Araştırma Makalesi
BibTex RIS Kaynak Göster

NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ

Yıl 2018, , 880 - 898, 20.07.2018
https://doi.org/10.28948/ngumuh.445339

Öz

Son
yıllarda ısı transferini iyileştirme çalışmalarının nano boyutlardaki
parçacıkların etkisi ile oluşturulan nanoakışkanlar üzerinde yoğunlaştığı
görülmektedir. Nanoakışkanların ısı transferini artırdığını gösteren birçok
çalışma bulunmasına rağmen geleneksel ısı transfer akışkanlarının yerini
almasının önünde birçok engel bulunmaktadır. Bunlardan en önemlisi nanoakışkanlarda
kararlılık konusudur. Bu konuda yapılan çalışmalar arasındaki çelişkiler,
nanoakışkanlara bakış açısının değiştirilmesi gerektiği sonucunu ortaya
koymaktadır. Nanoakışkanlar ısı transferini artırmanın yanında yüksek
kararlılığa sahip olmalıdır.  Sonuç
olarak, nanoakışkanın ısı transferini iyileştirme oranının, kararlılık
sağlandıktan sonra ölçülmesinin gerekliliği fikri ortaya çıkmaktadır. Bu
araştırmada nanoakışkanlarda kararlılık konusunda yapılan çalışmalar detaylı
bir şekilde incelenerek ısı transferi üzerindeki etkileri araştırılmıştır.

