Araştırma Makalesi
BibTex RIS Kaynak Göster

USE OF ARTIFICIAL NEURAL NETWORKS AS A TOOL TO PREDICT CARBON AND NITROGEN REMOVAL EFFICIENCIES IN BIOLOGICAL WASTEWATER TREATMENT PLANTS

Yıl 2017, , 375 - 386, 31.07.2017
https://doi.org/10.28948/ngumuh.341175

Öz

   Although Activated Sludge Model No. 1 (ASM1)
was used for modelling biological nitrogen removal processes, estimation of input
parameters required to run this model necessitates complicated laboratory
analyses. In this study, the performance of Backpropagation Artificial Neural
Networks (BPANN), which requires considerably less numbers of input parameters,
in predicting chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and
total nitrogen (TN) removal efficiencies was tested. For this purpose, four
activation functions were employed in BPANN. Results suggested that COD, TKN,
and TN removal efficiencies in AO processes can be accurately estimated using
BPANN, with the highest learning and prediction capacity when Sinc function is
employed. The mean square errors (MSEs) with Sinc-BPANN were calculated as 2.50
×10-4 for COD removal efficiency, 4.15×10-4 for TKN removal efficiency, and 2.65×10-4 for TN removal efficiency. Therefore,
the Sinc-BPANN is concluded to be an efficient tool for estimating nonlinear
nature of COD, TKN, and TN removal efficiencies in AO processes using
considerably less numbers of input parameters.

