Araştırma Makalesi
BibTex RIS Kaynak Göster

Mineralogical, petrographical and geochemical characterization of chrysotile in the Arızlı ophiolitic mélange (Afyon-Şuhut, Türkiye)

Yıl 2025, Cilt: 14 Sayı: 3, 1026 - 1034, 15.07.2025
https://doi.org/10.28948/ngumuh.1672453
https://izlik.org/JA57GT24CZ

Öz

This research examines the mineralogical, geochemical, and microscopic properties of chrysotile (fibrous serpentine) mineralization in the ophiolitic mélange units of the Arızlı locality in Şuhut, Afyonkarahisar, Türkiye. A comprehensive assessment of six distinct rock samples was conducted using Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS), and X-ray fluorescence (XRF) examination. Raman spectra exhibited specific bands indicative of chrysotile (686, 521, 376, and 230 cm⁻¹), with some samples also displaying peaks for lizardite (687, 458, 377 cm⁻¹) and antigorite. FTIR spectra exhibited significant absorption bands at 3682 cm⁻¹ (O–H), 943 cm⁻¹, and 602 cm⁻¹, corresponding to Si–O–Mg and Si–O–Si stretching vibrations. SEM examinations verified the existence of fibrous morphologies between 5 and 200 µm in length, exhibiting distinctive spiral and elongated shapes. EDS examination revealed elevated concentrations of Mg and Si, aligning with the optimal chrysotile composition (up to 43.6% MgO and 43.4% SiO₂). XRF analysis revealed MgO concentrations ranging from 35.34% to 39.21%, SiO₂ from 35.34% to 40.52%, Fe₂O₃ from 6.39% to 7.31%, and Ni levels between 1186 and 1588 ppm. The Cr₂O₃ concentration varied from 0.21% to 0.36%, suggesting an ultramafic origin. Elevated amounts of Ni and Cr indicate a potential origin from olivine-rich protoliths. The findings suggest that the chrysotile deposit in Arızlı has mineralogical and geochemical similarities to naturally occurring serpentine described in other Turkish ophiolitic regions, including Sivas, Tekirova, and Karaçam.

