Araştırma Makalesi
BibTex RIS Kaynak Göster

YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ

Yıl 2018, , 224 - 236, 31.01.2018
https://doi.org/10.28948/ngumuh.386621

Öz

   Granüler malzemeler dolgular, istinat
duvarları, yol temelleri ve demir yolu balastı gibi inşaat mühendisliği
uygulamalarında sıkça kullanılmaktadır. Ancak gün geçtikçe artan doğal
kaynakların azalması ve madencilikle ilgili düzenlenen çevresel yönetmelikler,
doğal kayaların ekonomik ve kolay çıkarılmasını daha da zorlaştırmaktadır. Bu
durum ülkeleri doğal agregaya alternatif malzeme arayışına itmiştir. Bu çalışmada kentsel dönüşüm projesi
kapsamında depreme dayanıksız olduğu belirlenen yapıdan alınan yıkıntı
atıklarının birtakım işlemlerden geçirilerek geri dönüşümü yapılmıştır. Daha
sonra laboratuvar deneyleri ile bu atıkların fiziksel ve mekanik özellikleri
belirlenerek karayolu dolgularında kullanılabilmesi durumu incelenmiştir. Elde
edilen sonuçlar farklı ülkelerde yapılan çalışmalar ile karşılaştırılarak
ülkemizdeki yıkıntı atıklarının dünyadaki yıkıntı atıklarına benzerlikleri
araştırılmıştır.

Çalışma
sonucunda ülkemizdeki binalardan elde edilen yapım ve yıkım atıklarının geri dönüştürülerek karayolu dolgularında
kullanılmasına engel bir sonuç ile karşılaşılmamıştır.

