Araştırma Makalesi
BibTex RIS Kaynak Göster

DESIGN OF PERFECT METAMAETIRAL ABSORBER FOR MICROWAVE APPLICATIONS

Yıl 2018, , 438 - 442, 31.01.2018
https://doi.org/10.28948/ngumuh.387336

Öz

   Metamaterials
are materials that are not found directly in nature and exhibit extraordinary electromagnetic
properties. Today, metamaterials have a wide range of application areas such as
medical, image processing, signal absorption, cloaking, sensor, antenna etc.
Metamaterials increases gain of the materials since it has extraordinary
electromagnetic properties. In this study, signal absorption of metamaterials
is discussed and analyzed as detailed. For this purpose, a metamaterial has
excellent signal absorption was designed and its numerical results were
obtained. According to results, the perfect signal absorption ratio is 99.98%
at the frequency of 11.227 GHz. In addition, a parametric study has also been
realized to demonstrate the mechanical adjustability of the structure. This
work is performed for microwave application and it can also be adapted for
different frequency bands.

Kaynakça

  • [1] VESELAGO, V.G., “The Electrodynamics of Substances With Simultaneously Negative Values of and μ”, Soviet Physics Uspekhi, 10, 517-526, 1968.
  • [2] PENDRY, J.B., HOLDEN, A.J., ROBBINS, D.J., STEWARD, W.J., “Magnetism from Conductors and Enhanced Nonlinear Phenomena”, IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084, 1999.
  • [3] PENDRY, J.B., SCHURIAND, D., SMITH, D.R., “Controlling Electromagnetic Fields”, Science 312, 1780–1782, 2006.
  • [4] SHELBY, R.A., SMITH, D.R., NEMAT-NASSER, S.C., SCHULTZ, S., “Microwave Transmission Through a Two-Dimensional, Isotropic, Left-Handed Metamaterial”, Applied Physics Letters, 78, 489-491, 2001
  • [5] SMITH, D.R., PENDRY, J. B., WILTSHIRE, M.C.K., “Metamaterials and Negative Refractive Index”, Science, 305, 788-792, 2004.
  • [6] PAPAIOANNOU, M., PLUM, E., ZHELUDEV, I.N., “All-Optical Pattern Recognition and Image Processing on a Metamaterial Beam Splitter”, ACS Photonics, 4, 217–222, 2017.
  • [7] ZENG, L., LI, B., LI, H., WANG, B., “Nano Sensing Based on Transparency Effect in Planar Metamaterial”, Journal of Modern Optics, 64, 1158–1163, 2017.
  • [8] SCHURIG, D., MOCK, J.J., JUSTICE, B.J., CUMMER, S.A., PENDRY, J.B., STARR, A.F., SMITH, D.R., “Metamaterial Electromagnetic Cloak at Microwave Frequencies”, Science, 314, 977-980, 2006.
  • [9] HE, X., LI, S., YANG, X., SHI, S., WU, F., JIANG, J., “High-Sensitive Dual-Band Sensor Based on Microsize Circular Ring Complementary Terahertz Metamaterial”, Journal of Electromagnetic Waves and Applications, 31, 91-100, 2017.
  • [10] WU, B.I., WANG, W., PACHECO, J., CHEN, X., GRZEGORCZYK, T., KONG, J.A., “A Study of Using Metamaterials as Antenna Substrate to Enhance Gain”, Progress in Electromagnetics Research, 51, 295-328, 2005.
  • [11] SABAH, C., TAYGUR, M.M., ZORAL, E.Y., “Investigation of Microwave Metamaterial Based on H-Shaped Resonator in A Waveguide Configuration and Its Sensor and Absorber Applications”, Journal of Electromagnetic Waves and Applications, 29, 819–831, 2015.

MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI

Yıl 2018, , 438 - 442, 31.01.2018
https://doi.org/10.28948/ngumuh.387336

Öz

   Metamalzemeler doğada direkt olarak
bulunmayan ve sıra dışı elektromanyetik özellikler gösteren malzemelerdir.
Günümüzde metamalzemelerin çok çeşitli uygulama alanları bulunmaktadır. Bunlar;
medikal, görüntü işleme, sinyal emilimi, görünmezlik pelerini, sensör, anten
vb. Metamalzemeler gösterdiği sıra dışı elektromanyetik özellikler ile
malzemelerde kazanç artışı sağlamaktadır. Bu çalışmada metamalzemelerin sinyal
emilimi ele alınmıştır. Bu amaçla mükemmel sinyal emilimi yapabilen bir
metamalzeme tasarlanmış ve nümerik sonuçları elde edilmiştir. Elde edilen
sonuçlara göre amaçlanan metamalzeme 11,227 GHz frekansında %99,98 gibi mükemmel bir oranda gelen
sinyali emebilmektedir. Ayrıca, yapının mekanik ayarlanabilirlik özelliğinin de
göstermek amacıyla parametrik bir çalışma da gerçekleştirilmiştir. Mikrodalga
için yapılan bu çalışma farklı frekans bantları için de uyarlanabilir. 