Kaynakça

  • R. L. Virta, Asbestos: Geology, mineralogy, mining, and uses. US Department of the Interior, US Geological Survey, Open File Report 02-149, 2002.
  • S. Singh, A. Das, P. Sharma, A. K. Sudheer, M. Gaddam and R. Ranjan, Spatiotemporal variations, sources, pollution status and health risk assessment of dissolved trace elements in a major Arabian Sea draining river: insights from multivariate statistical and machine learning approaches. Environmental Geochemistry and Health, 46(4), 130, 2024. https://doi.org/10.1007/s10653-024-01885-9.
  • T. A. Sporn, Mineralogy of asbestos. Malignant Mesothelioma, 1–11, 2011. https://doi.org/10.1007 /978-3-642-10862-4_1.
  • A. Bloise, D. Miriello, L. Gaggero, G. Lanzafame and R. Punturo, Multi-analytical approach for asbestos minerals and their non-asbestiform analogues: Inferences from host rock textural constraints. Fibers, 7(5), 42, 2019. https://doi.org/10.3390/fib7050042.
  • A. M. Langer, Identification and enumeration of asbestos fibers in the mining environment: Mission and modification to the Federal Asbestos Standard. Regulatory Toxicology and Pharmacology, 52(1), S207–S217, 2008. https://doi.org/10.1016/j.yrtph.20 08.01.007.
  • S. Nasir, K. N. Khankahdani and A. R. Nasir, Geochemical and petrological characterization of listwaenite from Oman and Iran ophiolites: implications for hydrothermal carbonation and silicification alteration processes. Arabian Journal of Geosciences, 18(4), 98, 2025. https://doi.org/10.1007 /s12517-025-12244-y.
  • C. Ricchiuti, D. Pereira, R. Punturo, E. Giorno, D. Miriello and A. Bloise, Hazardous elements in asbestos tremolite from the Basilicata region, southern Italy: A first step. Fibers, 9(8), 47, 2021. https://doi.org/10.3390/fib9080047.
  • G. M. Militello, A. Bloise, L. Gaggero, G. Lanzafame and R. Punturo, Multi-analytical approach for asbestos minerals and their non-asbestiform analogues: Inferences from host rock textural constraints. Fibers, 7(5), 42, 2019. https://doi.org/10.3390/fib7050042.
  • A. Şaşmaz, A. D. Kılıç and N. Konakçı, Chemical and thermal changes in Mg₃Si₂O₅(OH)₄ polymorph minerals and importance as an industrial material. Applied Sciences, 14(22), 2024. https://doi.org/ 10.3390/app142210298.
  • R. K. Upadhyay, Non-metallic minerals and their deposits. In: Geology and Mineral Resources, Springer Nature Singapore, pp. 563–652, 2025. https://doi.org/10.1007/978-981-96-0598-9_9.
  • Y. Dilek and H. Furnes, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(5–6), 387–411, 2011. https://doi.org/10.1130/B30446.1.
  • O. Parlak, T. Rızaoğlu, U. Bağcı, F. Karaoğlan and V. Höck, Tectonic significance of the geochemistry and petrology of ophiolites along the İzmir-Ankara-Erzincan Suture Zone in northeastern Anatolia. Geological Society London Special Publications, 372, 5–105, 2013. https://doi.org/10.1016/j.tecto. 2008.08.002.
  • Z. Başıbüyük, H. Yalçın and Ö. Bozkaya, Sivas bölgesi ofiyolitleri ile ilişkili asbest yataklarının mineralojisi. 14. Ulusal Kil Sempozyumu, Karadeniz Teknik Üniversitesi, 2009.
  • B. Serin, Karaçam (Sivrihisar, Eskişehir) ve çevresindeki demir, nikel zenginleşmelerinin mineralojisi, petrografisi ve jeokimyası. Yüksek Lisans Tezi, Ankara Üniversitesi, 2020.
  • J. S. Schapira, R. Bolhar, S. Master and A. H. Wilson, Mineralogical, petrological and geochemical characterisation of chrysotile, amosite and crocidolite asbestos mine waste from southern Africa in context of risk assessment and rehabilitation. Minerals, 13(10), 1352, 2023. https://doi.org/10.3390/min13101352.
  • Maden Tetkik ve Arama Genel Müdürlüğü (MTA), 1:25.000 ölçekli Afyon L25 B4 paftası jeoloji haritası. MTA Yayınları, Ankara, 2023.
  • V. Hizhnyakov ve I. Tehver, Resonant light scattering and luminescence in multimode vibronic systems: time‐dependent representation. Journal of Raman Spectroscopy, 32 (6–7), 591–597, 2001. https://doi.org/10.1002/jrs.714.
  • C. Rinaudo, D. Gastaldi ve E. Belluso, Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. The Canadian Mineralogist, 41 (4), 883–890, 2003. https://doi.org/10.2113/gscanmin.41.4.883.
  • V. C. Farmer (Ed.), The infrared spectra of minerals, Cilt 4, s. 51–67. Mineralogical Society, London, 1974.
  • A. Cavallo ve B. Rimoldi, Chrysotile asbestos in serpentinite quarries: a case study in Valmalenco, Central Alps, Northern Italy. Environmental Science: Processes & Impacts, 15 (7), 1341–1350, 2013. https://doi.org/10.1039/C3EM00193H.
  • A. Brostrøm, H. Harboe, A. S. Fonseca, M. Frederiksen, P. Kines, W. Bührmann, … ve K. A. Jensen, Asbestos fiber levels from remediation work. Journal of Hazardous Materials Advances, 17, 100552, 2025. https://doi.org/10.1016/j.hazadv.2024.100552.
  • K. Yada, Study of microstructure of chrysotile asbestos by high-resolution electron microscopy. Foundations of Crystallography, 27 (6), 659–664, 1971. https://doi.org/10.1107/S0567739471001402.
  • L. W. Zelazny, P. J. Thomas ve C. L. Lawrence, Pyrophyllite–Talc minerals. In: J. B. Dixon ve D. G. Schulze (Eds.), Soil Mineralogy with Environmental Applications, Cilt 7, s. 415–430. Soil Science Society of America, Madison, 2002. https://doi.org /10.2136/sssabookser7.c13.
  • L. Butjosa, A. Cambeses, J. A. Proenza, S. Agostini, M. Iturralde-Vinent, L. Bernal-Rodríguez ve A. Garcia-Casco, Relict abyssal mantle in a Caribbean forearc ophiolite (Villa Clara, central Cuba): Petrogenetic and geodynamic implications. International Geology Review, 66 (1), 196–227, 2024. https://doi.org/10.1080/00206814.2023.2179229.
  • G. Wille, D. Lahondère, and W. Kloppmann, Coupled SEM-EDS-RAMAN: A complimentary approach for characterisation–Application to geomaterials. In IOP Conference Series: Materials Science and Engineering (Vol. 1324, No. 1, p. 012012). IOP Publishing, 2025. https://doi.org/10.1088/1757-899X/1324/1/012012.
  • O. Şimşek, F. Özbaş, E. Kaygisiz, G. Yaşayan, and G. Ö. Ildız, Multianalytical characterization of Byzantine wall paintings by SEM-EDX, μ-XRD, Raman and FTIR techniques. Turkish Journal of Earth Sciences, 34(2), 246–262, 2025. https://doi.org/10.55730/1300-0985.1957.
  • C. Kim, Y. Kim, and Y. Roh, Thermal decomposition and phase transformation of chrysotile in asbestos-containing waste. Minerals, 15(4), 344, 2025. https://doi.org/10.3390/min15040344.
  • H. Yalçın, Ö. Bozkaya, ve C. Yılmaz, Tekirova (Antalya) Ofiyolit Napı kayaçlarının alterasyon mineralojisi ve jeokimyası. Türkiye Jeoloji Bülteni, 58(1), 63–89, 2015.
  • J. R. Petriglieri, D. Bersani, C. Laporte-Magoni, M. Tribaudino, A. Cavallo, E. Salvioli-Mariani, and F. Turci, Portable Raman spectrometer for in situ analysis of asbestos and fibrous minerals. Applied Sciences, 11(1), 287, 2020. https://doi.org/10.3390 /app11010287.
  • C. P. Girotto, de S. D. Campos, and É. A. de Campos, Chrysotile asbestos treated with phosphoric acid as an adsorbent for ammonia nitrogen. Heliyon, 6(2), e03337, 2020. https://doi.org/10.1016 /j.heliyon.2020.e03397.
  • A. Bloise, F. Parisi, M. F. La Russa, C. Apollaro, N. Godbert, I. Aiello, ... and D. Pereira, Evaluation of asbestos dispersion during laser ablation of rocks containing naturally occurring asbestos (NOA). Heliyon, 10(21), e18652, 2024. https://doi.org/10.1016/j.heliyon.2024.e39624.
  • L. Marzini, I. Osticioli, D. Ciofini, J. Agresti, S. Bellagamba, F. Paglietti, ... & S. Siano, Identification, mapping, and quantification of asbestos minerals in ACM and NOA using NIR-SWIR hyperspectral scan imaging: Preliminary study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 125893, 2025. https://doi.org/10.1016/j.saa.2025.125893.
  • A. A. Kamnev, Recent developments in analytical molecular and biomolecular spectroscopy. pectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126164, 2025 https://doi.org/10.1016/j.saa.2025.126164.
  • A. W. Atkinson, R. B. Gettins, A. L. Rickards, Estimation of fibril lengths in chrysotile asbestos fibres. Nature, 1970, 226(5249), 937–938. https://doi.org/10.1038/226937a0.

Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu

Yıl 2025, Cilt: 14 Sayı: 3, 1026 - 1034, 15.07.2025
https://doi.org/10.28948/ngumuh.1672453
https://izlik.org/JA57GT24CZ

Öz

Bu çalışma, Afyonkarahisar ili Şuhut ilçesi Arızlı mevkiindeki ofiyolitik melanj birimleri içerisinde yer alan krizotil (lifsi serpantin) mineralizasyonunun mineralojik, petrografik ve jeokimyasal özelliklerini incelemektedir. Altı farklı örnek üzerinde Raman spektroskopisi, Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), taramalı elektron mikroskobu–enerji dağılımı spektroskopisi (SEM–EDS) ve X-ışını floresans (XRF) analizleri yapılmıştır. Raman analizlerinde krizotile ait karakteristik bantlar (686, 521, 376 ve 230 cm⁻¹) net şekilde gözlenmiş; bazı örneklerde lizardit (687, 458, 377 cm⁻¹) ve antigorit spektral izleri de tespit edilmiştir. FTIR spektrumlarında, OH bağlarını gösteren 3682 cm⁻¹, Si–O–Mg ve Si–O–Si gerilme titreşimlerine karşılık gelen 943 ve 602 cm⁻¹ bantları gözlenmiştir. SEM görüntülerinde, liflerin 5–200 µm arasında değişen uzunluklarda olduğu ve tipik sarmal yapılar geliştirdiği belirlenmiştir. EDS analizleri Mg (%43.6 MgO’ya kadar), Si (%43.4 SiO₂’ye kadar) ve düşük miktarda Fe ile krizotilin teorik bileşimiyle uyumludur. XRF analizlerinde MgO %35.34–39.21 ve SiO₂ %35.34–40.52 aralığında, Fe₂O₃ %6.39–7.31, Ni 1186–1588 ppm, Cr₂O₃ %0.21–0.36 oranlarında belirlenmiş olup bu değerler serpantinleşmiş ultramafik kayaçlara işaret etmektedir. Özellikle yüksek Ni ve Cr içerikleri, mineralizasyonun ultramafik kayaç kökenli olduğunu düşündürmektedir. Elde edilen tüm veriler, Arızlı’daki krizotil mineralizasyonunun Türkiye’deki Sivas, Tekirova ve Karaçam gibi benzer ofiyolitik ortamlarda tanımlanan doğal serpantin oluşumları ile mineralojik ve jeokimyasal açıdan benzerlik taşıdığını ortaya koymaktadır.