Kaynakça

  • [1] ARULRAJAH, A., PIRATHEEPAN, J., ATHEESAN, T., BO, M.W., “Geotechnical Properties of Recycled Crushed Brick in Pavement Applications”, Journal of Materials in Civil Engineering, 23(10), 1444–1452, 2011.
  • [2] VIERIA, C.S., PEREIRA P.M., “Use of Recycled Construction and Demolition Materials in Geotechnical Applications: A Review Resources”, Conservation and Recycling, 103, 192–204, 2015b.
  • [3] ARULRAJAH, A., PIRATHEEPAN, J., DISFANI M.M., BO M.W., “Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications”, Journal of Materials in Civil Engineering, 25(8), 1077-1088, 2013a.
  • [4] RAHMAN, M.A., ARULRAJAH, A., PIRATHEEPAN, J., BO, M.W., IMETEAZ M.A., “Resilient Modulus and Permanent Deformation Responses of Geogrid-Reinforced Construction and Demolition Materials”, Journal of Materials in Civil Engineering, 26(3), 512-519, 2014.
  • [5] RAHMAN, M.A., IMTEAZ, M.A., ARULRAJAH, A., PIRATHEEPAN, J., DISFANI, M.M., “Recycled Construction and Demolition Materials in Permeable Pavement Systems: Geotechnical and Hydraulic Characteristics”, Journal of Cleaner Production, 90, 183–94, 2015.
  • [6] JIMENEZ, J.R., AYUSO, J., AGRELA, F., LOPEZ, M., GALVIN, A.P., “Utilisation of Unbound Recycled Aggregates From Selected CDW in Unpaved Rural Roads”, Resources, Conservation and Recycling, 58, 88– 97, 2012.
  • [7] O’MAHONY, M.M., MILLIGAN, G.W.E., “Use of Recycled Materials in Subbase Layers”, Transp. Res. Rec. 1310, 73–80, 1991.
  • [8] BENNERT, T., PAPP, W., MAHER, A., GUCUNSKI, N., “Utilization of Construction and Demolition Debris under Traffic-Type Loading in Base and Subbase Applications Transport”, Res. Rec.: J. Transp. Res. Board, 1714, 33–39, 2000.
  • [9] CHINI, A., KUO, S., ARMAGHANI, J., DUXBURY, J., “Test of Recycled Concrete Aggregate in Accelerated Test Track”, Journal of Transportation Engineering, 127, 486–492, 2001.
  • [10] NATAATMADJA, A., TAN, Y., “Resilient Response of Recycled Concrete Road Aggregates”, Journal of Transportation Engineering, 127, 450–453, 2001.
  • [11] MOLENAAR, A., VAN NIEKERK, A., “Effects of Gradation, Composition, and Degree of Compaction on the Mechanical Characteristics of Recycled Unbound Materials”, Transp. Res. Rec.: J. Transp. Res. Board 1787, 73–82, 2002.
  • [12] SIVAKUMAR, V., MC KINLEY, J.D., FERGUSON, D., “Reuse of Construction Waste: Performance Under Repeated Loading”, Proceedings of ICE - Geotechnical Engineering, 157(2), 91–96, 2004.
  • [13] POON, C.S., CHAN, D., “Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick as Unbound Road Sub-base”, Construction and Building Materials, 20, 578–585, 2006.
  • [14] SANTOS, E.C.G., VILAR, O.M., “Use of Recycled Construction and Demolition Wastes (RCDW) as Backfill of Reinforced Soil Structures”, In: Proceedings of the Fourth European Geosynthetics Conference, EUROGEO 4, Paper No. 1992008, Edinburg, Scotland, 2008.
  • [15] LEITE, F.C., MOTTA, R.S., VASCONCELOS, K.L., BERMUCCI, L., “Laboratory Evaluation of Recycled Construction and Demolition Waste for Pavements”, Construction and Building Materials, 25, 2972–2979, 2011.
  • [16] GABR A R., CAMERON, D.A., “Properties of Recycled Concrete Aggregate for Unbound Pavement Construction”, Journal of Materials in Civil Engineering, 24(6), 754-764, 2012.
  • [17] BARBUDO, A., AGRELA, F., AYUSO, J., JIMENEZ, J.R., POON, C.S., “Statistical Analysis of Recycled Aggregates Derived from Different Sources for Sub-base Applications”, Construction and Building Materials, 28, 129–138, 2012.
  • [18] CERNI G., CARDONE F., BOCCI M., “Permanent Deformation Behaviour of Unbound Recycled Mixtures”, Construction and Building Materials, 37, 573-580, 2012.
  • [19] ARULRAJAH, A., RAHMAN, M.A., PIRATHEEPAN, J., BO, M.W., IMTEAZ, M.A., “Interface Shear Strength Testing of Geogrid-Reinforced Construction and Demolition Materials”, Advances in Civil Engineering Materials, 2(1), 189–200, 2013b.
  • [20] ARULRAJAH, A., RAHMAN, M.A., PIRATHEEPAN, J., BO, M.W., IMTEAZ, M.A., “Evaluation of Interface Shear Strength Properties of Geogrid-Reinforced Construction and Demolition Materials Using a Modified Large Scale Direct Shear Testing Apparatus”, Journal of Materials in Civil Engineering, 26, 974–982, 2014b.
