Derleme
BibTex RIS Kaynak Göster

SHAPE MEMORY ALLOYS IN AEROSPACE APPLICATIONS

Yıl 2018, , 335 - 349, 31.01.2018
https://doi.org/10.28948/ngumuh.387101

Öz

  
As a metallic class of
smart materials, shape memory alloys are commonly used and have promising
potentials in applications that require a good strength beside functional
properties. In this study, fundamental properties and their mechanisms are
discussed. Afterwards, aerospace applications of shape memory alloys are
reviewed.

Kaynakça

  • [1] FUNAKUBO, H., Shape Memory Alloys, Taylor & Francis, New York, ABD, 1987.
  • [2] WAYMAN, C.M., OTSUKA, K., Shape Memory Materials, Cambridge University Press, Cambridge, United Kingdom, 1998.
  • [3] KARACA, H.E., SAGHAIAN, S.M., TOBE, H., ACAR, E., BASARAN, B., NAGASAKO, M., KAINUMA, R.,NOEBE, R.D. “Diffusionless Phase Transformation Characteristics of Mn75.7Pt24.3”, J. Alloys Compd,589; 412–415, 2014.
  • [4] WOLLANTS, P., ROOS, J.R, DELAEY, L., “On the Stress-Dependence of the Latent Heat of Transformation as related to the Efficiency of a Work Performing Cycle of a Memory Engine”, Scr. Metall, 14;1217–1223, 1980.
  • [5] WOLLANTS, P., ROOS, J.R.,DELAEY, L., “Thermally- and Stress-Induced Thermoelastic Martensitic Transformations in the Reference Frame of Equilibrium Thermodynamics”, Prog. Mater. Sci, 37; 227-288, 993.
  • [6] SALZBRENNER, R.J.,COHEN, M., “On the Thermodynamics of Thermoelastic Martensitic Transformations”, Acta Metall, 27; 739–748, 1979.
  • [7] TONG, H., WAYMAN, C.M., “Thermodynamics of Thermoelastic Martensitic Transformations”, Acta Metall, 23;209–215, 1975.
  • [8] ACAR, E., Precipitation, Orientation and Composition Effects on the Shape Memory Properties of High Strength NiTiHfPd Alloys, PhD Dissertation, University of Kentucky, 2014.
  • [9] KAYA, I., TOBE, H., KARACA, H.E., ACAR, E., CHUMLYAKOV, Y., “Shape Memory Behavior of [111]-Oriented NiTi Single Crystals after Stress-Assisted Aging” Acta Metall. Sin. (English Lett), 29; 282–286, 2016.
  • [10] KARACA, H.E., ACAR, E., BASARAN, B., NOEBE, R.D.,BIGELOW, G., GARG, A.,YANG, F., MILLS, M.J., CHUMLYAKOV, Y., “Effects of Aging on [111]-Oriented NiTiHfPd Single Crystals under Compression”, Scr. Mater, 67;728–731, 2012.
  • [11] ACAR, E.,KARACA, H.E.,BASARAN, B.,YANG,F., MILLS, M.J., NOEBE, R.D., CHUMLYAKOV, Y., “Role of Aging Time on the Microstructure and Shape Memory Properties of NiTiHfPd Single Crystals”, Mater. Sci. Eng. A, 573;161–165, 2013.
  • [12] ACAR, E., “Dynamic Mechanical Response of a Ni45.7Ti29.3Hf20Pd5 Alloy”, Mater. Sci. Eng. A., 633;169-175, 2015.
  • [13] ACAR, E., TOBE, H., KAYA, I., KARACA, H.E., CHUMLYAKOV, Y., “Compressive Response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 Shape-Memory Alloys”, J. Mater. Sci., 50;1924-1934, 2015.
  • [14] KARACA, H.E., ACAR, E.,TOBE, H., SAGHAIAN,S.M.,”NiTiHf-Based Shape Memory Alloys”, Mater. Sci. Technol., 30;1530–1544, 2014.
  • [15] MOHD JANI, J., LEARY, M., SUBIC, A., GIBSON, M.A., “A Review of Shape Memory Alloy Research, Applications and Opportunities”, Mater. Des., 56; 1078–1113, 2014.
  • [16] http: // www.materialstoday.com/composite-applications/news/aiaa-names-top-ten-emerging-aerospace/.” (erişim tarihi 25.01.2017).
  • [17] BIL, C., MASSEY, K., ABDULLAH, E.J., “Wing Morphing Control with Shape Memory Alloy Actuators”, J. Intell. Mater. Syst. Struct., 24;879–898, 2013.