Kaynakça

  • [1] BABITA, S.K.S., GUPTA, S.M., "Preparation and evaluation of stable nanofluids for heat transfer application: A review". Experimental Thermal and Fluid Science, Cilt 79, 202-212, 2016.
  • [2] ABU-NADA, E., ZIYAD, K., SALEH, M., ALI, Y., "Heat Transfer Enhancement in Combined Convection Around a Horizontal Cylinder Using Nanofluids". Journal of Heat Transfer, Cilt 130. 8, 084505, 2008.
  • [3] ALBADR, J., S. TAYALM. ALASADI, "Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations". Case Studies in Thermal Engineering, Cilt 1. 1, 38-44, 2013.
  • [4] CHANG, M.H., H.S. LIUC.Y. TAI, "Preparation of copper oxide nanoparticles and its application in nanofluid". Powder Technology, Cilt 207. 1-3, 378-386, 2011.
  • [5] CHOI, C., H.S. YOOJ.M. OH, "Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants". Current Applied Physics, Cilt 8. 6, 710-712, 2008.
  • [6] CHOI, S.U.S., ZHANG, Z.G., YU, W., LOCKWOOD, F.E., GRULKE, E.A., "Anomalous thermal conductivity enhancement in nanotube suspensions". Applied physics letters, Cilt 79. 14, 2252-2254, 2001.
  • [7] CHOPKAR, M., SUDARSHAN, S., DAS, P. K., MANNA, I., "Effect of Particle Size on Thermal Conductivity of Nanofluid". Metallurgical and Materials Transactions A, Cilt 39. 7, 1535-1542, 2008.
  • [8] CHUNG, S.J., LEONARD, J.P., NETTLESHIP, I., LEE, J.K., SOONG, Y., MARTELLO, D.V., CHYU, M.K., "Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion". Powder Technology, Cilt 194. 1-2, 75-80, 2009.
  • [9] DAS, S.K., S.U.S. CHOIH.E. PATEL, "Heat Transfer in Nanofluids—A Review". Heat Transfer Engineering, Cilt 27. 10, 3-19, 2006.
  • [10] XUAN, Y., LI, Q., "Heat transfer enhancement of nanofluids ". International Journal of Heat and Fluid Flow, Cilt 21. 1, 58-64, 2000.
  • [11] LEE, S., CHOI, S. U. S., LI, S., EASTMAN, J. A., "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles". Journal of Heat Transfer, Cilt 121. 2, 280, 1999.
  • [12] MURSHED, S.M.S., LEONG, K. C., YANG, C., "Enhanced thermal conductivity of TiO2—water based nanofluids". International Journal of Thermal Sciences, Cilt 44, 367-373, 2005.
  • [13] ÖZERINÇ, S., KAKAÇ, S., YAZICIOĞLU, A.G. "Enhanced thermal conductivity of nanofluids: a state-of-the-art review". Microfluidics and Nanofluidics, Cilt 8. 2, 145-170, 2009.
  • [14] WEI, Y., HUAQING, X., YANG, L., LIFEI, C., QIANG, W., "Experimental on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water". Powder Technology, Cilt 230, 14-19, 2012.
  • [15] MOGHADASSI, A.R., MASOUD HOSSEINI, S., HENNEKE, D., ELKAMEL, A., "A MODEL OF NANOFLUIDS EFFECTIVE THERMAL CONDUCTIVITY BASED ON DIMENSIONLESS GROUPS". Journal of Thermal Analysis and Calorimetry, Cilt 96, 81-84, 2009.
  • [16] YU, W., FRANCE, D. M., ROUTBORT, J. L., CHOI, S.U. S., "Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements". Heat Transfer Engineering, Cilt 29 (5), 432-460, 2008.
  • [17] WANG, X., CHOI, S. U. S., XU, X., "Thermal Conductivity of Nanoparticle - Fluid Mixture". Journal of Thermophysics and Heat Transfer, Cilt 13. 4, 474-480, 1999.
  • [18] VAJJHA, R.S., DAS, D.K., "Experimental determination of thermal conductivity of three nanofluids". International Journal of Heat and Mass Transfer, Cilt 52 4675–4682, 2009.
  • [19] BECK, M.P., YANHUI, Y., PRAMOD, W., AMYN S.T., "The effect of particle size on the thermal conductivity of alumina nanofluids". Journal of Nanoparticle Research, Cilt 11. 5, 1129-1136, 2008.
  • [20] BECK, M.P., Y. YUAN, P. WARRIERA.S. TEJA, "The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures". Journal of Nanoparticle Research, Cilt 12. 4, 1469-1477, 2009.
  • [21] SHALKEVICH, N., W. ESCHER, T. BURGI, B. MICHEL, L. SI-AHMEDD. POULIKAKOS, "On the thermal conductivity of gold nanoparticle colloids". Langmuir, Cilt 26. 2, 663-70, 2010.
  • [22] XIE, H., WANG, J., XI, T., LIU, Y., "Thermal Conductivity of Suspensions Containing Nanosized SiC Particles". International Journal of Thermophysics, Cilt 23. 2, 2001.
  • [23] TIMOFEEVA, E.V., ROUTBORT, J. L., SINGH, D., "Particle shape effects on thermophysical properties of alumina nanofluids". Journal of Applied Physics, Cilt 106. 1, 2009.
  • [24] CHEN, H., S. WITHARANA, Y. JIN, C. KIMY. DING, "Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology". Particuology, Cilt 7. 2, 151-157, 2009.
  • [25] YU, W., H. XIE, L. CHENY. LI, "Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles". Powder Technology, Cilt 197. 3, 218-221, 2010.
  • [26] ESFE, M.H., KARIMIPOUR, A., YAN, W. M., AKBARI, M., "Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanopariciple". International Journal of Heat and Mass Transfer, Cilt 88 (2015) 728–734. 2015.
  • [27] PATEL, H.E., S.K. DAS, T. SUNDARARAJAN, A. SREEKUMARAN NAIR, B. GEORGET. PRADEEP, "Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects". Applied Physics Letters, Cilt 83. 14, 2931, 2003.
  • [28] SHIMA, P.D., PHILIP, J., RAJ, B., "Iron Oxide Nanofluids and Study of TemperatureDependence on Thermal Conductivity and Viscosity". The Journal of Physical Chemistry C, Cilt 114, 18825-18833, 2010.
  • [29] HABIBZADEH, S., A. KAZEMI-BEYDOKHTI, A.A. KHODADADI, Y. MORTAZAVI, S. OMANOVICM. SHARIAT-NIASSAR, "Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route". Chemical Engineering Journal, Cilt 156. 2, 471-478, 2010.
  • [30] LI, X., ZHU, D., WANG, X., "Evaluation on dispersion behavior of the aqueous copper nano-suspensions". Journal of Colloid and Interface Science, Cilt 310. 2, 456-463, 2007.
  • [31] MANJULA, S., MAHESH, S. K., RAICHUR, A. M., MADHU, G. M., SURESH, R., RAJ, M. A. L., "A sedimentation study to optimize the dispersion of alumina nanoparticles in water". Ceramica, Cilt 51. 121-127, 2005.
  • [32] SATO, T., RUCH, R., stabilization of colloidal dispersion by polymer adsorption. 1980, New York,: Marcel Dekker Inc.
  • [33] ZHU, D., LI, X., WANG N., WANG X., GAO, J., LI H., "Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids". Current Applied Physics, Cilt 9. 131-139, 2008.
  • [34] ZHU, H.T., LIN, Y. S., YIN, Y. S., "A novel one-step chemical method for preparation of copper nanofluids". Journal of Colloid and Interface Science, Cilt 277. 100-103, 2004.
  • [35] SINGH, A.K., RAYKAR, V. S., "Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties". Colloid and Polymer Science, Cilt 286. 14-15, 1667-1673, 2008.