  • [21] ARULRAJAH, A., DISFANI M.M., HORPIBULSUK, S., SUKSIRIPATTANAPONG, C., PRONGMANEE N., “Physical Properties and Shear Strength Responses of Recycled Construction and Demolition Materials in Unbound Pavement Base/subbase Applications”, Construction and Building Materials, 58, 245–257, 2014c.
  • [22] DISFANI, M. M., ARULRAJAH, A., BO, M. W., HANKOUR, R., “Recycled Crushed Glass in Road Work Applications”, Waste Management, 31(11), 2341–2351, 2011.
  • [23] AYAN V., LIMBACHIYA, M.C., OMER J.R., AZADANI S.M.N., “Compaction Assessment of Recycled Aggregates for Use in Unbound Subbase Application”, Journal of Civil Engineering and Management, 20(2), 169-174, 2014.
  • [24] ASTM D 422-63, “Standard Test Method for Particle-Size Analysis of Soils”. West Conshohocken, U.S.A., 2009.
  • [25] ASTM D 1241-07, “Standard Specification for Materials for Soil-Aggregate Subbase, Base, and Surface Courses”. West Conshohocken, U.S.A., 2007.
  • [26] TS 1500, “İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması”, Ankara, Türkiye, 2000.
  • [27] BS EN 933-11, “Tests for Geometrical Properties of Aggregates Part 11: Classification Test for the Constituents of Coarse Recycled Aggregate”. London, U.K., 2009.
  • [28] ASTM C 127 – 01, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate” West Conshohocken, U.S.A., 2001.
  • [29] ASTM C 128 – 01, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate” West Conshohocken, U.S.A., 2001.
  • [30] TS 9582 EN 933-3, “Agregaların Geometrik Özellikleri İçin Deneyler Bölüm 3: Tane Şekli Tayini-Yassılık Endeksi”, Ankara, Türkiye, 1999.
  • [31] ASTM C 131–03, “Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine”. West Conshohocken, U.S.A., 2003.
  • [32] ASTM D 1557, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort”. West Conshohocken, U.S.A., 2012.
  • [33] ASTM D 1883–99, “Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils”. West Conshohocken, U.S.A., 1999.
  • [34] VIERIA, C.S., PEREIRA, P.M., “Damage induced by recycled Construction and Demolition Wastes on the Short-Term Tensile Behaviour of two Geosynthetics”, Transportation Geotechnics, 4, 64-75, 2015a.
  • [35] PARK, T., “Application of Construction and Building Debris as Base and Subbase Materials in Rigid Pavement”, Journal of Transportation Engineering, 129, 558–563, 2003.
  • [36] ARULRAJAH, A., PIRATHEEPAN, J., DISFANI, M.M., “Reclaimed Asphalt Pavement and Recycled Concrete Aggregate Blends in Pavement Subbases: Laboratory and Field Evaluation”, Journal of Materials in Civil Engineering, 26(2), 349-357, 2014a.
  • [37] KAZMEE H., TUTUMLUER E., “Evaluation of Aggregate Subgrade Materials Used as Pavement Subgrade/Granular Subbase”, Illinois Center for Transportation. Research Report FHWA-ICT-15-013, 2015.
  • [38] DISFANI, M.M., ARULRAJAH, A., HAGHIGHI, H., MOHAMMADINIA, A., HORPIBULSUK, S., “Flexural Beam Fatigue Strength Evaluation of Crushed Brick as a Supplementary Material in Cement Stabilized Recycled Concrete Aggregates”, Construction and Building Materials, 68, 667–676, 2014.
  • [39] NEVES, J., FREIRE, A.C., ROQUE, A.J., MARTINS, I., ANTUNES, M.L., FARIA, G., “Utilization of Recycled Materials in Unbound Granular Layers Validated by Experimental Test Sections”, In: Ninth International Conference on the Bearing Capacity of Roads, Railways and Airfields, Trondheim, Norway, 2013.
  • [40] PEREZ P., AGRELA F., HERRADOR R., ORDONEZ J., “Application of Cement-Treated Recycled Materials in the Construction of a Section of Road in Malaga, Spain”, Construction and Building Materials, 44, 593–599, 2013.
  • [41] HERRADOR, R., PEREZ, P., GARACH, L., ORDONEZ, J., “Use of Recycled Construction and Demolition Waste Aggregate for Road Course Surfacing”, Journal of Transportation Engineering, 138(2), 182–190, 2012.
  • [42] BLANKENAGEL B.J., “Characterization of Recycled Concrete for Use as Pavement Base Material”, Brigham Young University, Department of Civil and Environmental Engineering, Master of Science, 66s, 2005.
  • [43] KARAYOLLARI TEKNİK ŞARTNAMESİ “Yol Altyapısı, Sanat Yapıları, Köprü ve Tüneller, Üstyapı ve Çeşitli İşler”, Ankara, Türkiye, 2013.