Kaynakça

  • R. L. Virta, Asbestos: Geology, mineralogy, mining, and uses. US Department of the Interior, US Geological Survey, Open File Report 02-149, 2002.
  • S. Singh, A. Das, P. Sharma, A. K. Sudheer, M. Gaddam and R. Ranjan, Spatiotemporal variations, sources, pollution status and health risk assessment of dissolved trace elements in a major Arabian Sea draining river: insights from multivariate statistical and machine learning approaches. Environmental Geochemistry and Health, 46(4), 130, 2024. https://doi.org/10.1007/s10653-024-01885-9.
  • T. A. Sporn, Mineralogy of asbestos. Malignant Mesothelioma, 1–11, 2011. https://doi.org/10.1007 /978-3-642-10862-4_1.
  • A. Bloise, D. Miriello, L. Gaggero, G. Lanzafame and R. Punturo, Multi-analytical approach for asbestos minerals and their non-asbestiform analogues: Inferences from host rock textural constraints. Fibers, 7(5), 42, 2019. https://doi.org/10.3390/fib7050042.
  • A. M. Langer, Identification and enumeration of asbestos fibers in the mining environment: Mission and modification to the Federal Asbestos Standard. Regulatory Toxicology and Pharmacology, 52(1), S207–S217, 2008. https://doi.org/10.1016/j.yrtph.20 08.01.007.
  • S. Nasir, K. N. Khankahdani and A. R. Nasir, Geochemical and petrological characterization of listwaenite from Oman and Iran ophiolites: implications for hydrothermal carbonation and silicification alteration processes. Arabian Journal of Geosciences, 18(4), 98, 2025. https://doi.org/10.1007 /s12517-025-12244-y.
  • C. Ricchiuti, D. Pereira, R. Punturo, E. Giorno, D. Miriello and A. Bloise, Hazardous elements in asbestos tremolite from the Basilicata region, southern Italy: A first step. Fibers, 9(8), 47, 2021. https://doi.org/10.3390/fib9080047.
  • G. M. Militello, A. Bloise, L. Gaggero, G. Lanzafame and R. Punturo, Multi-analytical approach for asbestos minerals and their non-asbestiform analogues: Inferences from host rock textural constraints. Fibers, 7(5), 42, 2019. https://doi.org/10.3390/fib7050042.
  • A. Şaşmaz, A. D. Kılıç and N. Konakçı, Chemical and thermal changes in Mg₃Si₂O₅(OH)₄ polymorph minerals and importance as an industrial material. Applied Sciences, 14(22), 2024. https://doi.org/ 10.3390/app142210298.
  • R. K. Upadhyay, Non-metallic minerals and their deposits. In: Geology and Mineral Resources, Springer Nature Singapore, pp. 563–652, 2025. https://doi.org/10.1007/978-981-96-0598-9_9.
  • Y. Dilek and H. Furnes, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(5–6), 387–411, 2011. https://doi.org/10.1130/B30446.1.
  • O. Parlak, T. Rızaoğlu, U. Bağcı, F. Karaoğlan and V. Höck, Tectonic significance of the geochemistry and petrology of ophiolites along the İzmir-Ankara-Erzincan Suture Zone in northeastern Anatolia. Geological Society London Special Publications, 372, 5–105, 2013. https://doi.org/10.1016/j.tecto. 2008.08.002.
  • Z. Başıbüyük, H. Yalçın and Ö. Bozkaya, Sivas bölgesi ofiyolitleri ile ilişkili asbest yataklarının mineralojisi. 14. Ulusal Kil Sempozyumu, Karadeniz Teknik Üniversitesi, 2009.
  • B. Serin, Karaçam (Sivrihisar, Eskişehir) ve çevresindeki demir, nikel zenginleşmelerinin mineralojisi, petrografisi ve jeokimyası. Yüksek Lisans Tezi, Ankara Üniversitesi, 2020.
  • J. S. Schapira, R. Bolhar, S. Master and A. H. Wilson, Mineralogical, petrological and geochemical characterisation of chrysotile, amosite and crocidolite asbestos mine waste from southern Africa in context of risk assessment and rehabilitation. Minerals, 13(10), 1352, 2023. https://doi.org/10.3390/min13101352.
  • Maden Tetkik ve Arama Genel Müdürlüğü (MTA), 1:25.000 ölçekli Afyon L25 B4 paftası jeoloji haritası. MTA Yayınları, Ankara, 2023.
  • V. Hizhnyakov ve I. Tehver, Resonant light scattering and luminescence in multimode vibronic systems: time‐dependent representation. Journal of Raman Spectroscopy, 32 (6–7), 591–597, 2001. https://doi.org/10.1002/jrs.714.
  • C. Rinaudo, D. Gastaldi ve E. Belluso, Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. The Canadian Mineralogist, 41 (4), 883–890, 2003. https://doi.org/10.2113/gscanmin.41.4.883.