  • [36] ZHU, H., ZHANG, C., TANG, Y., WANG, J., REN, B., YIN, Y., "Preparation and thermal conductivity of suspensions of graphite nanoparticles". Carbon, Cilt 45. 1, 226-228, 2007.
  • [37] ZHU, H., HAN, D., MENG, Z., WU, D., ZHANG, C., "Preparation and thermal conductivity of CuO nanofluid via a wet chemical method". Nanoscale Res Lett, Cilt 6. 1, 181, 2011.
  • [38] MAHBUBUL, I.M., SAIDUR, R., AMALINA, M.A, ELCIOGLU, E.B., OKUTUCU-OZYURT, T., "Effective ultrasonication process for better colloidal dispersion of nanofluid". Ultrasonics Sonochemistry, Cilt 26 361–369, 2015.
  • [39] WEI, Y., HUAQING, X., "A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications". Journal of Nanomaterials, Cilt 2012. 1-17, 2012.
  • [40] HWANG, Y., J.K. LEE, C.H. LEE, Y.M. JUNG, S.I. CHEONG, C.G. LEE, B.C. KUS.P. JANG, "Stability and thermal conductivity characteristics of nanofluids". Thermochimica Acta, Cilt 455. 1-2, 70-74, 2007.
  • [41] CHOI, S., ZHANG, ZG, YU, WU, LOCKWOOD, FE, GRULKE, EA, "Anomalous thermal conductivity enhancement in nanotube suspensions". Applied physics letters, Cilt 79. 14, 2252-2254, 2001.
  • [42] GÖNÜL, N., "Çok Fazlı Sistemler 1 Yüzey Kimyası ve Kolloidler" 2000, Ankara Üniversitesi Eczacılık Fakültesi Yayınları: ANKARA.
  • [43] KHDHER, A.M., SIDIK, N.A.C, HAMZAH, W.A.W., MAMAT, R., "An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation". International Communications in Heat and Mass Transfer, Cilt 73. 75-83, 2016.
  • [44] KOULOULIAS, K., A. SERGISY. HARDALUPAS, "Sedimentation in nanofluids during a natural convection experiment". International Journal of Heat and Mass Transfer, Cilt 101. 1193-1203, 2016.
  • [45] MISSANA, T., ADELL, A., "On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability". J Colloid Interface Sci, Cilt 230. 1, 150-156, 2000.
  • [46] MISSANA, T., ADELL, A., Steric Stabilization. 2002, ABD: The Ohio State University.
  • [47] HIEMENZ, P.C., RAJAGOPALAN, R., Principles of Colloid and Surface Chemistry. 3th ed. 1997: MARCEL DEKKER, INC.
  • [48] GHADIMI, A., METSELAAR, I.H., "The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid". Experimental Thermal and Fluid Science, Cilt 51. 1-9, 2013.
  • [49] KAMATCHI, R., R., VENKATACHALAPATHY, S., ABHINAYA S. B., "Synthesis, stability, transport properties, and surface wettability of reduced graphene oxide water nanofluids". International Journal of Thermal Sciences, Cilt 97. 17-25, 2015.
  • [50] MOSTAFIZUR, R.M., A.R. ABDUL AZIZ, R. SAIDUR, M.H.U. BHUIYANI.M. MAHBUBUL, "Effect of temperature and volume fraction on rheology of methanol based nanofluids". International Journal of Heat and Mass Transfer, Cilt 77. 765-769, 2014.
  • [51] ZAWRAH, M.F., KHATTAB, R.M., GIRGIS, L.G., EL DAIDAMONY, H., REHAB E. ABDEL AZIZ, "Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications". Housing and Building National Research Center, Cilt, 2014.
  • [52] CHINNAM, J., D.K. DAS, R.S. VAJJHAJ.R. SATTI, "Measurements of the surface tension of nanofluids and development of a new correlation". International Journal of Thermal Sciences, Cilt 98. 68-80, 2015.
  • [53] HSIEH, S.-S., H.-H. LIUY.-F. YEH, "Nanofluids spray heat transfer enhancement". International Journal of Heat and Mass Transfer, Cilt 94. 104-118, 2016.
  • [54] PENKAVOVA, V., J. TIHONO. WEIN, "Stability and rheology of dilute TiO2-water nanofluids". Nanoscale Res Lett, Cilt 6. 1, 273, 2011.
  • [55] ILYAS, S.U., PENDYALA, R., MARNENI, N., "Preparation, Sedimentation, and agglomeration of nanofluids". Chemical Engineering Technology, Cilt 37. 12, 2011.
  • [56] RIEHL, R.R.N.D. SANTOS, "Water-copper nanofluid application in an open loop pulsating heat pipe". Applied Thermal Engineering, Cilt 42. 6-10, 2012.
  • [57] KAMALGHARIBI, M., F. HORMOZI, S.A.H. ZAMZAMIANM.M. SARAFRAZ, "Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: influence of stirring, sonication and surface active agents". Heat and Mass Transfer, Cilt 52. 1, 55-62, 2015.
  • [58] KARIMIAN, H., BABALUO, A. A., "Halos mechanism in stabilizing of colloidal suspensions: Nanoparticle weight fraction and pH effects". Journal of the European Ceramic Society, Cilt 27. 1, 19-25, 2007.
  • [59] CHANG, H.M.J. KAO, "An innovative nanofluid manufacturing system". Journal of the Chinese Society of Mechanical Engineers, Cilt 28. 2, 187-193, 2007.
  • [60] CHANG, H.S.C. LIN, "Fabrication method for a TiO2 nanofluid with high roundness and superior dispersion properties". Materials Transactions, Cilt 48. 4, 836-841, 2007.
  • [61] CHANG, H., TSAI, K.L., TSUNG, T.T., A study on dynamic stability of the Fe3O4 magnetorheological fluid, in Pricm 6: Sixth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-3, Y.W. Chang, N.J. KimC.S. Lee, Editors. 2007. p. 2175-2178.
  • [62] HWANG, Y.J., AHN, Y. C., SHIN, H. S., LEE, C. G., KIM, G. T., PARK, H. S., LEE, J. K., "Investigation on characteristics of thermal conductivity enhancement of nanofluids". Current Applied Physics, Cilt 6. 6, 1068-1071, 2006.
  • [63] JUNG, C.W., LEE, K., KANG, Y.T., KIM, J.K., An experimental study on the distribution stability of binary nanofluids by neta potential measurement for absortion application. Proceedings of the 3rd Asian Conference on Refrigeration and Air-Conditioning Vols I and II. 2006. 311-314.
  • [64] LAI, W. Y., PHELAN, P. E., VINOD, S., PRASHER, R.L., Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube, in 2008 11th Ieee Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vols 1-3. 2008. p. 970-978.
  • [65] VANDSBURGER, L., Synthesis and covalent surface modification of carbon nanotubes for preparation of stabilized nanofluid suspensions, in Departman of Chemical Enggineering. 2009, McGill University.
  • [66] YU, F., Y. CHEN, X. LIANG, J. XU, C. LEE, Q. LIANG, P. TAOT. DENG, "Dispersion stability of thermal nanofluids". Progress in Natural Science: Materials International, Cilt, 2017.
  • [67] HUANG, J., WANG, X., LONG, Q., WEN, X., ZHOU, Y., LI, L., "Influence of pH on the stability characteristics of nanofluids". In Proceedings of the Symposium on Photonics and Optoelectronics (SOPO '09), Cilt, 2009.
  • [68] KARAMI, M., M.A.A. BAHABADI, S. DELFANIA. GHOZATLOO, "A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector". Solar Energy Materials and Solar Cells, Cilt 121. 114-118, 2014.
  • [69] YADAV, D.M.C. KIM, "The onset of transient soret-driven buoyancy convection in nanoparticle suspensions with particle-concentration-dependent viscosity in a porous medium". Journal of Porous Media, Cilt 18. 4, 369-378, 2015.