INVESTIGATION OF THE USABILITY OF CONSTRUCTION AND DEMOLITION WASTES IN ROAD BASES

Yıl 2018, , 224 - 236, 31.01.2018
https://doi.org/10.28948/ngumuh.386621

Öz

   Granular
materials are commonly used in civil engineering applications
like embankments, retaining walls, road bases and railway ballast.
However, the availability of areas where natural rock can easily and
economically be mined is becoming more difficult depending previous depletion
of resources and environmental regulations associated with mining. This
situation has pushed searching alternative materials to virgin aggregate of
contractors. In this study, construction and demolition wastes taken from a
structure that have low endurance against earthquake were subjected to some
process and recycled. Then, its suitability of physical and mechanical
properties for using as a filling material in base/subbase layer of road was
investigated by laboratory tests. The results were compared with studies from
different countries to examine the similarity of the wastes in Turkey. Finally,
as it is seen, the waste material in Turkey has potential for using in
base/subbase course of roads.

Kaynakça

  • [1] ARULRAJAH, A., PIRATHEEPAN, J., ATHEESAN, T., BO, M.W., “Geotechnical Properties of Recycled Crushed Brick in Pavement Applications”, Journal of Materials in Civil Engineering, 23(10), 1444–1452, 2011.
  • [2] VIERIA, C.S., PEREIRA P.M., “Use of Recycled Construction and Demolition Materials in Geotechnical Applications: A Review Resources”, Conservation and Recycling, 103, 192–204, 2015b.
  • [3] ARULRAJAH, A., PIRATHEEPAN, J., DISFANI M.M., BO M.W., “Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications”, Journal of Materials in Civil Engineering, 25(8), 1077-1088, 2013a.
  • [4] RAHMAN, M.A., ARULRAJAH, A., PIRATHEEPAN, J., BO, M.W., IMETEAZ M.A., “Resilient Modulus and Permanent Deformation Responses of Geogrid-Reinforced Construction and Demolition Materials”, Journal of Materials in Civil Engineering, 26(3), 512-519, 2014.
  • [5] RAHMAN, M.A., IMTEAZ, M.A., ARULRAJAH, A., PIRATHEEPAN, J., DISFANI, M.M., “Recycled Construction and Demolition Materials in Permeable Pavement Systems: Geotechnical and Hydraulic Characteristics”, Journal of Cleaner Production, 90, 183–94, 2015.
  • [6] JIMENEZ, J.R., AYUSO, J., AGRELA, F., LOPEZ, M., GALVIN, A.P., “Utilisation of Unbound Recycled Aggregates From Selected CDW in Unpaved Rural Roads”, Resources, Conservation and Recycling, 58, 88– 97, 2012.
  • [7] O’MAHONY, M.M., MILLIGAN, G.W.E., “Use of Recycled Materials in Subbase Layers”, Transp. Res. Rec. 1310, 73–80, 1991.
  • [8] BENNERT, T., PAPP, W., MAHER, A., GUCUNSKI, N., “Utilization of Construction and Demolition Debris under Traffic-Type Loading in Base and Subbase Applications Transport”, Res. Rec.: J. Transp. Res. Board, 1714, 33–39, 2000.
  • [9] CHINI, A., KUO, S., ARMAGHANI, J., DUXBURY, J., “Test of Recycled Concrete Aggregate in Accelerated Test Track”, Journal of Transportation Engineering, 127, 486–492, 2001.
  • [10] NATAATMADJA, A., TAN, Y., “Resilient Response of Recycled Concrete Road Aggregates”, Journal of Transportation Engineering, 127, 450–453, 2001.
  • [11] MOLENAAR, A., VAN NIEKERK, A., “Effects of Gradation, Composition, and Degree of Compaction on the Mechanical Characteristics of Recycled Unbound Materials”, Transp. Res. Rec.: J. Transp. Res. Board 1787, 73–82, 2002.
  • [12] SIVAKUMAR, V., MC KINLEY, J.D., FERGUSON, D., “Reuse of Construction Waste: Performance Under Repeated Loading”, Proceedings of ICE - Geotechnical Engineering, 157(2), 91–96, 2004.
  • [13] POON, C.S., CHAN, D., “Feasible Use of Recycled Concrete Aggregates and Crushed Clay Brick as Unbound Road Sub-base”, Construction and Building Materials, 20, 578–585, 2006.
  • [14] SANTOS, E.C.G., VILAR, O.M., “Use of Recycled Construction and Demolition Wastes (RCDW) as Backfill of Reinforced Soil Structures”, In: Proceedings of the Fourth European Geosynthetics Conference, EUROGEO 4, Paper No. 1992008, Edinburg, Scotland, 2008.
  • [15] LEITE, F.C., MOTTA, R.S., VASCONCELOS, K.L., BERMUCCI, L., “Laboratory Evaluation of Recycled Construction and Demolition Waste for Pavements”, Construction and Building Materials, 25, 2972–2979, 2011.
  • [16] GABR A R., CAMERON, D.A., “Properties of Recycled Concrete Aggregate for Unbound Pavement Construction”, Journal of Materials in Civil Engineering, 24(6), 754-764, 2012.
  • [17] BARBUDO, A., AGRELA, F., AYUSO, J., JIMENEZ, J.R., POON, C.S., “Statistical Analysis of Recycled Aggregates Derived from Different Sources for Sub-base Applications”, Construction and Building Materials, 28, 129–138, 2012.
  • [18] CERNI G., CARDONE F., BOCCI M., “Permanent Deformation Behaviour of Unbound Recycled Mixtures”, Construction and Building Materials, 37, 573-580, 2012.