  • [18] HARTL, D.J., LAGOUDAS, D.C.., “Aerospace Applications of Shape Memory Alloys”, Proc. Inst. Mech. Eng. Part G, J. Aerosp. Eng., 221;535–552, 2007.
  • [19] GHEORGHITA, V., GUMPEL, P., STRITTMATTER, J., ANGHEL, C., HEITZ, T., ,SENN, M., “Using Shape Memory Alloys in Automotive Safety Systems”, Proceedings of the FISITA 2012 World Automotive Congress: Volume 7: Vehicle Design and Testing (I), Berlin, Heidelberg: Springer Berlin Heidelberg. 909-917, 2013.
  • [20] DUNNE, J.P., HOPKINS, M.A., BAUMANN, E.W., PITT, D.M., EDWARD, V.W.,”Overview of the SAMPSON Smart Inlet”, 6th Annual International symposium on smart structures and materials conference, 1-5, 1999.
  • [21] MANI, R., LAGOUDAS, D.C., REDINIOTIS, O.K., “MEMS-Based Active Skin for Turbulent Drag Reduction”, Proceedings of the SPIE, 5056; 9–20, 2003.
  • [22] HARTL, D.C., LAGOUDAS, D.C., CALKINS, F.T., MABE, J.H., “Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: I. Thermomechanical Characterization”, Smart Mater. Struct., 19;15020, 2010.
  • [23] KUDVA, J.N., “Overview of the DARPA Smart Wing Project. J. Intell. Mater. Syst. Struct”. 15; 261-267, 2004.
  • [24] SINGH, K., SIROHI, J.,CHOPRA, I., “An Improved Shape Memory Alloy Actuator for Rotor Blade Tracking”, J. Intell. Mater. Syst. Struct.,14;767–786, 2003.
  • [25] STACHOWIAK, G.B., MCCORMICK, P.G., “Shape Memory Behaviour Associated with the R and Martensitic Transformations in a NiTi Alloy”, Acta Metall., 36; 291–297, 1988.
  • [26] KUTLUCINAR, I., Aircraft with Shape Memory Alloys for Retractable Landing Gear. US Patent 6938416B1, 2005.
  • [27] GERACI, F., COOPER, J.E., AMPRIKIDIS, M., “Development of Smart Vortex Generators”, Proc. SPIE 5056, Smart Structures and Materials, 5056;1–8, 2003.
  • [28] BALTA,J.A., SIMPSON,J., MICHAUD,V., MANSON,J.A.E.,SCHROOTEN,J., “Embedded Shape Memory Alloys Confer Aerodynamic Profile Adaptivity”, Smart Mater. Bull.,12; 8–12, 2001.
  • [29] HUANG,W., Shape Memory Alloys and their Application to Actuators for Deployable Structures. PhD Dissertation ,University of Cambridge, 1998.
  • [30] KARACA, H.E., ACAR, E., DED, G.S., BASARAN, B., TOBE, H., NOEBE, R.D., BİGELOW, G., CHUMLYAKOV, Y., “Shape Memory Behavior of High Strength NiTiHfPd Polycrystalline Alloys”, Acta Mater., 61;5036–5049, 2013.
  • [31] ELZEY, D.M., SOFLA, A.Y.N., WADLEY, H.N.G., “A Bio-Inspired High-Authority Actuator for Shape Morphing Structures”, Proc. SPIE 5053, Smart Structures and Materials., 5053;92–100, 2003.
  • [32] NGUYEN, N.T., PRECUP, N., LIVNE, E., URNES, J., DICKEY, E., NELSON, C., CHIEW, J., RODRIGUEZ, D., TING, E., LEBOPFSKY, S., “Wind Tunnel Investigation of a Flexible Wing High-Lift Configuration with a Variable Camber Continuous Trailing Edge Flap Design”, 33rd AIAA Applied Aerodynamics Conference, 2015.
  • [33] http://flexsys.com. (erişim tarihi 25.01.2017).
  • [34] KARACA, H.E., ACAR, E., DED, G.S., SAGHAIAN, S.M., BASARAN, B.,TOBE, H., KOK, M., MAIER, H.J., NOEBE, R.D., CHUMLYAKOV, Y., “Microstructure and Transformation related Behaviors of a Ni45.3Ti29.7Hf20Cu5 High Temperature Shape Memory Alloy”, Mater. Sci. Eng. A., 627; 82–94, 2015.
  • [35] ACAR, E., KARACA, H.E, TOBE, H., NOEBE, R.D., CHUMLYAKOV,Y., “Orientation Dependence of the Shape Memory Properties in Aged Ni45.3Ti29.7Hf20Pd5 Single Crystals”, Intermetallics, 54;60–68, 2014.