  • V. C. Farmer (Ed.), The infrared spectra of minerals, Cilt 4, s. 51–67. Mineralogical Society, London, 1974.
  • A. Cavallo ve B. Rimoldi, Chrysotile asbestos in serpentinite quarries: a case study in Valmalenco, Central Alps, Northern Italy. Environmental Science: Processes & Impacts, 15 (7), 1341–1350, 2013. https://doi.org/10.1039/C3EM00193H.
  • A. Brostrøm, H. Harboe, A. S. Fonseca, M. Frederiksen, P. Kines, W. Bührmann, … ve K. A. Jensen, Asbestos fiber levels from remediation work. Journal of Hazardous Materials Advances, 17, 100552, 2025. https://doi.org/10.1016/j.hazadv.2024.100552.
  • K. Yada, Study of microstructure of chrysotile asbestos by high-resolution electron microscopy. Foundations of Crystallography, 27 (6), 659–664, 1971. https://doi.org/10.1107/S0567739471001402.
  • L. W. Zelazny, P. J. Thomas ve C. L. Lawrence, Pyrophyllite–Talc minerals. In: J. B. Dixon ve D. G. Schulze (Eds.), Soil Mineralogy with Environmental Applications, Cilt 7, s. 415–430. Soil Science Society of America, Madison, 2002. https://doi.org /10.2136/sssabookser7.c13.
  • L. Butjosa, A. Cambeses, J. A. Proenza, S. Agostini, M. Iturralde-Vinent, L. Bernal-Rodríguez ve A. Garcia-Casco, Relict abyssal mantle in a Caribbean forearc ophiolite (Villa Clara, central Cuba): Petrogenetic and geodynamic implications. International Geology Review, 66 (1), 196–227, 2024. https://doi.org/10.1080/00206814.2023.2179229.
  • G. Wille, D. Lahondère, and W. Kloppmann, Coupled SEM-EDS-RAMAN: A complimentary approach for characterisation–Application to geomaterials. In IOP Conference Series: Materials Science and Engineering (Vol. 1324, No. 1, p. 012012). IOP Publishing, 2025. https://doi.org/10.1088/1757-899X/1324/1/012012.
  • O. Şimşek, F. Özbaş, E. Kaygisiz, G. Yaşayan, and G. Ö. Ildız, Multianalytical characterization of Byzantine wall paintings by SEM-EDX, μ-XRD, Raman and FTIR techniques. Turkish Journal of Earth Sciences, 34(2), 246–262, 2025. https://doi.org/10.55730/1300-0985.1957.
  • C. Kim, Y. Kim, and Y. Roh, Thermal decomposition and phase transformation of chrysotile in asbestos-containing waste. Minerals, 15(4), 344, 2025. https://doi.org/10.3390/min15040344.
  • H. Yalçın, Ö. Bozkaya, ve C. Yılmaz, Tekirova (Antalya) Ofiyolit Napı kayaçlarının alterasyon mineralojisi ve jeokimyası. Türkiye Jeoloji Bülteni, 58(1), 63–89, 2015.
  • J. R. Petriglieri, D. Bersani, C. Laporte-Magoni, M. Tribaudino, A. Cavallo, E. Salvioli-Mariani, and F. Turci, Portable Raman spectrometer for in situ analysis of asbestos and fibrous minerals. Applied Sciences, 11(1), 287, 2020. https://doi.org/10.3390 /app11010287.
  • C. P. Girotto, de S. D. Campos, and É. A. de Campos, Chrysotile asbestos treated with phosphoric acid as an adsorbent for ammonia nitrogen. Heliyon, 6(2), e03337, 2020. https://doi.org/10.1016 /j.heliyon.2020.e03397.
  • A. Bloise, F. Parisi, M. F. La Russa, C. Apollaro, N. Godbert, I. Aiello, ... and D. Pereira, Evaluation of asbestos dispersion during laser ablation of rocks containing naturally occurring asbestos (NOA). Heliyon, 10(21), e18652, 2024. https://doi.org/10.1016/j.heliyon.2024.e39624.
  • L. Marzini, I. Osticioli, D. Ciofini, J. Agresti, S. Bellagamba, F. Paglietti, ... & S. Siano, Identification, mapping, and quantification of asbestos minerals in ACM and NOA using NIR-SWIR hyperspectral scan imaging: Preliminary study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 125893, 2025. https://doi.org/10.1016/j.saa.2025.125893.
  • A. A. Kamnev, Recent developments in analytical molecular and biomolecular spectroscopy. pectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126164, 2025 https://doi.org/10.1016/j.saa.2025.126164.
  • A. W. Atkinson, R. B. Gettins, A. L. Rickards, Estimation of fibril lengths in chrysotile asbestos fibres. Nature, 1970, 226(5249), 937–938. https://doi.org/10.1038/226937a0.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Maden Yatakları ve Jeokimya
Bölüm Araştırma Makalesi
Yazarlar