  • [70] FARBOD, M., R. KOUHPEYMANI ASLA.R. NOGHREH ABADI, "Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures". Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 474. 71-75, 2015.
  • [71] SADEGHI, R., ETEMAD, S. G., KESHAVARZI, E., HAGHSHENASFARD, M., "Investigation of alumina nanofluid stability by UV–vis spectrum". Microfluidics and Nanofluidics, Cilt 18. 5-6, 1023-1030, 2014.
  • [72] LEE, J., K. HANJ. KOO, "A novel method to evaluate dispersion stability of nanofluids". International Journal of Heat and Mass Transfer, Cilt 70. 421-429, 2014.
  • [73] PATRICIA, A.C., ROSA, M., LEONOR H., RAUL, M. C., LUIS C., ENRIQUE, J., "Increment of specific heat capacity of solar salt with SiO2 nanoparticles". Nanoscale Research Letters, Cilt 9. 1, 582, 2014.
  • [74] CABALEIRO, D., COLLA, L., AGRESTI, F., LUGO, L., FEDELE, L., "Transport properties and heat transfer coefficients of ZnO/(ethylene glycol+water) nanofluids". International Journal of Heat and Mass Transfer, Cilt 89. 433-443, 2015.
  • [75] CHOI, S.U.S. "Nanofluid Technology: Current Status and Future Research", in Korea-U.S. Technical Conference on Strategic Technologies Conference. 1998.
  • [76] NAZIFIFARD, M., NEMATOLLAHI, M., JAFARPUR, K., SUH, K. Y., "Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry". Science and Technology of Nuclear Installations, Cilt 2012. 1-12, 2012.
  • [77] SINGH, A.K., "Thermal Conductivity of Nanofluids". Defence Science Journal, Cilt 58. 5, 600-607, 2008.
  • [78] http://apps.webofknowledge.com. (Erişim Tarihi 28.09.2017)
  • [79] XIA, G.D., LIU, R., WANG, J., DU, M., "The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids". International Communications in Heat and Mass Transfer, Cilt 76. 256-264, 2016.
  • [80] MOSTAFIZUR, R.M., M.H.U. BHUIYAN, R. SAIDURA.R. ABDUL AZIZ, "Thermal conductivity variation for methanol based nanofluids". International Journal of Heat and Mass Transfer, Cilt 76. 350-356, 2014.
  • [81] LIU, M.S., LIN, C.C.M., HUANG, I.T., WANG, C.C., "Enhancement of thermal conductivity with carbon nanotube for nanofluids". International Communications in Heat and Mass Transfer, Cilt 32. 9, 1202-1210, 2005.
  • [82] S.K. DAS, N.P., P. THIESEN, W. ROETZEL, "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids". J. Heat Transfer, Cilt 125. 567– 574, 2003.
  • [83] YANG, L., DU, K., NIU, X., LI, Y., ZHANG, Y., "An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids". International Journal of Refrigeration, Cilt 34. 8, 1741-1748, 2011.
  • [84] WITHARANA, S., PALABIYIK, I., MUSINA, Z., DING, Y., "Stability of glycol nanofluids — The theory and experiment". Powder Technology, Cilt 239. 72-77, 2013.
  • [85] WANG, X.J., LI, X.F., "Influence of pH on Nanofluids’ Viscosity and Thermal Conductivity". Energy Fuels Cilt 23. 2684–2689, 2009.
  • [86] CHIESA, M., DAS, S.K., "Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media". Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 335. 1-3, 88-97, 2009.
  • [87] SHAHRUL, I.M., MAHBUBUL, I. M., SAIDUR, R., SABRI, M.F.M., "Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger". International Journal of Heat and Mass Transfer, Cilt 97. 547-558, 2016.
  • [88] SARSAM, W.S., AMIRI, A., ZUBIR, M.N.M., YARMAND, H., KAZI, S. N., BADARUDIN, A., "Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas". Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 500. 17-31, 2016.
  • [89] LI, X., ZOU, G., ZHOU, L., QI, A., "Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications". International Journal of Heat and Mass Transfer, Cilt 97. 631-637, 2016.
  • [90] SIDIK, N.A.C., H.A. MOHAMMED, O.A. ALAWIS. SAMION, "A review on preparation methods and challenges of nanofluids". International Communications in Heat and Mass Transfer, Cilt 54. 115-125, 2014.
  • [91] EASTMAN, J.A., CHOI, S. U. S., LI, S., YU, W., THOMPSON, L.J., "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles". Applied Physics Letters, Cilt 78. 6, 2001.
  • [92] CHANDRASEKAR, M., SURESH, S., SENTHILKUMAR, T., "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review". Renewable and Sustainable Energy Reviews, Cilt 16. 6, 3917-3938, 2012.
  • [93] LEE, J.-H., K.S. HWANG, S.P. JANG, B.H. LEE, J.H. KIM, S.U.S. CHOIC.J. CHOI, "Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles". International Journal of Heat and Mass Transfer, Cilt 51. 11-12, 2651-2656, 2008.
  • [94] ZHANG, X., GU, H., FUJII, M., "Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids". International Journal of Thermophysics, Cilt 27. 2, 569-580, 2006.
  • [95] XIA, G., JIANG, H., LIU, R., ZHAI, Y., "Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids". International Journal of Thermal Sciences, Cilt 84. 118-124, 2014.
  • [96] XIE, H., WANG, J., XI, T., LIU, Y., AI, F., "Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid". JOURNAL OF MATERIALS SCIENCE LETTERS, Cilt 21. 1469-1471, 2002.
  • [97] YU, W., E.V. TIMOFEEVA, D. SINGH, D.M. FRANCER.K. SMITH, "Investigations of heat transfer of copper-in-Therminol 59 nanofluids". International Journal of Heat and Mass Transfer, Cilt 64. 1196-1204, 2013.
  • [98] LIU, M.S., LIN, M.M.C.,HUANG, I.T., WANG, C.C., "Enhancement of Thermal Conductivity with CuO for Nanofluids". Chem. Eng. Technol. , Cilt 29. 72-77, 2006.
  • [99] DRZAZGA, M., DZIDO, G., LEMANOWICZ, M., GIERCZYCKI, A., " Influence of nonionic surfactant on nanofluid properties". 14th European Conference on Mixing, Cilt, 2012.
  • [100] JAHANSHAHI, M., HOSSEINIZADEH, S. F., ALIPANAH, M., DEHGHANI, A., VAKILINEJAD, G. R., "Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid". International Communications in Heat and Mass Transfer, Cilt 37. 6, 687-694, 2010.
  • [101] SONG, Y.Y., BHADESHIA, H. K. D. H., SUH, D.W., "Stability of stainless-steel nanoparticle and water mixtures". Powder Technology, Cilt 272. 34-44, 2015.
  • [102] DING, Y., H. ALIAS, D. WENR.A. WILLIAMS, "Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)". International Journal of Heat and Mass Transfer, Cilt 49. 1-2, 240-250, 2006.
  • [103] GODSON, L., B. RAJA, D.M. LALS. WONGWISES, "Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid". Experimental Heat Transfer, Cilt 23. 4, 317-332, 2010.
  • [104] SHARMA, P., BAEK, I.H, CHO, T., PARK, S., LEE, K.B., "Enhancement of thermal conductivity of ethylene glycol based silver nanofluids". Powder Technology