  • [36] ACAR, E., KARACA, H.E.,TOBE, H., NOEBE, R.D., CHUMLYAKOV, Y.,”Characterization of the Shape Memory Properties of a Ni45.3Ti39.7Hf10Pd5 Alloy”, J. Alloys Compd., 578;297–302, 2013.
  • [37] KARACA, H.E., ACAR, E., BASARAN, B., NOEBE, R.D., CHUMLYAKOV, Y., “Superelastic Response and Damping Capacity of Ultrahigh-strength [111]-Oriented NiTiHfPd Single Crystals”, Scr. Mater., 67; 447–450, 2012.
  • [38] ACAR, E., OZBULUT, O.E., KARACA, H.E.,“Experimental Investigation and Modeling of the Loading Rate and Temperature Dependent Superelastic Response of a High Performance Shape-Memory Alloy”, Smart Mater. Struct., 24; 75020, 2015.
  • [39] BARBARINO, S., BILGEN, O., AJAJ, R.M., FRISWELL, M.I., INMAN,D. J., “A Review of Morphing Aircraft”, J. Intell. Mater. Syst. Struct., 22;823–877, 2011.
  • [40] RAZOV, A.I., CHERNIAVSKY, A.G.,”Applications of Shape Memory Alloys in Space Engineering: Past and Future”,Space Mechanisms and Tribology, Proceedings of the 8th European Symposium. 141, 1999.
  • [41] WILLEY, C.E., HUETTL, B., HILL, S.W., “Design and Development of a Miniature Mechanisms Tool-kit for Micro Spacecraft”, In Proceedings of the 35th Aerospace Mechanisms Symposium, 2001.
  • [42] CARPENTER B., LYONS, J., “EO-1 Technology Validation Report: Lightweight Flexible Solar Array Experiment”, NASA Technical report, 2001.
  • [43] REYNAERTS,D., VAN BRUSSEL, H., “Design Aspects of Shape Memory Actuators. Mechatronics” 8;635–656, 1998.
  • [44] WALLACE, T.A., SMITH, S.W., PIASCIK, R.S., HORNE, M.R., MESSICK, P.L., ALEXA, J.A., GLAESSGEN, E.H., HAILER, B.T., Strain-detecting Composite Materials. US-Patent-9,499,882, 2016.
  • [45] TURNER, T.L., KIDD, R.T., LOCKARD, D.P., KHORRAMI, M.R., STREETT, C.L., WEBER, D.L., Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise associated with Aircraft Systems. US-Patent-9,242,720, 2016.
  • [46] PADULA, S., Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response. US-Patent-9,476,113, 2016.
  • [47] PADULA, S,, NOEBE, R.D., STANFORD, M.K., DELLACORTE, C., Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials. US-Patent-9,169,545, 2015.
  • [48] JARDINE, A.P., Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments. US-Patent-9,010,106, 2015.
  • [49] TURNER, G.C., TRAVIS L., CANO, C., ROBERTO J., SILOX, R.J., BUEHRLE, R.D., CAGLE, CHRISTOPHER M., CABELL, R.H., HILTON, I., Jet Engine Exhaust Nozzle Flow Effector. US-Patent-8,683,807, 2014.
  • [50] YOUNG, T., HINDLE, K., Payload Launch Lock Mechanism. US-Patent-8,708,322, 2014.
  • [51] GMBH, T.,TROX T.J.N., Jet Nozzles – Acoustically and Technically Optimised, 2013.
  • [52] YSON, A.P., MESSINGER, R.H., Shape Memory Alloy Linear Actuator. US Patent 7464548B2, 2008.
  • [53] REY, N.M., MILLER, R.M., TILLMAN, T.G., RUKUS, R.M., KETTLE, J.M., Variable Area Nozzle for Gas Turbine Engines Driven by Shape Memory Alloy Actuators. US Patents 7004047, 2006.
  • [54] SCHRON, J.H., SUMMERS, J.L., Clamping Device. EP Patent 834,380, 1998.
  • [55] THOMA, P, KAO, M.,SCHMITZ, D.,.Extended Life SMA Actuator. US Patents 5419788, 1995.
  • [56] SWENSON, S.R., Shape Memory Bi-directional Rotary Actuator. US Patent 51272281992, 1992.
  • [57] MORGAN, R.K., YAEGER, J.R., Self-regulated Actuator. US Patents 4524343, 1985.

HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR

Yıl 2018, , 335 - 349, 31.01.2018
https://doi.org/10.28948/ngumuh.387101

Öz

   Şekil
hafızalı alaşımlar metalik akıllı malzeme grubu olup fonksiyonel özellik ile
birlikte mekanik dayanım da gerektiren uygulamalar için günümüzde kullanılan ve
kullanım alanları hızla genişleyen malzemelerdir. Bu makalede şekil hafızalı
alaşımların temel fonksiyonel özelliklerinden ve bu özellikleri meydana getiren
mekanizmalardan bahsedilmiştir. Daha sonra, şekil hafızalı alaşımların
havacılık ve uzay alanındaki mevcut ve potansiyel uygulamaları derlenmiştir. 

Kaynakça

  • [1] FUNAKUBO, H., Shape Memory Alloys, Taylor & Francis, New York, ABD, 1987.
  • [2] WAYMAN, C.M., OTSUKA, K., Shape Memory Materials, Cambridge University Press, Cambridge, United Kingdom, 1998.
  • [3] KARACA, H.E., SAGHAIAN, S.M., TOBE, H., ACAR, E., BASARAN, B., NAGASAKO, M., KAINUMA, R.,NOEBE, R.D. “Diffusionless Phase Transformation Characteristics of Mn75.7Pt24.3”, J. Alloys Compd,589; 412–415, 2014.
  • [4] WOLLANTS, P., ROOS, J.R, DELAEY, L., “On the Stress-Dependence of the Latent Heat of Transformation as related to the Efficiency of a Work Performing Cycle of a Memory Engine”, Scr. Metall, 14;1217–1223, 1980.
  • [5] WOLLANTS, P., ROOS, J.R.,DELAEY, L., “Thermally- and Stress-Induced Thermoelastic Martensitic Transformations in the Reference Frame of Equilibrium Thermodynamics”, Prog. Mater. Sci, 37; 227-288, 993.
  • [6] SALZBRENNER, R.J.,COHEN, M., “On the Thermodynamics of Thermoelastic Martensitic Transformations”, Acta Metall, 27; 739–748, 1979.
  • [7] TONG, H., WAYMAN, C.M., “Thermodynamics of Thermoelastic Martensitic Transformations”, Acta Metall, 23;209–215, 1975.
  • [8] ACAR, E., Precipitation, Orientation and Composition Effects on the Shape Memory Properties of High Strength NiTiHfPd Alloys, PhD Dissertation, University of Kentucky, 2014.
  • [9] KAYA, I., TOBE, H., KARACA, H.E., ACAR, E., CHUMLYAKOV, Y., “Shape Memory Behavior of [111]-Oriented NiTi Single Crystals after Stress-Assisted Aging” Acta Metall. Sin. (English Lett), 29; 282–286, 2016.
  • [10] KARACA, H.E., ACAR, E., BASARAN, B., NOEBE, R.D.,BIGELOW, G., GARG, A.,YANG, F., MILLS, M.J., CHUMLYAKOV, Y., “Effects of Aging on [111]-Oriented NiTiHfPd Single Crystals under Compression”, Scr. Mater, 67;728–731, 2012.
  • [11] ACAR, E.,KARACA, H.E.,BASARAN, B.,YANG,F., MILLS, M.J., NOEBE, R.D., CHUMLYAKOV, Y., “Role of Aging Time on the Microstructure and Shape Memory Properties of NiTiHfPd Single Crystals”, Mater. Sci. Eng. A, 573;161–165, 2013.
  • [12] ACAR, E., “Dynamic Mechanical Response of a Ni45.7Ti29.3Hf20Pd5 Alloy”, Mater. Sci. Eng. A., 633;169-175, 2015.
  • [13] ACAR, E., TOBE, H., KAYA, I., KARACA, H.E., CHUMLYAKOV, Y., “Compressive Response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 Shape-Memory Alloys”, J. Mater. Sci., 50;1924-1934, 2015.
  • [14] KARACA, H.E., ACAR, E.,TOBE, H., SAGHAIAN,S.M.,”NiTiHf-Based Shape Memory Alloys”, Mater. Sci. Technol., 30;1530–1544, 2014.
  • [15] MOHD JANI, J., LEARY, M., SUBIC, A., GIBSON, M.A., “A Review of Shape Memory Alloy Research, Applications and Opportunities”, Mater. Des., 56; 1078–1113, 2014.
  • [16] http: // www.materialstoday.com/composite-applications/news/aiaa-names-top-ten-emerging-aerospace/.” (erişim tarihi 25.01.2017).