  • [19] ARULRAJAH, A., RAHMAN, M.A., PIRATHEEPAN, J., BO, M.W., IMTEAZ, M.A., “Interface Shear Strength Testing of Geogrid-Reinforced Construction and Demolition Materials”, Advances in Civil Engineering Materials, 2(1), 189–200, 2013b.
  • [20] ARULRAJAH, A., RAHMAN, M.A., PIRATHEEPAN, J., BO, M.W., IMTEAZ, M.A., “Evaluation of Interface Shear Strength Properties of Geogrid-Reinforced Construction and Demolition Materials Using a Modified Large Scale Direct Shear Testing Apparatus”, Journal of Materials in Civil Engineering, 26, 974–982, 2014b.
  • [21] ARULRAJAH, A., DISFANI M.M., HORPIBULSUK, S., SUKSIRIPATTANAPONG, C., PRONGMANEE N., “Physical Properties and Shear Strength Responses of Recycled Construction and Demolition Materials in Unbound Pavement Base/subbase Applications”, Construction and Building Materials, 58, 245–257, 2014c.
  • [22] DISFANI, M. M., ARULRAJAH, A., BO, M. W., HANKOUR, R., “Recycled Crushed Glass in Road Work Applications”, Waste Management, 31(11), 2341–2351, 2011.
  • [23] AYAN V., LIMBACHIYA, M.C., OMER J.R., AZADANI S.M.N., “Compaction Assessment of Recycled Aggregates for Use in Unbound Subbase Application”, Journal of Civil Engineering and Management, 20(2), 169-174, 2014.
  • [24] ASTM D 422-63, “Standard Test Method for Particle-Size Analysis of Soils”. West Conshohocken, U.S.A., 2009.
  • [25] ASTM D 1241-07, “Standard Specification for Materials for Soil-Aggregate Subbase, Base, and Surface Courses”. West Conshohocken, U.S.A., 2007.
  • [26] TS 1500, “İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması”, Ankara, Türkiye, 2000.
  • [27] BS EN 933-11, “Tests for Geometrical Properties of Aggregates Part 11: Classification Test for the Constituents of Coarse Recycled Aggregate”. London, U.K., 2009.
  • [28] ASTM C 127 – 01, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate” West Conshohocken, U.S.A., 2001.
  • [29] ASTM C 128 – 01, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate” West Conshohocken, U.S.A., 2001.
  • [30] TS 9582 EN 933-3, “Agregaların Geometrik Özellikleri İçin Deneyler Bölüm 3: Tane Şekli Tayini-Yassılık Endeksi”, Ankara, Türkiye, 1999.
  • [31] ASTM C 131–03, “Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine”. West Conshohocken, U.S.A., 2003.
  • [32] ASTM D 1557, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort”. West Conshohocken, U.S.A., 2012.
  • [33] ASTM D 1883–99, “Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils”. West Conshohocken, U.S.A., 1999.
  • [34] VIERIA, C.S., PEREIRA, P.M., “Damage induced by recycled Construction and Demolition Wastes on the Short-Term Tensile Behaviour of two Geosynthetics”, Transportation Geotechnics, 4, 64-75, 2015a.
  • [35] PARK, T., “Application of Construction and Building Debris as Base and Subbase Materials in Rigid Pavement”, Journal of Transportation Engineering, 129, 558–563, 2003.
  • [36] ARULRAJAH, A., PIRATHEEPAN, J., DISFANI, M.M., “Reclaimed Asphalt Pavement and Recycled Concrete Aggregate Blends in Pavement Subbases: Laboratory and Field Evaluation”, Journal of Materials in Civil Engineering, 26(2), 349-357, 2014a.
  • [37] KAZMEE H., TUTUMLUER E., “Evaluation of Aggregate Subgrade Materials Used as Pavement Subgrade/Granular Subbase”, Illinois Center for Transportation. Research Report FHWA-ICT-15-013, 2015.
  • [38] DISFANI, M.M., ARULRAJAH, A., HAGHIGHI, H., MOHAMMADINIA, A., HORPIBULSUK, S., “Flexural Beam Fatigue Strength Evaluation of Crushed Brick as a Supplementary Material in Cement Stabilized Recycled Concrete Aggregates”, Construction and Building Materials, 68, 667–676, 2014.
  • [39] NEVES, J., FREIRE, A.C., ROQUE, A.J., MARTINS, I., ANTUNES, M.L., FARIA, G., “Utilization of Recycled Materials in Unbound Granular Layers Validated by Experimental Test Sections”, In: Ninth International Conference on the Bearing Capacity of Roads, Railways and Airfields, Trondheim, Norway, 2013.
  • [40] PEREZ P., AGRELA F., HERRADOR R., ORDONEZ J., “Application of Cement-Treated Recycled Materials in the Construction of a Section of Road in Malaga, Spain”, Construction and Building Materials, 44, 593–599, 2013.
  • [41] HERRADOR, R., PEREZ, P., GARACH, L., ORDONEZ, J., “Use of Recycled Construction and Demolition Waste Aggregate for Road Course Surfacing”, Journal of Transportation Engineering, 138(2), 182–190, 2012.
  • [42] BLANKENAGEL B.J., “Characterization of Recycled Concrete for Use as Pavement Base Material”, Brigham Young University, Department of Civil and Environmental Engineering, Master of Science, 66s, 2005.
  • [43] KARAYOLLARI TEKNİK ŞARTNAMESİ “Yol Altyapısı, Sanat Yapıları, Köprü ve Tüneller, Üstyapı ve Çeşitli İşler”, Ankara, Türkiye, 2013.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Bahadır Ok Bu kişi benim 0000-0001-8333-5671