THE IMPORTANCE OF NANOFLUIDS STABILITY IN TERNS OF HEAT TRANSFER ENHANCEMENT

Yıl 2018, , 880 - 898, 20.07.2018
https://doi.org/10.28948/ngumuh.445339

Öz

In recent
years, efforts to improve heat transfer seem to have concentrated on the
nanofluids created by the effects of nanoparticle powders. There are many
studies showing that nanofluids increase heat transfer. There are many
obstacles in front of that nanofluids can replace conventional heat transfer
fluids. The most important of these is the nanofluids stability concept. Due to
the contradictions in the works done in this issue, the outcome of the change
of the angle of view to the nanofluids is revealed. In addition to increasing
the heat transfer of the nanofluids, the stability must be high. As a result,
idea that the heat transfer values of the nanofluids must be measured after
stabilization is achieved emerges. In this study, studies on stability in nanofluids
were studied and the effects on heat transfer were investigated.

Kaynakça

  • [1] BABITA, S.K.S., GUPTA, S.M., "Preparation and evaluation of stable nanofluids for heat transfer application: A review". Experimental Thermal and Fluid Science, Cilt 79, 202-212, 2016.
  • [2] ABU-NADA, E., ZIYAD, K., SALEH, M., ALI, Y., "Heat Transfer Enhancement in Combined Convection Around a Horizontal Cylinder Using Nanofluids". Journal of Heat Transfer, Cilt 130. 8, 084505, 2008.
  • [3] ALBADR, J., S. TAYALM. ALASADI, "Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations". Case Studies in Thermal Engineering, Cilt 1. 1, 38-44, 2013.
  • [4] CHANG, M.H., H.S. LIUC.Y. TAI, "Preparation of copper oxide nanoparticles and its application in nanofluid". Powder Technology, Cilt 207. 1-3, 378-386, 2011.
  • [5] CHOI, C., H.S. YOOJ.M. OH, "Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants". Current Applied Physics, Cilt 8. 6, 710-712, 2008.
  • [6] CHOI, S.U.S., ZHANG, Z.G., YU, W., LOCKWOOD, F.E., GRULKE, E.A., "Anomalous thermal conductivity enhancement in nanotube suspensions". Applied physics letters, Cilt 79. 14, 2252-2254, 2001.
  • [7] CHOPKAR, M., SUDARSHAN, S., DAS, P. K., MANNA, I., "Effect of Particle Size on Thermal Conductivity of Nanofluid". Metallurgical and Materials Transactions A, Cilt 39. 7, 1535-1542, 2008.
  • [8] CHUNG, S.J., LEONARD, J.P., NETTLESHIP, I., LEE, J.K., SOONG, Y., MARTELLO, D.V., CHYU, M.K., "Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion". Powder Technology, Cilt 194. 1-2, 75-80, 2009.
  • [9] DAS, S.K., S.U.S. CHOIH.E. PATEL, "Heat Transfer in Nanofluids—A Review". Heat Transfer Engineering, Cilt 27. 10, 3-19, 2006.
  • [10] XUAN, Y., LI, Q., "Heat transfer enhancement of nanofluids ". International Journal of Heat and Fluid Flow, Cilt 21. 1, 58-64, 2000.
  • [11] LEE, S., CHOI, S. U. S., LI, S., EASTMAN, J. A., "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles". Journal of Heat Transfer, Cilt 121. 2, 280, 1999.
  • [12] MURSHED, S.M.S., LEONG, K. C., YANG, C., "Enhanced thermal conductivity of TiO2—water based nanofluids". International Journal of Thermal Sciences, Cilt 44, 367-373, 2005.
  • [13] ÖZERINÇ, S., KAKAÇ, S., YAZICIOĞLU, A.G. "Enhanced thermal conductivity of nanofluids: a state-of-the-art review". Microfluidics and Nanofluidics, Cilt 8. 2, 145-170, 2009.
  • [14] WEI, Y., HUAQING, X., YANG, L., LIFEI, C., QIANG, W., "Experimental on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water". Powder Technology, Cilt 230, 14-19, 2012.
  • [15] MOGHADASSI, A.R., MASOUD HOSSEINI, S., HENNEKE, D., ELKAMEL, A., "A MODEL OF NANOFLUIDS EFFECTIVE THERMAL CONDUCTIVITY BASED ON DIMENSIONLESS GROUPS". Journal of Thermal Analysis and Calorimetry, Cilt 96, 81-84, 2009.
  • [16] YU, W., FRANCE, D. M., ROUTBORT, J. L., CHOI, S.U. S., "Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements". Heat Transfer Engineering, Cilt 29 (5), 432-460, 2008.
  • [17] WANG, X., CHOI, S. U. S., XU, X., "Thermal Conductivity of Nanoparticle - Fluid Mixture". Journal of Thermophysics and Heat Transfer, Cilt 13. 4, 474-480, 1999.
  • [18] VAJJHA, R.S., DAS, D.K., "Experimental determination of thermal conductivity of three nanofluids". International Journal of Heat and Mass Transfer, Cilt 52 4675–4682, 2009.
  • [19] BECK, M.P., YANHUI, Y., PRAMOD, W., AMYN S.T., "The effect of particle size on the thermal conductivity of alumina nanofluids". Journal of Nanoparticle Research, Cilt 11. 5, 1129-1136, 2008.
  • [20] BECK, M.P., Y. YUAN, P. WARRIERA.S. TEJA, "The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures". Journal of Nanoparticle Research, Cilt 12. 4, 1469-1477, 2009.
  • [21] SHALKEVICH, N., W. ESCHER, T. BURGI, B. MICHEL, L. SI-AHMEDD. POULIKAKOS, "On the thermal conductivity of gold nanoparticle colloids". Langmuir, Cilt 26. 2, 663-70, 2010.
  • [22] XIE, H., WANG, J., XI, T., LIU, Y., "Thermal Conductivity of Suspensions Containing Nanosized SiC Particles". International Journal of Thermophysics, Cilt 23. 2, 2001.
  • [23] TIMOFEEVA, E.V., ROUTBORT, J. L., SINGH, D., "Particle shape effects on thermophysical properties of alumina nanofluids". Journal of Applied Physics, Cilt 106. 1, 2009.
  • [24] CHEN, H., S. WITHARANA, Y. JIN, C. KIMY. DING, "Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology". Particuology, Cilt 7. 2, 151-157, 2009.
  • [25] YU, W., H. XIE, L. CHENY. LI, "Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles". Powder Technology, Cilt 197. 3, 218-221, 2010.
  • [26] ESFE, M.H., KARIMIPOUR, A., YAN, W. M., AKBARI, M., "Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanopariciple". International Journal of Heat and Mass Transfer, Cilt 88 (2015) 728–734. 2015.
  • [27] PATEL, H.E., S.K. DAS, T. SUNDARARAJAN, A. SREEKUMARAN NAIR, B. GEORGET. PRADEEP, "Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects". Applied Physics Letters, Cilt 83. 14, 2931, 2003.
  • [28] SHIMA, P.D., PHILIP, J., RAJ, B., "Iron Oxide Nanofluids and Study of TemperatureDependence on Thermal Conductivity and Viscosity". The Journal of Physical Chemistry C, Cilt 114, 18825-18833, 2010.
  • [29] HABIBZADEH, S., A. KAZEMI-BEYDOKHTI, A.A. KHODADADI, Y. MORTAZAVI, S. OMANOVICM. SHARIAT-NIASSAR, "Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route". Chemical Engineering Journal, Cilt 156. 2, 471-478, 2010.
  • [30] LI, X., ZHU, D., WANG, X., "Evaluation on dispersion behavior of the aqueous copper nano-suspensions". Journal of Colloid and Interface Science, Cilt 310. 2, 456-463, 2007.
  • [31] MANJULA, S., MAHESH, S. K., RAICHUR, A. M., MADHU, G. M., SURESH, R., RAJ, M. A. L., "A sedimentation study to optimize the dispersion of alumina nanoparticles in water". Ceramica, Cilt 51. 121-127, 2005.
  • [32] SATO, T., RUCH, R., stabilization of colloidal dispersion by polymer adsorption. 1980, New York,: Marcel Dekker Inc.