  • [17] BIL, C., MASSEY, K., ABDULLAH, E.J., “Wing Morphing Control with Shape Memory Alloy Actuators”, J. Intell. Mater. Syst. Struct., 24;879–898, 2013.
  • [18] HARTL, D.J., LAGOUDAS, D.C.., “Aerospace Applications of Shape Memory Alloys”, Proc. Inst. Mech. Eng. Part G, J. Aerosp. Eng., 221;535–552, 2007.
  • [19] GHEORGHITA, V., GUMPEL, P., STRITTMATTER, J., ANGHEL, C., HEITZ, T., ,SENN, M., “Using Shape Memory Alloys in Automotive Safety Systems”, Proceedings of the FISITA 2012 World Automotive Congress: Volume 7: Vehicle Design and Testing (I), Berlin, Heidelberg: Springer Berlin Heidelberg. 909-917, 2013.
  • [20] DUNNE, J.P., HOPKINS, M.A., BAUMANN, E.W., PITT, D.M., EDWARD, V.W.,”Overview of the SAMPSON Smart Inlet”, 6th Annual International symposium on smart structures and materials conference, 1-5, 1999.
  • [21] MANI, R., LAGOUDAS, D.C., REDINIOTIS, O.K., “MEMS-Based Active Skin for Turbulent Drag Reduction”, Proceedings of the SPIE, 5056; 9–20, 2003.
  • [22] HARTL, D.C., LAGOUDAS, D.C., CALKINS, F.T., MABE, J.H., “Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: I. Thermomechanical Characterization”, Smart Mater. Struct., 19;15020, 2010.
  • [23] KUDVA, J.N., “Overview of the DARPA Smart Wing Project. J. Intell. Mater. Syst. Struct”. 15; 261-267, 2004.
  • [24] SINGH, K., SIROHI, J.,CHOPRA, I., “An Improved Shape Memory Alloy Actuator for Rotor Blade Tracking”, J. Intell. Mater. Syst. Struct.,14;767–786, 2003.
  • [25] STACHOWIAK, G.B., MCCORMICK, P.G., “Shape Memory Behaviour Associated with the R and Martensitic Transformations in a NiTi Alloy”, Acta Metall., 36; 291–297, 1988.
  • [26] KUTLUCINAR, I., Aircraft with Shape Memory Alloys for Retractable Landing Gear. US Patent 6938416B1, 2005.
  • [27] GERACI, F., COOPER, J.E., AMPRIKIDIS, M., “Development of Smart Vortex Generators”, Proc. SPIE 5056, Smart Structures and Materials, 5056;1–8, 2003.
  • [28] BALTA,J.A., SIMPSON,J., MICHAUD,V., MANSON,J.A.E.,SCHROOTEN,J., “Embedded Shape Memory Alloys Confer Aerodynamic Profile Adaptivity”, Smart Mater. Bull.,12; 8–12, 2001.
  • [29] HUANG,W., Shape Memory Alloys and their Application to Actuators for Deployable Structures. PhD Dissertation ,University of Cambridge, 1998.
  • [30] KARACA, H.E., ACAR, E., DED, G.S., BASARAN, B., TOBE, H., NOEBE, R.D., BİGELOW, G., CHUMLYAKOV, Y., “Shape Memory Behavior of High Strength NiTiHfPd Polycrystalline Alloys”, Acta Mater., 61;5036–5049, 2013.
  • [31] ELZEY, D.M., SOFLA, A.Y.N., WADLEY, H.N.G., “A Bio-Inspired High-Authority Actuator for Shape Morphing Structures”, Proc. SPIE 5053, Smart Structures and Materials., 5053;92–100, 2003.
  • [32] NGUYEN, N.T., PRECUP, N., LIVNE, E., URNES, J., DICKEY, E., NELSON, C., CHIEW, J., RODRIGUEZ, D., TING, E., LEBOPFSKY, S., “Wind Tunnel Investigation of a Flexible Wing High-Lift Configuration with a Variable Camber Continuous Trailing Edge Flap Design”, 33rd AIAA Applied Aerodynamics Conference, 2015.
  • [33] http://flexsys.com. (erişim tarihi 25.01.2017).
  • [34] KARACA, H.E., ACAR, E., DED, G.S., SAGHAIAN, S.M., BASARAN, B.,TOBE, H., KOK, M., MAIER, H.J., NOEBE, R.D., CHUMLYAKOV, Y., “Microstructure and Transformation related Behaviors of a Ni45.3Ti29.7Hf20Cu5 High Temperature Shape Memory Alloy”, Mater. Sci. Eng. A., 627; 82–94, 2015.
  • [35] ACAR, E., KARACA, H.E, TOBE, H., NOEBE, R.D., CHUMLYAKOV,Y., “Orientation Dependence of the Shape Memory Properties in Aged Ni45.3Ti29.7Hf20Pd5 Single Crystals”, Intermetallics, 54;60–68, 2014.