Cihan Yalçın 0000-0002-0510-2992

Mustafa Kaya 0000-0003-0694-9754

Gönderilme Tarihi 9 Nisan 2025
Kabul Tarihi 28 Mayıs 2025
Erken Görünüm Tarihi 10 Haziran 2025
Yayımlanma Tarihi 15 Temmuz 2025
DOI https://doi.org/10.28948/ngumuh.1672453
IZ https://izlik.org/JA57GT24CZ
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Yalçın, C., & Kaya, M. (2025). Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 1026-1034. https://doi.org/10.28948/ngumuh.1672453
AMA 1.Yalçın C, Kaya M. Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2025;14(3):1026-1034. doi:10.28948/ngumuh.1672453
Chicago Yalçın, Cihan, ve Mustafa Kaya. 2025. “Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 (3): 1026-34. https://doi.org/10.28948/ngumuh.1672453.
EndNote Yalçın C, Kaya M (01 Temmuz 2025) Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 1026–1034.
IEEE [1]C. Yalçın ve M. Kaya, “Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu”, NÖHÜ Müh. Bilim. Derg., c. 14, sy 3, ss. 1026–1034, Tem. 2025, doi: 10.28948/ngumuh.1672453.
ISNAD Yalçın, Cihan - Kaya, Mustafa. “Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (01 Temmuz 2025): 1026-1034. https://doi.org/10.28948/ngumuh.1672453.
JAMA 1.Yalçın C, Kaya M. Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu. NÖHÜ Müh. Bilim. Derg. 2025;14:1026–1034.
MLA Yalçın, Cihan, ve Mustafa Kaya. “Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy 3, Temmuz 2025, ss. 1026-34, doi:10.28948/ngumuh.1672453.
Vancouver 1.Yalçın C, Kaya M. Arızlı (Afyon-Şuhut) ofiyolitik melanjında krizotil oluşumlarının mineralojik, petrografik ve jeokimyasal karakterizasyonu. NÖHÜ Müh. Bilim. Derg. [Internet]. 01 Temmuz 2025;14(3):1026-34. Erişim adresi: https://izlik.org/JA57GT24CZ