  • [33] ZHU, D., LI, X., WANG N., WANG X., GAO, J., LI H., "Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids". Current Applied Physics, Cilt 9. 131-139, 2008.
  • [34] ZHU, H.T., LIN, Y. S., YIN, Y. S., "A novel one-step chemical method for preparation of copper nanofluids". Journal of Colloid and Interface Science, Cilt 277. 100-103, 2004.
  • [35] SINGH, A.K., RAYKAR, V. S., "Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties". Colloid and Polymer Science, Cilt 286. 14-15, 1667-1673, 2008.
  • [36] ZHU, H., ZHANG, C., TANG, Y., WANG, J., REN, B., YIN, Y., "Preparation and thermal conductivity of suspensions of graphite nanoparticles". Carbon, Cilt 45. 1, 226-228, 2007.
  • [37] ZHU, H., HAN, D., MENG, Z., WU, D., ZHANG, C., "Preparation and thermal conductivity of CuO nanofluid via a wet chemical method". Nanoscale Res Lett, Cilt 6. 1, 181, 2011.
  • [38] MAHBUBUL, I.M., SAIDUR, R., AMALINA, M.A, ELCIOGLU, E.B., OKUTUCU-OZYURT, T., "Effective ultrasonication process for better colloidal dispersion of nanofluid". Ultrasonics Sonochemistry, Cilt 26 361–369, 2015.
  • [39] WEI, Y., HUAQING, X., "A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications". Journal of Nanomaterials, Cilt 2012. 1-17, 2012.
  • [40] HWANG, Y., J.K. LEE, C.H. LEE, Y.M. JUNG, S.I. CHEONG, C.G. LEE, B.C. KUS.P. JANG, "Stability and thermal conductivity characteristics of nanofluids". Thermochimica Acta, Cilt 455. 1-2, 70-74, 2007.
  • [41] CHOI, S., ZHANG, ZG, YU, WU, LOCKWOOD, FE, GRULKE, EA, "Anomalous thermal conductivity enhancement in nanotube suspensions". Applied physics letters, Cilt 79. 14, 2252-2254, 2001.
  • [42] GÖNÜL, N., "Çok Fazlı Sistemler 1 Yüzey Kimyası ve Kolloidler" 2000, Ankara Üniversitesi Eczacılık Fakültesi Yayınları: ANKARA.
  • [43] KHDHER, A.M., SIDIK, N.A.C, HAMZAH, W.A.W., MAMAT, R., "An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation". International Communications in Heat and Mass Transfer, Cilt 73. 75-83, 2016.
  • [44] KOULOULIAS, K., A. SERGISY. HARDALUPAS, "Sedimentation in nanofluids during a natural convection experiment". International Journal of Heat and Mass Transfer, Cilt 101. 1193-1203, 2016.
  • [45] MISSANA, T., ADELL, A., "On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability". J Colloid Interface Sci, Cilt 230. 1, 150-156, 2000.
  • [46] MISSANA, T., ADELL, A., Steric Stabilization. 2002, ABD: The Ohio State University.
  • [47] HIEMENZ, P.C., RAJAGOPALAN, R., Principles of Colloid and Surface Chemistry. 3th ed. 1997: MARCEL DEKKER, INC.
  • [48] GHADIMI, A., METSELAAR, I.H., "The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid". Experimental Thermal and Fluid Science, Cilt 51. 1-9, 2013.
  • [49] KAMATCHI, R., R., VENKATACHALAPATHY, S., ABHINAYA S. B., "Synthesis, stability, transport properties, and surface wettability of reduced graphene oxide water nanofluids". International Journal of Thermal Sciences, Cilt 97. 17-25, 2015.
  • [50] MOSTAFIZUR, R.M., A.R. ABDUL AZIZ, R. SAIDUR, M.H.U. BHUIYANI.M. MAHBUBUL, "Effect of temperature and volume fraction on rheology of methanol based nanofluids". International Journal of Heat and Mass Transfer, Cilt 77. 765-769, 2014.
  • [51] ZAWRAH, M.F., KHATTAB, R.M., GIRGIS, L.G., EL DAIDAMONY, H., REHAB E. ABDEL AZIZ, "Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications". Housing and Building National Research Center, Cilt, 2014.
  • [52] CHINNAM, J., D.K. DAS, R.S. VAJJHAJ.R. SATTI, "Measurements of the surface tension of nanofluids and development of a new correlation". International Journal of Thermal Sciences, Cilt 98. 68-80, 2015.
  • [53] HSIEH, S.-S., H.-H. LIUY.-F. YEH, "Nanofluids spray heat transfer enhancement". International Journal of Heat and Mass Transfer, Cilt 94. 104-118, 2016.
  • [54] PENKAVOVA, V., J. TIHONO. WEIN, "Stability and rheology of dilute TiO2-water nanofluids". Nanoscale Res Lett, Cilt 6. 1, 273, 2011.
  • [55] ILYAS, S.U., PENDYALA, R., MARNENI, N., "Preparation, Sedimentation, and agglomeration of nanofluids". Chemical Engineering Technology, Cilt 37. 12, 2011.
  • [56] RIEHL, R.R.N.D. SANTOS, "Water-copper nanofluid application in an open loop pulsating heat pipe". Applied Thermal Engineering, Cilt 42. 6-10, 2012.
  • [57] KAMALGHARIBI, M., F. HORMOZI, S.A.H. ZAMZAMIANM.M. SARAFRAZ, "Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: influence of stirring, sonication and surface active agents". Heat and Mass Transfer, Cilt 52. 1, 55-62, 2015.
  • [58] KARIMIAN, H., BABALUO, A. A., "Halos mechanism in stabilizing of colloidal suspensions: Nanoparticle weight fraction and pH effects". Journal of the European Ceramic Society, Cilt 27. 1, 19-25, 2007.
  • [59] CHANG, H.M.J. KAO, "An innovative nanofluid manufacturing system". Journal of the Chinese Society of Mechanical Engineers, Cilt 28. 2, 187-193, 2007.
  • [60] CHANG, H.S.C. LIN, "Fabrication method for a TiO2 nanofluid with high roundness and superior dispersion properties". Materials Transactions, Cilt 48. 4, 836-841, 2007.
  • [61] CHANG, H., TSAI, K.L., TSUNG, T.T., A study on dynamic stability of the Fe3O4 magnetorheological fluid, in Pricm 6: Sixth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-3, Y.W. Chang, N.J. KimC.S. Lee, Editors. 2007. p. 2175-2178.
  • [62] HWANG, Y.J., AHN, Y. C., SHIN, H. S., LEE, C. G., KIM, G. T., PARK, H. S., LEE, J. K., "Investigation on characteristics of thermal conductivity enhancement of nanofluids". Current Applied Physics, Cilt 6. 6, 1068-1071, 2006.
  • [63] JUNG, C.W., LEE, K., KANG, Y.T., KIM, J.K., An experimental study on the distribution stability of binary nanofluids by neta potential measurement for absortion application. Proceedings of the 3rd Asian Conference on Refrigeration and Air-Conditioning Vols I and II. 2006. 311-314.
  • [64] LAI, W. Y., PHELAN, P. E., VINOD, S., PRASHER, R.L., Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube, in 2008 11th Ieee Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vols 1-3. 2008. p. 970-978.
  • [65] VANDSBURGER, L., Synthesis and covalent surface modification of carbon nanotubes for preparation of stabilized nanofluid suspensions, in Departman of Chemical Enggineering. 2009, McGill University.
  • [66] YU, F., Y. CHEN, X. LIANG, J. XU, C. LEE, Q. LIANG, P. TAOT. DENG, "Dispersion stability of thermal nanofluids". Progress in Natural Science: Materials International, Cilt, 2017.
  • [67] HUANG, J., WANG, X., LONG, Q., WEN, X., ZHOU, Y., LI, L., "Influence of pH on the stability characteristics of nanofluids". In Proceedings of the Symposium on Photonics and Optoelectronics (SOPO '09), Cilt, 2009.
  • [68] KARAMI, M., M.A.A. BAHABADI, S. DELFANIA. GHOZATLOO, "A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector". Solar Energy Materials and Solar Cells, Cilt 121. 114-118, 2014.