Kaynakça

  • [1] https://esa.un.org/unpd/wpp/Download/Standard/Population/# (erişim tarihi 15.12.2016).
  • [2] MANAV DEMİR, N., “İleri Biyolojik Arıtma Proseslerinde Nütrient Giderimi ve Mikroorganizma Türlerinin İncelenmesi”, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye, 2012.
  • [3] HENZE, M., GRADY, C.P.L., GUJER, W., MARAIS, G.V.R., MATSUO, T., Activated Sludge Model No. 1. In M. HENZE, W. GUJER, T. MINO, M.V. LOOSDRECHT (Eds.), Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 (pp. 1-37), IWA Publishing, London, UK, 2007.
  • [4] HENZE, M., GUJER, W., MINO, T., MATSUO, T., WENTZEL, M.C., MARAIS, G.V.R., Activated Sludge Model No. 2. In M. HENZE, W. GUJER, T. MINO, M.V. LOOSDRECHT (Eds.), Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 (pp. 39-73), IWA Publishing, London, UK, 2007.
  • [5] HENZE, M., GUJER, W., MINO, T., MATSUO, T., WENTZEL, M.C., MARAIS, G.V.R., “Activated Sludge Model No. 2d”, Water Science and Technology, 39, 165-182, 1999.
  • [6] GUJER, W., HENZE, M., MINO, T., VAN LOOSDRECHT, M.C.M., “Activated Sludge Model No. 3”, Water Science and Technology, 39, 183-193, 1999.
  • [7] HUG, T., BENEDETTI, L., HALL, E.R., JOHNSON, B.R., MORGENROTH, E., NOPENS, I., RIEGER, L., SHAW, A., VANROLLEGHEM, P.A., “Wastewater Treatment Models in Teaching and Training: The Mismatch between Education and Requirements for Jobs”, Water Science and Technology, 60, 1721-1729, 2009.
  • [8] COPP, J.B., MURPHY, K.L., “Estimation of the Active Nitrifying Biomass in Activated Sludge”, Water Research, 29, 1855-1862, 1995.
  • [9] SMETS, I.Y., HAEGEBART, J.V., CARETTE, R., VAN IMPE, J.F., “Linearization of the Activated Sludge Model ASM1 for Fast and Reliable Predictions”, Water Research, 37, 1831-1851, 2003.
  • [10] MULLER, A., WENTZEL, M.C., LOEWENTHAL, R.E., EKAMA, G.A., “Heterotroph Anoxic Yield in Anoxic Aerobic Activated Sludge Systems Treating Municipal Wastewater”, Water Research, 37, 2435-2441, 2003.
  • [11] SONG, Y., XIE, Y., YUDIANTO, D., “Extended Activated Sludge Model No. 1 (ASM1) for Simulating Biodegradation Process Using Bacterial Technology”, Water Science and Engineering, 5, 278-290, 2012.
  • [12] JANUS, T., ULANICKI, B., “ASM1-Based Activated Sludge Model with Polymer Kinetics for Integrated Simulation of Membrane Bioreactors for Wastewater Treatment”, Procedia Engineering, 119, 1318-1327, 2015.
  • [13] CRUZ, J.A.S., MUSATTI, S.F., SCENNA, N.J., GERNAEY, K.V., MUSATTI, C.M., “Reaction Invariant-Based Reduction of the Activated Sludge Model ASM1 for Batch Applications”, Journal of Environmental Chemical Engineering, 4, 3654-3664, 2016.
  • [14] ZHAO, B., SU, Y., “Artificial Neural Network-Based Modeling of Pressure Drop Coefficient for Cyclone Separators”, Chemical Engineering Research and Design, 88, 606-613, 2010.
  • [15] AGHAV, R.M., KUMAR, S., MUKHERJEE, S.N., “Artificial Neural Network Modeling in Competitive Adsorption of Phenol and Resorcinol from Water Environment Using Some Carbonaceous Adsorbents”, Journal of Hazardous Materials, 188, 67-77, 2011.
  • [16] HERNANDEZ-RAMIREZ, D.A., HERRERA-LOPEZ, E.J., RIVERA, A.L., DEL REAL-OLVERA, J., “Artificial Neural Network Modeling of Slaughterhouse Wastewater Removal of COD and TSS by Electrocoagulation”, Studies in Fuzziness and Soft Computing, 312, 273-280, 2014.
  • [17] SAMLI, R., SIVRI, N., SEVGEN, S., KIREMITCI, V.Z., “Applying Artificial Neural Networks for the Estimation of Chlorophyll-a Concentrations along the Istanbul Coast”, Polish Journal of Environmental Studies, 23, 1281-1287, 2014.
  • [18] BAYRAM, A., KANKAL, M., “Artificial Neural Network Modeling of Dissolved Oxygen Concentrations in a Turkish Watershed”, Polish Journal of Environmental Studies, 24, 1507-1515, 2015.
  • [19] DEMİR, S., KARADENİZ, A., MANAV DEMİR, N., “Using Steepness Coefficient to Improve Artificial Neural Network Performance for Environmental Modeling”, Polish Journal of Environmental Studies, 25, 1467-1477, 2016.
  • [20] DEMİR, S., KARADENİZ, A., MANAV DEMİR, N., “Artificial Neural Network Simulation of Cyclone Pressure Drop: Selection of the Best Activation Function”, Polish Journal of Environmental Studies, 25, 1891-1899, 2016.
  • [21] HAMED, M.M., KHALAFALLAH, M.G., HASSANIEN, E.A., “Prediction of Wastewater Treatment Plant Performance Using Artificial Neural Networks”, Environmental Modeling and Software, 19, 919-928, 2004.
  • [22] MJALLI, F., AL-ASHEH, S., ALFADALA, H.E., “Use of Artificial Neural Network Black-Box Modeling for the Prediction of Waterwater Treatment Plants Performance”, Journal of Environmental Management, 83, 329-338, 2007.
  • [23] MORAL, H., AKSOY, A., GOKCAY, C.F., “Modeling of the Activated Sludge Process by Using Artificial Neural Newtworks with Automated Architecture”, Computers and Chemical Engineering, 32, 2471-2478, 2008.
  • [24] TAKACS, I., PATRY, G.G., NOLASCO, D., “A Dynamic Model of the Clarification-Thickening Process”, Water Research, 25, 1263-1271, 1991.
  • [25] TAKACS, I., “Experiments in Activated Sludge Modeling”, PhD Thesis, Ghent University Applied Biological Sciences, Belgium, 2008.
  • [26] HOLENDA, B., PASZTOR, I., KARPATI, A., REDEY, A., “Comparison of One Dimensional Secondary Settling Tank Models”, E-Water, 06, 1-17, 2006.

BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI

Yıl 2017, , 375 - 386, 31.07.2017
https://doi.org/10.28948/ngumuh.341175

Öz

   Biyolojik
azot giderimi gerçekleştirilen atıksu arıtma proseslerinin (AO prosesi)
modellenmesi amacıyla Aktif Çamur Modeli No. 1 (ASM1) kullanılagelmişse de bu
modelde ihtiyaç duyulan girdi parametrelerinin tahmin edilmesi çok zaman
almaktadır. Bu çalışma kapsamında, ASM1 kadar detaylı girdi verisi
gerektirmeyen geri beslemeli yapay sinir ağlarının (BPANN) AO proseslerindeki
kimyasal oksijen ihtiyacı (KOİ), toplam Kjeldahl azotu (TKN) ve toplam azot
(TN) giderim verimlerinin tahminindeki performansı test edilmiştir. Bu amaçla
BPANN’de dört farklı aktivasyon fonksiyonu kullanılmıştır. Elde edilen
sonuçlar, AO proseslerindeki KOİ, TKN ve TN giderim verimlerinin BPANN ile
yüksek doğrulukta tahmin edilebildiğini göstermiş; en iyi öğrenme ve tahmin
yeteneği ise Sinc fonksiyonu ile elde edilmiştir. Sinc-BPANN ile elde edilen
ortalama kare hatalar KOİ giderim verimi için 2,50
×10-4,
TKN giderim verimi için 4,15
×10-4,
TN giderim verimi için ise 2,65
×10-4
olarak hesaplanmıştır. Buna göre Sinc-BPANN AO proseslerindeki KOİ, TKN ve TN
giderim verimlerinin doğrusal olmayan doğasını ASM1’e nazaran çok daha az girdi
parametresiyle açıklayabilmektedir.