  • [36] ACAR, E., KARACA, H.E.,TOBE, H., NOEBE, R.D., CHUMLYAKOV, Y.,”Characterization of the Shape Memory Properties of a Ni45.3Ti39.7Hf10Pd5 Alloy”, J. Alloys Compd., 578;297–302, 2013.
  • [37] KARACA, H.E., ACAR, E., BASARAN, B., NOEBE, R.D., CHUMLYAKOV, Y., “Superelastic Response and Damping Capacity of Ultrahigh-strength [111]-Oriented NiTiHfPd Single Crystals”, Scr. Mater., 67; 447–450, 2012.
  • [38] ACAR, E., OZBULUT, O.E., KARACA, H.E.,“Experimental Investigation and Modeling of the Loading Rate and Temperature Dependent Superelastic Response of a High Performance Shape-Memory Alloy”, Smart Mater. Struct., 24; 75020, 2015.
  • [39] BARBARINO, S., BILGEN, O., AJAJ, R.M., FRISWELL, M.I., INMAN,D. J., “A Review of Morphing Aircraft”, J. Intell. Mater. Syst. Struct., 22;823–877, 2011.
  • [40] RAZOV, A.I., CHERNIAVSKY, A.G.,”Applications of Shape Memory Alloys in Space Engineering: Past and Future”,Space Mechanisms and Tribology, Proceedings of the 8th European Symposium. 141, 1999.
  • [41] WILLEY, C.E., HUETTL, B., HILL, S.W., “Design and Development of a Miniature Mechanisms Tool-kit for Micro Spacecraft”, In Proceedings of the 35th Aerospace Mechanisms Symposium, 2001.
  • [42] CARPENTER B., LYONS, J., “EO-1 Technology Validation Report: Lightweight Flexible Solar Array Experiment”, NASA Technical report, 2001.
  • [43] REYNAERTS,D., VAN BRUSSEL, H., “Design Aspects of Shape Memory Actuators. Mechatronics” 8;635–656, 1998.
  • [44] WALLACE, T.A., SMITH, S.W., PIASCIK, R.S., HORNE, M.R., MESSICK, P.L., ALEXA, J.A., GLAESSGEN, E.H., HAILER, B.T., Strain-detecting Composite Materials. US-Patent-9,499,882, 2016.
  • [45] TURNER, T.L., KIDD, R.T., LOCKARD, D.P., KHORRAMI, M.R., STREETT, C.L., WEBER, D.L., Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise associated with Aircraft Systems. US-Patent-9,242,720, 2016.
  • [46] PADULA, S., Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response. US-Patent-9,476,113, 2016.
  • [47] PADULA, S,, NOEBE, R.D., STANFORD, M.K., DELLACORTE, C., Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials. US-Patent-9,169,545, 2015.
  • [48] JARDINE, A.P., Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments. US-Patent-9,010,106, 2015.
  • [49] TURNER, G.C., TRAVIS L., CANO, C., ROBERTO J., SILOX, R.J., BUEHRLE, R.D., CAGLE, CHRISTOPHER M., CABELL, R.H., HILTON, I., Jet Engine Exhaust Nozzle Flow Effector. US-Patent-8,683,807, 2014.
  • [50] YOUNG, T., HINDLE, K., Payload Launch Lock Mechanism. US-Patent-8,708,322, 2014.
  • [51] GMBH, T.,TROX T.J.N., Jet Nozzles – Acoustically and Technically Optimised, 2013.
  • [52] YSON, A.P., MESSINGER, R.H., Shape Memory Alloy Linear Actuator. US Patent 7464548B2, 2008.
  • [53] REY, N.M., MILLER, R.M., TILLMAN, T.G., RUKUS, R.M., KETTLE, J.M., Variable Area Nozzle for Gas Turbine Engines Driven by Shape Memory Alloy Actuators. US Patents 7004047, 2006.
  • [54] SCHRON, J.H., SUMMERS, J.L., Clamping Device. EP Patent 834,380, 1998.
  • [55] THOMA, P, KAO, M.,SCHMITZ, D.,.Extended Life SMA Actuator. US Patents 5419788, 1995.
  • [56] SWENSON, S.R., Shape Memory Bi-directional Rotary Actuator. US Patent 51272281992, 1992.
  • [57] MORGAN, R.K., YAEGER, J.R., Self-regulated Actuator. US Patents 4524343, 1985.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Emre Acar 0000-0003-1114-6251

