zhao, F. Liu, and B. Han, Metabolic Response of the Lycium barbarum Variety ‘Ningqi No. 7′ to Drought Stress. Plants, 13, 1935, 2024. https://doi.org/10.3390/plants13141935.
  • K. Kozłowicz, R. Różyło, B. Gładyszewska, A. Matwijczuk, G. Gładyszewski, D. Chocyk, K. Samborska, J. Piekutand M. Smolewska, Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction. Scientific Reports, 10, 16269, 2020. https://doi.org/10.1038/s41598-020-73306-7.
  • E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska and K. Malek, Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317–335, 2017. https://doi.org/10.1016/j.saa.2017.05.045.
  • R. Hill and I. W. Levin, Vibrational spectra and carbon–hydrogen stretching mode assignments for a series of n -alkyl carboxylic acids. The Journal of Chemical Physics, 70, 842–851, 1979. https://doi.org/10.1063/1.437517.
  • Hamid, N. S. Thakur, A. Thakur, and P. Kumar, Effect of different drying modes on phenolics and antioxidant potential of different parts of wild pomegranate fruits. Scientia Horticulturae, 274, 109656, 2020. https://doi.org/10.1016/j.scienta.2020.109656.
  • F. de Souza, V. A. Amaral, T. F. R. Alves, F. Batain, K. M. de M. Crescencio, C. T. de Barros, A. C. Rios and M. V. Chaud, Polyphenols isolated from pomegranate juice (Punica granatum L.): Evaluation of physical-chemical properties by FTIR and quantification of total polyphenols and anthocyanins contente. Brazilian Journal of Development, 6, 45355–45372, 2020. https://doi.org/10.34117/bjdv6n7-234.
  • Sadat and I. J. Joye, Peak Fitting Applied to Fourier Transform Infrared and Raman Spectroscopic Analysis of Proteins. Applied Sciences, 10, 5918, 2020. https://doi.org/10.3390/app10175918.
  • Degen, M. Hellwig, and T. Henle, 1,2-Dicarbonyl Compounds in Commonly Consumed Foods. Journal of Agricultural and Food Chemistry, 60, 7071–7079, 2012. https://doi.org/10.1021/jf301306g.
  • Ioannou, Real Time Monitoring the Maillard Reaction Intermediates by HPLC- FTIR. Journal of Physical Chemistry & Biophysics, 6, 6–10, 2016. https://doi.org/10.4172/2161-0398.1000210.
  • G. F. Mohsin, F. J. Schmitt, C. Kanzler, J. Dirk Epping, S. Flemig, and A. Hornemann, Structural characterization of melanoidin formed from D-glucose and L-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS. Food Chemistry, 245, 761-767, 2018. https://doi.org/10.1016/j.foodchem.2017.11.115.
  • G. F. Mohsin, W. J. Al-Kaabi, and A. K. Alzubaidi, Describing Polymers Synthesized from Reducing Sugars and Ammonia Employing FTIR Spectroscopy. Baghdad Science Journal, 19, 1297, 2022. https://doi.org/10.21123/bsj.2022.6527.
  • V. Adiani, S. Gupta, R. Ambolikar, and P. S. Variyar, Development of rapid method to assess microbial quality of minimally processed pomegranate arils using FTIR. Sensors and Actuators B: Chemical, 260, 800–807, 2018. https://doi.org/10.1016/j.snb.2018.01.095.
  • Aykac, C. Cavdaroglu, and B. Ozen, Authentication of pomegranate juice in binary and ternary mixtures with spectroscopic methods. Journal of Food Composition and Analysis, 117, 105100, 2023. https://doi.org/10.1016/j.jfca.2022.105100.
  • Ilaslan, M. Ozgolet, and S. Karasu, Rapid detection of maltodextrin adulteration in pomegranate sour using ATR-FTIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 140, 107313, 2025. https://doi.org/10.1016/j.jfca.2025.107313.
  • E. Arendse, H. Nieuwoudt, O. A. Fawole, and U. L. Opara, Effect of Different Extraction Methods on the Quality and Biochemical Attributes of Pomegranate Juice and the Application of Fourier Transformed Infrared Spectroscopy in Discriminating Between Different Extraction Methods. Frontiers in Plant Science, 12, 1–11, 2021. https://doi.org/10.3389/fpls.2021.702575.
  • Q. Guo, L. Ai, and S. Cui, Fourier Transform Infrared Spectroscopy (FTIR) for Carbohydrate Analysis. In: Methodology for Structural Analysis of Polysaccharides, Springer International Publishing, pp. 69-71, 2018. https://doi.org/10.1007/978-3-319-96370-9.
  • G. F. Mohamed, M. S. Shaheen, S. K. H. Khalil, A. M. S. Hussein, and M. M. Kamil, Application of FT-IR Spectroscopy for Rapid and Simultaneous Quality Determination of Some Fruit Products. Nature and Science, 9, 21–31, 2011.
  • Sahlan, S. Karwita, M. Gozan, H. Hermansyah, M. Yohda, Y. J. Yoo and D. K. Pratami, Identification and classification of honey’s authenticity by attenuated total reflectance Fourier-transform infrared spectroscopy and chemometric method. Veterinary World, 12, 1304–1310, 2019. https://doi.org/10.14202/vetworld.2019.1304-1310.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Gül Dikme 0000-0002-2212-6443

Sinem Güneş 0000-0002-7010-1152

Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 7 Nisan 2025
Kabul Tarihi 5 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Gül Dikme, T., & Güneş, S. (2025). Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 1059-1070. https://doi.org/10.28948/ngumuh.1671262
AMA Gül Dikme T, Güneş S. Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions. NÖHÜ Müh. Bilim. Derg. Temmuz 2025;14(3):1059-1070. doi:10.28948/ngumuh.1671262
Chicago Gül Dikme, Tuğba, ve Sinem Güneş. “Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 3 (Temmuz 2025): 1059-70. https://doi.org/10.28948/ngumuh.1671262.
EndNote Gül Dikme T, Güneş S (01 Temmuz 2025) Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 1059–1070.
IEEE T. Gül Dikme ve S. Güneş, “Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions”, NÖHÜ Müh. Bilim. Derg., c. 14, sy. 3, ss. 1059–1070, 2025, doi: 10.28948/ngumuh.1671262.
ISNAD Gül Dikme, Tuğba - Güneş, Sinem. “Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (Temmuz2025), 1059-1070. https://doi.org/10.28948/ngumuh.1671262.
JAMA Gül Dikme T, Güneş S. Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions. NÖHÜ Müh. Bilim. Derg. 2025;14:1059–1070.
MLA Gül Dikme, Tuğba ve Sinem Güneş. “Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, 2025, ss. 1059-70, doi:10.28948/ngumuh.1671262.
Vancouver Gül Dikme T, Güneş S. Chemical characterization and adulteration risk evaluation of commercially available sour pomegranate concentrates from different regions. NÖHÜ Müh. Bilim. Derg. 2025;14(3):1059-70.

download