Kaynakça

  • [1] https://esa.un.org/unpd/wpp/Download/Standard/Population/# (erişim tarihi 15.12.2016).
  • [2] MANAV DEMİR, N., “İleri Biyolojik Arıtma Proseslerinde Nütrient Giderimi ve Mikroorganizma Türlerinin İncelenmesi”, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye, 2012.
  • [3] HENZE, M., GRADY, C.P.L., GUJER, W., MARAIS, G.V.R., MATSUO, T., Activated Sludge Model No. 1. In M. HENZE, W. GUJER, T. MINO, M.V. LOOSDRECHT (Eds.), Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 (pp. 1-37), IWA Publishing, London, UK, 2007.
  • [4] HENZE, M., GUJER, W., MINO, T., MATSUO, T., WENTZEL, M.C., MARAIS, G.V.R., Activated Sludge Model No. 2. In M. HENZE, W. GUJER, T. MINO, M.V. LOOSDRECHT (Eds.), Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 (pp. 39-73), IWA Publishing, London, UK, 2007.
  • [5] HENZE, M., GUJER, W., MINO, T., MATSUO, T., WENTZEL, M.C., MARAIS, G.V.R., “Activated Sludge Model No. 2d”, Water Science and Technology, 39, 165-182, 1999.
  • [6] GUJER, W., HENZE, M., MINO, T., VAN LOOSDRECHT, M.C.M., “Activated Sludge Model No. 3”, Water Science and Technology, 39, 183-193, 1999.
  • [7] HUG, T., BENEDETTI, L., HALL, E.R., JOHNSON, B.R., MORGENROTH, E., NOPENS, I., RIEGER, L., SHAW, A., VANROLLEGHEM, P.A., “Wastewater Treatment Models in Teaching and Training: The Mismatch between Education and Requirements for Jobs”, Water Science and Technology, 60, 1721-1729, 2009.
  • [8] COPP, J.B., MURPHY, K.L., “Estimation of the Active Nitrifying Biomass in Activated Sludge”, Water Research, 29, 1855-1862, 1995.
  • [9] SMETS, I.Y., HAEGEBART, J.V., CARETTE, R., VAN IMPE, J.F., “Linearization of the Activated Sludge Model ASM1 for Fast and Reliable Predictions”, Water Research, 37, 1831-1851, 2003.
  • [10] MULLER, A., WENTZEL, M.C., LOEWENTHAL, R.E., EKAMA, G.A., “Heterotroph Anoxic Yield in Anoxic Aerobic Activated Sludge Systems Treating Municipal Wastewater”, Water Research, 37, 2435-2441, 2003.
  • [11] SONG, Y., XIE, Y., YUDIANTO, D., “Extended Activated Sludge Model No. 1 (ASM1) for Simulating Biodegradation Process Using Bacterial Technology”, Water Science and Engineering, 5, 278-290, 2012.
  • [12] JANUS, T., ULANICKI, B., “ASM1-Based Activated Sludge Model with Polymer Kinetics for Integrated Simulation of Membrane Bioreactors for Wastewater Treatment”, Procedia Engineering, 119, 1318-1327, 2015.
  • [13] CRUZ, J.A.S., MUSATTI, S.F., SCENNA, N.J., GERNAEY, K.V., MUSATTI, C.M., “Reaction Invariant-Based Reduction of the Activated Sludge Model ASM1 for Batch Applications”, Journal of Environmental Chemical Engineering, 4, 3654-3664, 2016.
  • [14] ZHAO, B., SU, Y., “Artificial Neural Network-Based Modeling of Pressure Drop Coefficient for Cyclone Separators”, Chemical Engineering Research and Design, 88, 606-613, 2010.
  • [15] AGHAV, R.M., KUMAR, S., MUKHERJEE, S.N., “Artificial Neural Network Modeling in Competitive Adsorption of Phenol and Resorcinol from Water Environment Using Some Carbonaceous Adsorbents”, Journal of Hazardous Materials, 188, 67-77, 2011.
  • [16] HERNANDEZ-RAMIREZ, D.A., HERRERA-LOPEZ, E.J., RIVERA, A.L., DEL REAL-OLVERA, J., “Artificial Neural Network Modeling of Slaughterhouse Wastewater Removal of COD and TSS by Electrocoagulation”, Studies in Fuzziness and Soft Computing, 312, 273-280, 2014.
  • [17] SAMLI, R., SIVRI, N., SEVGEN, S., KIREMITCI, V.Z., “Applying Artificial Neural Networks for the Estimation of Chlorophyll-a Concentrations along the Istanbul Coast”, Polish Journal of Environmental Studies, 23, 1281-1287, 2014.
  • [18] BAYRAM, A., KANKAL, M., “Artificial Neural Network Modeling of Dissolved Oxygen Concentrations in a Turkish Watershed”, Polish Journal of Environmental Studies, 24, 1507-1515, 2015.
  • [19] DEMİR, S., KARADENİZ, A., MANAV DEMİR, N., “Using Steepness Coefficient to Improve Artificial Neural Network Performance for Environmental Modeling”, Polish Journal of Environmental Studies, 25, 1467-1477, 2016.
  • [20] DEMİR, S., KARADENİZ, A., MANAV DEMİR, N., “Artificial Neural Network Simulation of Cyclone Pressure Drop: Selection of the Best Activation Function”, Polish Journal of Environmental Studies, 25, 1891-1899, 2016.
  • [21] HAMED, M.M., KHALAFALLAH, M.G., HASSANIEN, E.A., “Prediction of Wastewater Treatment Plant Performance Using Artificial Neural Networks”, Environmental Modeling and Software, 19, 919-928, 2004.
  • [22] MJALLI, F., AL-ASHEH, S., ALFADALA, H.E., “Use of Artificial Neural Network Black-Box Modeling for the Prediction of Waterwater Treatment Plants Performance”, Journal of Environmental Management, 83, 329-338, 2007.
  • [23] MORAL, H., AKSOY, A., GOKCAY, C.F., “Modeling of the Activated Sludge Process by Using Artificial Neural Newtworks with Automated Architecture”, Computers and Chemical Engineering, 32, 2471-2478, 2008.
  • [24] TAKACS, I., PATRY, G.G., NOLASCO, D., “A Dynamic Model of the Clarification-Thickening Process”, Water Research, 25, 1263-1271, 1991.
  • [25] TAKACS, I., “Experiments in Activated Sludge Modeling”, PhD Thesis, Ghent University Applied Biological Sciences, Belgium, 2008.
  • [26] HOLENDA, B., PASZTOR, I., KARPATI, A., REDEY, A., “Comparison of One Dimensional Secondary Settling Tank Models”, E-Water, 06, 1-17, 2006.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği
Yazarlar