Ahmet Demir Bu kişi benim 0000-0003-3559-8113

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 11 Mayıs 2017
Kabul Tarihi 13 Temmuz 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Ok, B., & Demir, A. (2018). YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 224-236. https://doi.org/10.28948/ngumuh.386621
AMA Ok B, Demir A. YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. Ocak 2018;7(1):224-236. doi:10.28948/ngumuh.386621
Chicago Ok, Bahadır, ve Ahmet Demir. “YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 1 (Ocak 2018): 224-36. https://doi.org/10.28948/ngumuh.386621.
EndNote Ok B, Demir A (01 Ocak 2018) YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 224–236.
IEEE B. Ok ve A. Demir, “YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 1, ss. 224–236, 2018, doi: 10.28948/ngumuh.386621.
ISNAD Ok, Bahadır - Demir, Ahmet. “YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (Ocak 2018), 224-236. https://doi.org/10.28948/ngumuh.386621.
JAMA Ok B, Demir A. YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2018;7:224–236.
MLA Ok, Bahadır ve Ahmet Demir. “YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 1, 2018, ss. 224-36, doi:10.28948/ngumuh.386621.
Vancouver Ok B, Demir A. YAPIM YIKIM ATIKLARININ YOL TEMELLERİNDE KULLANILABİLİRLİĞİNİN İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2018;7(1):224-36.

download