Kaynakça

  • [1] VESELAGO, V.G., “The Electrodynamics of Substances With Simultaneously Negative Values of and μ”, Soviet Physics Uspekhi, 10, 517-526, 1968.
  • [2] PENDRY, J.B., HOLDEN, A.J., ROBBINS, D.J., STEWARD, W.J., “Magnetism from Conductors and Enhanced Nonlinear Phenomena”, IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084, 1999.
  • [3] PENDRY, J.B., SCHURIAND, D., SMITH, D.R., “Controlling Electromagnetic Fields”, Science 312, 1780–1782, 2006.
  • [4] SHELBY, R.A., SMITH, D.R., NEMAT-NASSER, S.C., SCHULTZ, S., “Microwave Transmission Through a Two-Dimensional, Isotropic, Left-Handed Metamaterial”, Applied Physics Letters, 78, 489-491, 2001
  • [5] SMITH, D.R., PENDRY, J. B., WILTSHIRE, M.C.K., “Metamaterials and Negative Refractive Index”, Science, 305, 788-792, 2004.
  • [6] PAPAIOANNOU, M., PLUM, E., ZHELUDEV, I.N., “All-Optical Pattern Recognition and Image Processing on a Metamaterial Beam Splitter”, ACS Photonics, 4, 217–222, 2017.
  • [7] ZENG, L., LI, B., LI, H., WANG, B., “Nano Sensing Based on Transparency Effect in Planar Metamaterial”, Journal of Modern Optics, 64, 1158–1163, 2017.
  • [8] SCHURIG, D., MOCK, J.J., JUSTICE, B.J., CUMMER, S.A., PENDRY, J.B., STARR, A.F., SMITH, D.R., “Metamaterial Electromagnetic Cloak at Microwave Frequencies”, Science, 314, 977-980, 2006.
  • [9] HE, X., LI, S., YANG, X., SHI, S., WU, F., JIANG, J., “High-Sensitive Dual-Band Sensor Based on Microsize Circular Ring Complementary Terahertz Metamaterial”, Journal of Electromagnetic Waves and Applications, 31, 91-100, 2017.
  • [10] WU, B.I., WANG, W., PACHECO, J., CHEN, X., GRZEGORCZYK, T., KONG, J.A., “A Study of Using Metamaterials as Antenna Substrate to Enhance Gain”, Progress in Electromagnetics Research, 51, 295-328, 2005.
  • [11] SABAH, C., TAYGUR, M.M., ZORAL, E.Y., “Investigation of Microwave Metamaterial Based on H-Shaped Resonator in A Waveguide Configuration and Its Sensor and Absorber Applications”, Journal of Electromagnetic Waves and Applications, 29, 819–831, 2015.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Malzeme ve Metalürji Mühendisliği
Yazarlar

Ali Çıngı 0000-0001-9194-8179

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 25 Ocak 2017
Kabul Tarihi 28 Aralık 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Çıngı, A. (2018). MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 438-442. https://doi.org/10.28948/ngumuh.387336
AMA Çıngı A. MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI. NÖHÜ Müh. Bilim. Derg. Ocak 2018;7(1):438-442. doi:10.28948/ngumuh.387336
Chicago Çıngı, Ali. “MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 1 (Ocak 2018): 438-42. https://doi.org/10.28948/ngumuh.387336.
EndNote Çıngı A (01 Ocak 2018) MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 1 438–442.
IEEE A. Çıngı, “MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 1, ss. 438–442, 2018, doi: 10.28948/ngumuh.387336.
ISNAD Çıngı, Ali. “MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/1 (Ocak 2018), 438-442. https://doi.org/10.28948/ngumuh.387336.
JAMA Çıngı A. MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI. NÖHÜ Müh. Bilim. Derg. 2018;7:438–442.
MLA Çıngı, Ali. “MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 1, 2018, ss. 438-42, doi:10.28948/ngumuh.387336.
Vancouver Çıngı A. MİKRODALGA UYGULAMALARI İÇİN MÜKEMMEL METAMALZEME SİNYAL EMİCİ TASARIMI. NÖHÜ Müh. Bilim. Derg. 2018;7(1):438-42.

Cited By

download