Neslihan Manav Demir 0000-0002-6050-6308

Yayımlanma Tarihi 31 Temmuz 2017
Gönderilme Tarihi 16 Aralık 2016
Kabul Tarihi 23 Mayıs 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Manav Demir, N. (2017). BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 375-386. https://doi.org/10.28948/ngumuh.341175
AMA Manav Demir N. BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI. NÖHÜ Müh. Bilim. Derg. Temmuz 2017;6(2):375-386. doi:10.28948/ngumuh.341175
Chicago Manav Demir, Neslihan. “BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6, sy. 2 (Temmuz 2017): 375-86. https://doi.org/10.28948/ngumuh.341175.
EndNote Manav Demir N (01 Temmuz 2017) BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6 2 375–386.
IEEE N. Manav Demir, “BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI”, NÖHÜ Müh. Bilim. Derg., c. 6, sy. 2, ss. 375–386, 2017, doi: 10.28948/ngumuh.341175.
ISNAD Manav Demir, Neslihan. “BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 6/2 (Temmuz 2017), 375-386. https://doi.org/10.28948/ngumuh.341175.
JAMA Manav Demir N. BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI. NÖHÜ Müh. Bilim. Derg. 2017;6:375–386.
MLA Manav Demir, Neslihan. “BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 6, sy. 2, 2017, ss. 375-86, doi:10.28948/ngumuh.341175.
Vancouver Manav Demir N. BİYOLOJİK ATIKSU ARITMA TESİSLERİNDE KARBON VE AZOT GİDERİM VERİMLERİNİN TAHMİNİ AMACIYLA YAPAY SİNİR AĞLARININ KULLANIMI. NÖHÜ Müh. Bilim. Derg. 2017;6(2):375-86.

download