  • [69] YADAV, D.M.C. KIM, "The onset of transient soret-driven buoyancy convection in nanoparticle suspensions with particle-concentration-dependent viscosity in a porous medium". Journal of Porous Media, Cilt 18. 4, 369-378, 2015.
  • [70] FARBOD, M., R. KOUHPEYMANI ASLA.R. NOGHREH ABADI, "Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures". Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 474. 71-75, 2015.
  • [71] SADEGHI, R., ETEMAD, S. G., KESHAVARZI, E., HAGHSHENASFARD, M., "Investigation of alumina nanofluid stability by UV–vis spectrum". Microfluidics and Nanofluidics, Cilt 18. 5-6, 1023-1030, 2014.
  • [72] LEE, J., K. HANJ. KOO, "A novel method to evaluate dispersion stability of nanofluids". International Journal of Heat and Mass Transfer, Cilt 70. 421-429, 2014.
  • [73] PATRICIA, A.C., ROSA, M., LEONOR H., RAUL, M. C., LUIS C., ENRIQUE, J., "Increment of specific heat capacity of solar salt with SiO2 nanoparticles". Nanoscale Research Letters, Cilt 9. 1, 582, 2014.
  • [74] CABALEIRO, D., COLLA, L., AGRESTI, F., LUGO, L., FEDELE, L., "Transport properties and heat transfer coefficients of ZnO/(ethylene glycol+water) nanofluids". International Journal of Heat and Mass Transfer, Cilt 89. 433-443, 2015.
  • [75] CHOI, S.U.S. "Nanofluid Technology: Current Status and Future Research", in Korea-U.S. Technical Conference on Strategic Technologies Conference. 1998.
  • [76] NAZIFIFARD, M., NEMATOLLAHI, M., JAFARPUR, K., SUH, K. Y., "Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry". Science and Technology of Nuclear Installations, Cilt 2012. 1-12, 2012.
  • [77] SINGH, A.K., "Thermal Conductivity of Nanofluids". Defence Science Journal, Cilt 58. 5, 600-607, 2008.
  • [78] http://apps.webofknowledge.com. (Erişim Tarihi 28.09.2017)
  • [79] XIA, G.D., LIU, R., WANG, J., DU, M., "The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids". International Communications in Heat and Mass Transfer, Cilt 76. 256-264, 2016.
  • [80] MOSTAFIZUR, R.M., M.H.U. BHUIYAN, R. SAIDURA.R. ABDUL AZIZ, "Thermal conductivity variation for methanol based nanofluids". International Journal of Heat and Mass Transfer, Cilt 76. 350-356, 2014.
  • [81] LIU, M.S., LIN, C.C.M., HUANG, I.T., WANG, C.C., "Enhancement of thermal conductivity with carbon nanotube for nanofluids". International Communications in Heat and Mass Transfer, Cilt 32. 9, 1202-1210, 2005.
  • [82] S.K. DAS, N.P., P. THIESEN, W. ROETZEL, "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids". J. Heat Transfer, Cilt 125. 567– 574, 2003.
  • [83] YANG, L., DU, K., NIU, X., LI, Y., ZHANG, Y., "An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids". International Journal of Refrigeration, Cilt 34. 8, 1741-1748, 2011.
  • [84] WITHARANA, S., PALABIYIK, I., MUSINA, Z., DING, Y., "Stability of glycol nanofluids — The theory and experiment". Powder Technology, Cilt 239. 72-77, 2013.
  • [85] WANG, X.J., LI, X.F., "Influence of pH on Nanofluids’ Viscosity and Thermal Conductivity". Energy Fuels Cilt 23. 2684–2689, 2009.
  • [86] CHIESA, M., DAS, S.K., "Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media". Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 335. 1-3, 88-97, 2009.
  • [87] SHAHRUL, I.M., MAHBUBUL, I. M., SAIDUR, R., SABRI, M.F.M., "Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger". International Journal of Heat and Mass Transfer, Cilt 97. 547-558, 2016.
  • [88] SARSAM, W.S., AMIRI, A., ZUBIR, M.N.M., YARMAND, H., KAZI, S. N., BADARUDIN, A., "Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas". Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 500. 17-31, 2016.
  • [89] LI, X., ZOU, G., ZHOU, L., QI, A., "Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications". International Journal of Heat and Mass Transfer, Cilt 97. 631-637, 2016.
  • [90] SIDIK, N.A.C., H.A. MOHAMMED, O.A. ALAWIS. SAMION, "A review on preparation methods and challenges of nanofluids". International Communications in Heat and Mass Transfer, Cilt 54. 115-125, 2014.
  • [91] EASTMAN, J.A., CHOI, S. U. S., LI, S., YU, W., THOMPSON, L.J., "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles". Applied Physics Letters, Cilt 78. 6, 2001.
  • [92] CHANDRASEKAR, M., SURESH, S., SENTHILKUMAR, T., "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review". Renewable and Sustainable Energy Reviews, Cilt 16. 6, 3917-3938, 2012.
  • [93] LEE, J.-H., K.S. HWANG, S.P. JANG, B.H. LEE, J.H. KIM, S.U.S. CHOIC.J. CHOI, "Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles". International Journal of Heat and Mass Transfer, Cilt 51. 11-12, 2651-2656, 2008.
  • [94] ZHANG, X., GU, H., FUJII, M., "Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids". International Journal of Thermophysics, Cilt 27. 2, 569-580, 2006.
  • [95] XIA, G., JIANG, H., LIU, R., ZHAI, Y., "Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids". International Journal of Thermal Sciences, Cilt 84. 118-124, 2014.
  • [96] XIE, H., WANG, J., XI, T., LIU, Y., AI, F., "Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid". JOURNAL OF MATERIALS SCIENCE LETTERS, Cilt 21. 1469-1471, 2002.
  • [97] YU, W., E.V. TIMOFEEVA, D. SINGH, D.M. FRANCER.K. SMITH, "Investigations of heat transfer of copper-in-Therminol 59 nanofluids". International Journal of Heat and Mass Transfer, Cilt 64. 1196-1204, 2013.
  • [98] LIU, M.S., LIN, M.M.C.,HUANG, I.T., WANG, C.C., "Enhancement of Thermal Conductivity with CuO for Nanofluids". Chem. Eng. Technol. , Cilt 29. 72-77, 2006.
  • [99] DRZAZGA, M., DZIDO, G., LEMANOWICZ, M., GIERCZYCKI, A., " Influence of nonionic surfactant on nanofluid properties". 14th European Conference on Mixing, Cilt, 2012.
  • [100] JAHANSHAHI, M., HOSSEINIZADEH, S. F., ALIPANAH, M., DEHGHANI, A., VAKILINEJAD, G. R., "Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid". International Communications in Heat and Mass Transfer, Cilt 37. 6, 687-694, 2010.
  • [101] SONG, Y.Y., BHADESHIA, H. K. D. H., SUH, D.W., "Stability of stainless-steel nanoparticle and water mixtures". Powder Technology, Cilt 272. 34-44, 2015.
  • [102] DING, Y., H. ALIAS, D. WENR.A. WILLIAMS, "Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)". International Journal of Heat and Mass Transfer, Cilt 49. 1-2, 240-250, 2006.
  • [103] GODSON, L., B. RAJA, D.M. LALS. WONGWISES, "Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid". Experimental Heat Transfer, Cilt 23. 4, 317-332, 2010.
  • [104] SHARMA, P., BAEK, I.H, CHO, T., PARK, S., LEE, K.B., "Enhancement of thermal conductivity of ethylene glycol based silver nanofluids". Powder Technology
Toplam 104 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Fevzi Şahin 0000-0002-4808-4915