Tuğrul Oktay Bu kişi benim 0000-0003-4860-2230

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 1 Şubat 2017
Kabul Tarihi 11 Eylül 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Acar, E., & Oktay, T. (2018). HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 335-349. https://doi.org/10.28948/ngumuh.387101
AMA Acar E, Oktay T. HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR. NÖHÜ Müh. Bilim. Derg. Ocak 2018;7(1):335-349. doi:10.28948/ngumuh.387101
Chicago Acar, Emre, ve Tuğrul Oktay. “HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 1 (Ocak 2018): 335-49. https://doi.org/10.28948/ngumuh.387101.
EndNote Acar E, Oktay T (01 Ocak 2018) HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 335–349.
IEEE E. Acar ve T. Oktay, “HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 1, ss. 335–349, 2018, doi: 10.28948/ngumuh.387101.
ISNAD Acar, Emre - Oktay, Tuğrul. “HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (Ocak 2018), 335-349. https://doi.org/10.28948/ngumuh.387101.
JAMA Acar E, Oktay T. HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR. NÖHÜ Müh. Bilim. Derg. 2018;7:335–349.
MLA Acar, Emre ve Tuğrul Oktay. “HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 1, 2018, ss. 335-49, doi:10.28948/ngumuh.387101.
Vancouver Acar E, Oktay T. HAVACILIK VE UZAY UYGULAMALARINDA ŞEKİL HAFIZALI ALAŞIMLAR. NÖHÜ Müh. Bilim. Derg. 2018;7(1):335-49.

download