Lütfü Namlı 0000-0001-9758-0889

Yayımlanma Tarihi 20 Temmuz 2018
Gönderilme Tarihi 10 Ekim 2017
Kabul Tarihi 18 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Şahin, F., & Namlı, L. (2018). NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(2), 880-898. https://doi.org/10.28948/ngumuh.445339
AMA Şahin F, Namlı L. NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ. NÖHÜ Müh. Bilim. Derg. Temmuz 2018;7(2):880-898. doi:10.28948/ngumuh.445339
Chicago Şahin, Fevzi, ve Lütfü Namlı. “NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7, sy. 2 (Temmuz 2018): 880-98. https://doi.org/10.28948/ngumuh.445339.
EndNote Şahin F, Namlı L (01 Temmuz 2018) NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 2 880–898.
IEEE F. Şahin ve L. Namlı, “NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ”, NÖHÜ Müh. Bilim. Derg., c. 7, sy. 2, ss. 880–898, 2018, doi: 10.28948/ngumuh.445339.
ISNAD Şahin, Fevzi - Namlı, Lütfü. “NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7/2 (Temmuz 2018), 880-898. https://doi.org/10.28948/ngumuh.445339.
JAMA Şahin F, Namlı L. NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ. NÖHÜ Müh. Bilim. Derg. 2018;7:880–898.
MLA Şahin, Fevzi ve Lütfü Namlı. “NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 7, sy. 2, 2018, ss. 880-98, doi:10.28948/ngumuh.445339.
Vancouver Şahin F, Namlı L. NANOAKIŞKANLARDA KARARLILIĞIN ISI TRANSFERİNİ İYİLEŞTİRME AÇISINDAN ÖNEMİ. NÖHÜ Müh. Bilim. Derg. 2018;7(2):880-98.

download